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ПРЕДИСЛОВИЕ

В основу настоящей книги положены лекции по спецкурсу ,,Физика звезд"
для студентов–астрономов Санкт-Петербургского университета, специализиру-
ющихся по астрофизике. Материал лекций существенно расширен и дополнен.

Рекомендовать студентам подходящую по своему уровню и не слишком
устаревшую литературу по физике звезд на русском языке оказалось трудно.
Есть ряд превосходных русских и переводных книг, но такой, которая годи-
лась бы в качестве руководства для университетского астрономического кур-
са, среди них нет. Одни из этих книг, сколь они ни блестящи, все же слишком
популярны, другие трактуют предмет с позиций физика–теоретика и мало под-
ходят для студентов–астрономов. Современные же западные руководства мало
доступны студентам. В петербургских библиотеках их либо нет вовсе, либо они
у кого-то на руках. Это побудило меня взяться за составление настоящего ру-
ководства. Оно призвано служить материалом, дополняющим лекции.

Имеется ряд книг по физике звезд, в которых главным объектом исследо-
вания являются физические процессы, протекающие в звездах. Есть и много-
численные книги о звездах, написанные с чисто астрономических позиций, с
почти полным игнорированием физики дела. У нас делается попытка соблю-
сти тот баланс астрономии и физики, который характерен для сегодняшней
астрофизики. Получив теоретический результат, выражаемый некоторой фор-
мулой, мы стараемся дать не только обсуждение его физического смысла, но
и астрономических следствий.

Специфика Санкт-Петербургского университета состоит в том, что подго-
товка астрономов ведется на математико–механическом, а не на физическом
факультете. Поэтому знания студентов по физике оставляют желать лучшего.
Кроме того, как показывает опыт, вывод той или иной формулы часто вос-
принимается нашими студентами едва ли не как самоцель. Умение увидеть
за формулой физику, которую она описывает, почти отсутствует. Получение
простейших численных оценок дается студентам мат–меха с трудом, а глав-
ное, вызывает у них характерную психологическую трудность: такие оценки
кажутся им только упражнениями в арифметике, а не тем естественным эле-
ментом, который необходим для выработки физической картины явления. Эти
обстоятельства наложили заметный отпечаток на характер изложения.

Учебное пособие — это всегда компиляция. Ни в коей мере не претенду-
ет на оригинальность материала или способа изложения и это руководство.
При его составлении широко использован ряд имеющихся в мировой литера-
туре прекрасных учебных руководств, монографий и недавних обзоров. Было
составлено некоторое число задач и упражнений, как правило, совсем легких.
Их главная цель — дать возможность читателю проверить, как усвоен изложен-
ный материал. Хотя некоторые задачи дополняют основной текст, они слишком
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просты, чтобы служить для развития навыков самостоятельной работы.
Методическим образцом для меня в какой-то мере служил берклиевский

курс физики, читать который студенту нетрудно и интересно. Часто вспоми-
нались мне и советы моих друзей — астрофизиков–наблюдателей: ,,Чем мень-
ше будет формул — тем больше будет читателей–астрономов". К сожалению,
формул оказалось все же порядочно. С каждым годом число их росло, и посте-
пенно против моей воли они отвоевывали себе в курсе все большее жизненное
пространство. В конце концов этому пришлось перестать сопротивляться. Про-
валившуюся политику вытеснения формул сменила политика оказания всемер-
ной помощи читателю–астроному в их усвоении.

Работая над этой рукописью, я старался хотя бы местами сохранить стиль
живой беседы со слушателями. Лаконичность было решено принести в жертву
эмоциональности, которая не только не изгонялась, но скорее поощрялась в
надежде поддержать интерес читателя.

Рукопись книги, пока еще недописанной, доступна в Интернете на сайте
Астрономического института СПбГУ (http://www.astro.spbu.ru). По мере по-
явления новых готовых разделов эта электронная версия книги будет допол-
няться.

Так как работа над рукописью не окончена, любые замечания и предло-
жения будут очень полезны. Пособие предназначено в первую очередь для
студентов, и поэтому их комментарии будут для меня особенно ценными.

Добавление. Предисловие, которое вы сейчас прочли, было написано
очень давно, более 30 лет назад. После долгого перерыва в 2014 году работа
над книгой возобновилась и черепашьим шагом пока движется вперед. Автор
надеется, что судьба позволит доработать рукопись, и затянувшийся эмбрио-
нальный период ее развития в утробе Интернета завершится благополучными
родами — книга будет опубликована.

В.В.Иванов

7 ноября 2017 г. Westborough, Massachusetts, USA



Глава I

КАЧЕСТВЕННАЯ КАРТИНА

It is reasonable to hope that in a not too distant future we shall
be competent to understand so simple a thing as a star.

A.S. Eddington





1. ВВЕДЕНИЕ

1.1. Звезды во
Вселенной

Звезды — это те объекты, которые дали имя
науке АСТРОномия. Это не случайно. На
нынешнем этапе эволюции мира они, несо-
мненно, являются во многих отношениях са-

мыми важными объектами Вселенной.
Во-первых, в звездах сосредоточена бо́льшая часть массы светящегося

вещества галактик: в нашей Галактике — около 90%, в галактиках других ти-
пов часто и того больше. Правда, есть еще межгалактический газ, а также
так называемая темная материя, пока непосредственно не наблюдаемая и про-
являющаяся только по своему гравитационному воздействию на светящееся
вещество. Природа этой темной материи сейчас широко дискутируется. Хо-
тя полной ясности еще нет, в любом случае звезды — одна из основных форм
существования непосредственно наблюдаемой материи в галактиках.

Во-вторых, звезды являются важнейшими поставщиками энергии элек-
тромагнитного излучения во Вселенной. Впрочем, здесь нужно сделать две ого-
ворки. Мы не учитываем фонового реликтового излучения, в настоящее время
практически не влияющего на состояние вещества и энергетику подавляющего
большинства происходящих во Вселенной процессов. В далеком космологиче-
ском прошлом его роль была огромной, но на звездном этапе эволюции мира
взаимодействие реликтового излучения с веществом настолько слабое, что его
влиянием можно, как правило, пренебрегать. Вторая оговорка состоит в том,
что если в середине XX века звезды можно было считать основными постав-
щиками энергии электромагнитного излучения в мире, то теперь выяснилось,
что это не так. Они делят эту честь с ядрами активных галактик и квазара-
ми, дающими энергию того же порядка. В отличие от звезд, детали механизма
энерговыделения в ядрах галактик и в квазарах еще далеко не ясны. Несмотря
на важность в энергетике Вселенной этих во многом пока загадочных объек-
тов, содержащих, по-видимому, сверхмассивные черные дыры, классическое
представление о важнейшей роли звезд в энергетике мира, безусловно, остает-
ся верным и сегодня: звезды дают не меньше, а, судя по всему, все же больше
энергии, чем ядра галактик и квазары. Кроме того, следует иметь в виду, что в
обычных (не активных) галактиках — а их большинство — относительная энер-
гетическая роль ядер на нынешнем этапе развития этих галактик ничтожна.
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Это верно, в частности, для нашей Галактики. Резюмируя, можно утверждать,
что звезды — это важнейшие энергетические установки Вселенной.

В-третьих, химический состав вещества Вселенной, точнее, распростра-
ненность элементов и изменение ее со временем почти целиком определяются
процессами ядерных превращений в недрах звезд. На раннем этапе космоло-
гической эволюции, когда звезд еще не было, практически не существовало
и никаких других элементов, кроме водорода и гелия. Ни Земля, ни другие
планеты земной группы, состоящие в основном из тяжелых элементов, обра-
зоваться из этого первичного вещества не могли. Все, что окружает нас на
Земле — и углерод, эта основа жизни, и кислород, которым мы дышим, и
кремний, входящий в песок, по которому мы ходим, — словом, все элементы,
кроме водорода и частично гелия, были синтезированы в ядерных топках звезд
от примерно пяти до тринадцати миллиардов лет назад. Рожденные в недрах
звезд тяжелые элементы были затем рассеяны в межзвездной среде — частич-
но при взрывах сверхновых, частично путем спокойного истечения из звезд,
при сбросах звездных оболочек и т. п. Потом из вещества межзвездной среды,
обогащенного таким путем тяжелыми элементами, сформировались Солнце и
планеты. С тех пор прошло около пяти миллиардов лет. За это время ядерный
состав вещества Земли оставался почти неизменным, хотя, конечно, в нем про-
исходили многие другие важные эволюционные процессы — гравитационная
дифференциация элементов, сложные химические превращения и т. п.

Часто приходится слышать и читать, что Солнце — источник жизни на
Земле, потому что оно нас освещает и обогревает. Однако, как видим, с не
меньшим, а пожалуй даже с бо́льшим правом на эту роль могут претендовать
и те теперь уже умершие звезды, которые когда-то буквально ,,во чреве сво-
ем" породили элементы, ставшие основой жизни.

Энергетическая роль звезд известна очень широко — об этом пишется в
школьных учебниках, в популярных книгах по астрономии, не говоря уже о
вузовских курсах. Роль же звезд в ядерной эволюции вещества Вселенной до
недавнего времени подчеркивалась меньше — вероятно, потому, что она была
выяснена не так уж давно и многие детали и сейчас еще поняты не до конца.
Между тем, она не менее важна, что мы подчеркнем еще раз такой заключи-
тельной фразой: звезды — это основные центры синтеза элементов в природе.

Хотя роль звезд во Вселенной перечисленным выше далеко не исчерпывает-
ся, все же можно думать, что самое существенное было указано. Итак, изучив
строение и эволюцию звезд, мы получим ответы на три важнейших вопроса:
в каких физических условиях находится бо́льшая часть видимого вещества в
галактиках, как рождается основная часть электромагнитного излучения, ак-
тивно взаимодействующего с веществом, и каким путем происходит эволюция
материи на ядерном уровне. Без сомнения, эти вопросы имеют не только и даже
не столько астрономическое, сколько общенаучное и философское значение.
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1.2. Место звездной
астрофизики в
астрономии

Давая ответ на те три основных вопроса,
о которых только что говорилось, звездная
астрофизика указывает вместе с тем пути
к решению многих чисто астрономических

проблем, хотя и гораздо более частных, но все же захватывающих своей мас-
штабностью. Вот несколько примеров: установление шкалы расстояний в мире
звезд; определение возрастов групп звезд и даже отдельных звезд; истолко-
вание различий в химическом составе атмосфер звезд; объяснение звездной
переменности и т. д. Без преувеличения, звездная астрофизика — фундамент
здания современной астрономии.

Оглянемся на путь, пройденный астрономией в XX веке, и постараемся вы-
делить ее крупнейшие достижения — по одному на каждое поколение астроно-
мов этого столетия. Больших трудностей в выборе этих эпохальных открытий
у нас не возникнет.

Крупнейшее достижение первой трети века — это, несомненно, определение
размеров нашей Галактики, выяснение положения Солнца в ней и установление
шкалы межгалактических расстояний. Важнейшее достижение второй трети
века — открытие источников энергии звезд и создание теории звездной эво-
люции, позволившей понять в общих чертах развитие Вселенной на звездном
этапе ее жизни. Главным достижением конца века стало существенное продви-
жение вперед в области еще бо́льших пространственно-временны́х масштабов,
то есть прогресс в области внегалактической астрономии и космологии. Первый
из этих трех этапов развития астрономии XX века по справедливости можно
назвать эпохой галактической астрономии, второй этап — золотой век звезд-
ной астрофизики, наконец, сейчас мы живем в космологическую эру развития
астрономии.

1.3. Структура и
задачи астрофизики

звезд

Астрофизика звезд, понимаемая широко,
включает в себя три раздела — физику
звездных атмосфер, теорию строения звезд
и собственно звездную астрофизику. С точ-

ки зрения астронома первые два раздела в какой-то мере вспомогательные,
или, правильнее, предварительные. Для него они — прежде всего фундамент
главного, третьего раздела, цель которого — понять закономерности мира звезд
и пути его эволюции.
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Небольшое назидание. Устройство теоретического фундамента звездной аст-
рофизики многим астрономам кажется сложным. Кроме того, в ряде руководств
по теории строения звезд и особенно по теории звездных атмосфер эти разде-
лы астрофизики излагаются так, как будто развитие соответствующей теории и
есть конечная цель. Все это привело к появлению двух искаженных взглядов на
теоретические основы астрофизики звезд. Одни излишне увлекаются изучением
деталей конструкции этого фундамента. Гордые тем, что они разобрались в хит-
росплетениях физических факторов, определяющих строение звезды, за этими
деревьями они перестают видеть лес, то есть само здание звездной астрофизи-
ки. А ведь ради возведения его этот фундамент в конечном счете и был сложен.
Таковы, к сожалению, некоторые астрофизики–теоретики. Другие, отпугнутые
сравнительной сложностью и малой астрономичностью теории звездных атмо-
сфер и теории строения звезд, приходят к мысли, что им вовсе ни к чему раз-
бираться в том, на каком же основании покоится кажущееся им прекрасным
дворцом здание звездной астрофизики. Они полагают, что этим дворцом мож-
но не только любоваться, но и строить его дальше, не заточая себя надолго в
мрачное подземелье его ,,физического подвала". Достаточно наскоро сколотить
легкие леса, хотя и шаткие, но зато позволяющие быстро подняться наверх, ту-
да, где сейчас идет кладка стен очередного этажа (почему-то так хочется, что-
бы он был последним!). Так или примерно так в глубине души думают многие
астрономы–наблюдатели.

Не будем осуждать ни тех, ни других, но постараемся избежать их узости и
попытаемся в меру сил держаться поближе к тому, что большинство астрофи-
зиков сочло бы золотой серединой.

Главная задача первого раздела астрофизики звезд — физики их атмо-
сфер — состоит в извлечении из наблюдений данных об основных параметрах
звезд. Важнейшими внешними характеристиками звезды являются ее масса,
светимость и радиус, а также химический состав атмосферы. Прямому изме-
рению эти параметры, как правило, не поддаются. Основное назначение тео-
рии звездных атмосфер — дать методы нахождения этих величин по тем или
иным характеристикам наблюдаемого излучения звезды. Ими могут служить
звездные величины в какой-либо фотометрической системе — широкополосной
(чаще всего U, B, V) или узкополосной, спектры звезд низкой дисперсии, при-
годные главным образом для изучения распределения энергии в континууме,
или более высокой дисперсии, по которым можно получить также и эквива-
лентные ширины достаточно большого числа спектральных линий, реже —
спектральные наблюдения с высокой дисперсией, позволяющие детально ис-
следовать также и профили линий. Две другие существенные характеристики
звезды — скорость осевого вращения и напряженность магнитного поля на
поверхности. Их определение также основывается на результатах теории звезд-
ных атмосфер. Оно требует спектральных наблюдений хотя бы среднего или
лучше высокого (для определения вращения) или высшего (магнитные наблю-
дения) спектрального разрешения. Наконец, изучение движений вещества в
наружных слоях звезд, в частности, важного для понимания эволюции процес-
са истечения материи из звезд, или звездного ветра — это тоже компетенция
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физики звездных атмосфер. Разумеется, определенный интерес как объекты
исследования представляют и сами по себе атмосферы звезд, но все же глав-
ная цель их изучения, повторяем, состоит в получении тех данных о звездах,
которые служат исходным материалом при исследовании строения и развития
звезды как целого.

Другой фундаментальный раздел звездной астрофизики — физика звезд-
ных недр, или теория строения звезд (у нас еще довольно часто используется
несколько старомодный и уже редко встречающийся в мировой литературе
термин ,,теория внутреннего строения звезд"). Главная цель здесь — понять
физические процессы, определяющие структуру и эволюцию звезд, и дать ме-
тоды расчета строения звезд и его изменения со временем.

Теория строения звезд содержит три главных компонента, можно сказать,
покоится на трех китах. Во-первых, это теория термоядерных реакций. На
протяжении бо́льшей части жизни звезды они поставляют энергию, расходуе-
мую ею на излучение. От места производства в недрах звезды энергию нужно
затем доставить к месту потребления — на поверхность, откуда она излучается
звездой в окружающее пространство. Теория этой транспортировки энергии —
теория переноса тепла— есть второй основной компонент физики звезд. Нако-
нец, очевидно, что строение звезды зависит от способности звездного вещества
противостоять гравитации, стремящейся его сжать. Эта способность определя-
ется уравнением состояния P = P (ρ, T ), показывающим, какое давление P
любой элемент массы звезды, имеющий плотность ρ и нагретый до температу-
ры T , оказывает на окружающую его среду. Таков третий компонент.

Если говорить о физических явлениях в подавляющем большинстве звезд,
то главное мы только что перечислили. Взаимодействие этих факторов учесть,
однако, непросто. Расчет строения и развития звезды является сложной вычис-
лительной задачей. Тонкая техника расчетов структуры звездных недр сама
является существенной главой теории строения звезд.

Мы уже обращали внимание на то, что на теорию звездных атмосфер мож-
но смотреть (возможно, несколько односторонне) как на некий блок обработки
непосредственных данных наблюдений звездного излучения, переводящий их в
сведения об основных параметрах звезд. Подобным же образом и теория стро-
ения звезд интересна не столько сама по себе, сколько как фундамент теории
звездной эволюции, этого венца всей астрономии звезд.

В этом разделе об эволюции звезд много говорить мы не будем, ограничив-
шись несколькими замечаниями общего характера. Наряду с только что обри-
сованной физической основой теория эволюции звезд имеет прочные астроно-
мические основания. Главными являются разнообразные статистические дан-
ные об основных параметрах звезд и об их пространственно-кинематических
характеристиках. Особенно важную роль в теории эволюции сыграли и продол-
жают играть звезды, входящие в звездные скопления. Следует с самого начала
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подчеркнуть, что число следствий теории звездной эволюции, подтвержденных
наблюдениями, во много раз превышает число ее исходных предположений, ко-
торые к тому же сами по себе вполне естественны. В активе этой теории — ряд
замечательных предсказаний, впоследствии подтвержденных прямыми наблю-
дениями. Приведем характерные примеры.

На основе идей теории строения звезд Ф.Хойл еще в 50-е годы прошлого
века предсказал существование возбужденного уровня у ядра 12C с энергией
около 7.5 Мэв. Эксперименты, специально поставленные на ускорителях, по-
казали, что такой уровень действительно существует. Его энергия оказалась
равной 7.654 Мэв. Боюсь, что этот пример, относящийся к событиям более чем
полувековой давности, стал почти столь же затасканным, как когда-то история
с отождествлением линий ,,небулия" . . .

В качестве второго примера приведем блистательное наблюдательное под-
тверждение правильности модели строения Солнца, полученное из гелиосей-
смологических исследований. Третий пример — регистрация у сверхновой
1987A кратковременного всплеска нейтринного излучения, которым, соглас-
но имеющимся представлениям, должны сопровождаться вспышки сверхно-
вых II типа. Можно привести множество и других примеров предсказаний и
иных влияний теории строения и эволюции звезд на наблюдательную звездную
астрофизику, но мы пока ограничимся сказанным.

Наше обсуждение структуры и задач астрофизики звезд несколько затя-
нулось, да к тому же мы, кажется, немного ушли в сторону. Пришла пора
резюмировать изложенное. На рис. I.1.1 (с. 11) сделана попытка изобразить
общую структуру астрономии звезд и взаимоотношение различных ее разде-
лов в виде блок-схемы. Пожалуйста, рассмотрите этот рисунок внимательно, а
не просто скользните по нему беглым взглядом. Сопоставьте рисунок с обсуж-
дением, которое было дано выше. Согласия в деталях между ними нет, хотя
нет и прямых противоречий. Небольшие различия в общей структуре и особен-
но в расположении отдельных блоков как они, с одной стороны, изображены
на рисунке и, с другой, описаны в тексте, отражают условность и известную
произвольность любой подобной структуризации.

1.4. Становление
эволюционной
астрономии

Прежде чем приступать к изучению пред-
мета по существу, полезно бросить хотя бы
беглый взгляд на историю вопроса. Звездная
астрофизика, добившись к середине 50-х го-

дов XX века решающих успехов, коренным образом изменила лицо астрономии.
До этого астрономия была наукой, занимавшейся главным образом изучени-
ем различных небесных объектов как таковых, их описанием, сопоставлением,
классификацией, выяснением строения.
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Рис. I.1.1:
Общая структура астрономии звезд.

То, что мы называем астрофизикой звезд, дано синим цветом,
зеленый цвет — галактическая астрономия.
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Однако понять эволюцию и взаимосвязь основных структурных единиц Все-
ленной тогда еще не могли. Об этом много говорили и писали, но то были
скорее фантазии и смелые, но недостаточно обоснованные гипотезы, чем ре-
альное продвижение вперед на твердом фундаменте астрономических фактов
и физических законов. Пожалуй, не будет преувеличением сказать, что в ту
пору мы имели морфологическую астрономию.

В качестве грубой исторической аналогии можно считать, что для астро-
номии первая половина XX столетия была примерно тем же этапом, что для
биологии — конец XVIII – первая половина XIX века. В биологии тогда про-
исходило главным образом накопление, сопоставление и осмысление фактиче-
ского материала на основе незадолго до того созданной классификации Лин-
нея. Потом пришел Дарвин, и лицо биологии сразу решительно изменилось —
она стала эволюционной. Это был коренной перелом. Интересно, что почти
одновременно с созданием эволюционного учения Дарвина были открыты и
законы Менделя, являющиеся ,,микроосновой" (на молекулярном уровне) фе-
номенологической ,,макроскопической" теории естественного отбора Дарвина.
Эволюционные идеи и изучение молекулярно–генетических основ макроскопи-
ческих биологических процессов тесно переплелись между собой и составляют
сейчас одно из основных направлений исследований в биологии.

Со сдвигом на столетие то же самое произошло и в астрономии. Все нача-
лось с попыток понять пути развития звезд чисто астрономическими средства-
ми. После ряда явно неудачных опытов (Н.Локьер, конец XIX в.; Г.Н.Рессел,
20-е годы XX в.) в 1930-х годах пришли первые серьезные успехи, и контуры
эволюционной картины стали понемногу проступать. Это был плод коллектив-
ного творчества, своего Дарвина в астрономии не было.

Роль классификации Линнея для звезд играют диаграмма Герцшпрунга –
Рессела (ГР) (Э. Герцшпрунг, 1911 г.; Г.Н.Рессел, 1913 г.) и соотношение мас-
са – светимость. (Обычно его связывают с именем А.Эддингтона, что неточно.
Впервые оно появилось у Дж.Холма в 1911 г. и затем рассматривалось Рессе-
лом в 1913 г. и Герцшпрунгом в 1918 г. Исследование же Эддингтона относится
к 1924 г.). То, что диаграмма ГР и зависимость масса – светимость отражают
закономерности процессов рождения и развития звезд, поняли сразу же, одна-
ко подобрать чисто астрономический ключ к однозначному их истолкованию
никак не удавалось.

Быть может, вы помните, что для Дарвина толчком к пониманию процес-
са эволюции послужило изучение фауны Галапагосских островов, изолирован-
ных от остального мира океанскими просторами. Роль Галапагос в астрономии
сыграли звездные скопления — более или менее обособленные группы звезд
совместного происхождения. Во-первых, из простых динамических соображе-
ний удалось показать, что возраст типичных рассеянных скоплений очень мал,
107÷ 108 лет (Б.Бок, 1937 г.; В.А.Амбарцумян, 1939 г.). Значит, процесс обра-
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зования звезд не закончился миллиарды лет назад, а продолжается и в наше
время. Во-вторых, диаграммы ГР для рассеянных скоплений имели весьма спе-
цифический вид (Р.Трамплер, 1930 г.). Хотя от скопления к скоплению они за-
метно различались, все диаграммы можно было расположить в виде некоторой
последовательности, зависящей от одного параметра. Эволюционное истолко-
вание напрашивалось само собой: параметр классификации должен быть одно-
значно связан с возрастом скопления. Из ряда соображений было установлено,
что те скопления, в которых есть звезды типов Вольфа–Райе, O или ранние B,
являются самыми молодыми. Так чисто астрономическими средствами было
показано, что звезды типа O и ранних подклассов B эволюционируют очень
быстро, а значит, все они родились недавно. Следующим важным шагом яви-
лось выделение двух типов звездного населения (В.Бааде, 1944 г.). Они сильно
отличаются по виду своих диаграмм ГР, по пространственному распределению
звезд (население I является плоской составляющей Галактики, население II —
сферической), по кинематическим особенностям: пространственные скорости
(по отношению к Солнцу) у первых малы, у вторых — велики. Не менее важ-
ным для теории эволюции было установление в конце1940-х — начале1950-х го-
дов огромного различия в содержании тяжелых элементов в атмосферах звезд
населений I и II.

Таковы были главнейшие победы, одержанные при штурме проблемы звезд-
ной эволюции на астрономическом фронте. Казалось, ,,еще напор — и враг бе-
жит. . . " Однако решающему сражению суждено было разыграться не здесь.
Сил одних астрономов явно не хватало, им нужны были союзники.

Параллельно с чисто астрономическим подходом к проблеме эволюции
звезд, который был в основе своей эмпирическим, происходило (долгое вре-
мя почти от него независимое) развитие некой специальной области физики —
теории строения звезд. До конца сороковых годов прошлого века обратное ее
влияние на астрономию было в общем невелико, хотя, конечно, и здесь бы-
ли отдельные блестящие успехи. Наиболее эффектны, пожалуй, два ранних
достижения. Первое — это объяснение того, почему в природе не существует
звезд с массами, превосходящими по порядку 100 масс Солнца (А.Эддингтон,
двадцатые годы). Как вы знаете, дело здесь в световом давлении; об этом у
нас еще будет подробный разговор (см. п. III.3.5, с. 135). Второе — объясне-
ние строения казавшихся до этого совершенно загадочными белых карликов.
Их непривычно высокая средняя плотность — порядка тонны в кубическом
сантиметре — лет 90 назад вызывала у большинства астрономов не меньше
изумления, недоверия и неясных опасений, чем сейчас, скажем, обсуждение
свойств мира на самых ранних этапах космологического расширения.

Несмотря на эти и другие достижения теории строения звезд, по крайней
мере до конца 1940-х годов отношение к ней большей части астрономов бы-
ло весьма сдержанным. Одни считали ее хотя и красивой, но в общем почти
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замкнутой в себе теорией, приносящей не так уж много пользы астрономии.
Другие — таких, вероятно, было большинство — сторонились ее просто потому,
что эта теория казалась им пугающе сложной.

С конца 30-х до середины 50-х годов XX в. в расчетах моделей звезд и после-
дующем их сравнении с данными наблюдений были достигнуты замечательные
успехи, позволившие наконец-то разобраться в путях развития звезд. Это рез-
ко изменило отношение большинства астрономов к теории звезд. Неоправдан-
ный скептицизм сменился восторженным преклонением, зачастую недостаточ-
но критическим. Радикальное изменение ситуации было связано в первую оче-
редь с тем, что еще в конце 1930-х годов были надежно отождествлены источ-
ники энергии звезд (Г.Бете, К.Вейцзекер, 1938 – 1939 гг.). Ядерные реакции, за
счет которых звезда светит бо́льшую часть своей жизни, как известно, имеют
результатом слияние четырех протонов в α-частицу. Они весьма нетривиаль-
ны. Образование α-частицы должно сопровождаться двумя обусловленными
слабым взаимодействием β-распадами. Это и необходимость преодоления за
счет туннельного эффекта высокого кулоновского барьера при столкновениях
ядер ведет к тому, что соответствующие реакции протекают крайне медленно.
Именно поэтому звезды живут так долго. Именно поэтому сегодня, ∼1010 лет
спустя после начала звездообразования, мир еще находится в расцвете сил, а
не на стадии старческого угасания. Энергетические запасы, содержавшиеся в
первичной водородно–гелиевой плазме, пока далеки от исчерпания.

Проникновение ядерной физики в астрономию знаменовало приближение
нового этапа в изучении звезд — синтеза астрономического и физического под-
ходов. Основные физические процессы, управляющие развитием звезды от до-
вольно ранних этапов ее формирования из межзвездного вещества до весьма
поздних стадий эволюции, предшествующих переходу звезды в ее конечное
состояние — ту или иную компактную конфигурацию — оказались теперь по-
нятыми. Это не значит, что все сразу стало ясным. Были трудности, и очень
значительные, причем не только в технических деталях, но и в основополага-
ющих представлениях.

Один из таких принципиальных вопросов — роль потери массы в ходе эво-
люции звезды. Теперь известно, что вплоть до довольно поздних стадий эво-
люции, и во всяком случае за время жизни на главной последовательности у
большинства звезд (кроме самых массивных) потеря массы несущественна. На
продвинутых же стадиях эволюции это не так, масса звезды может существен-
но меняться. Ясное понимание этого пришло далеко не сразу.

Кроме вопроса о роли потери массы, были у теории и другие трудности,
другие возможные ,,развилки". Окончательный выбор направления делался по
стандартной схеме: рассматривали все варианты и останавливались на том, ко-
торый давал результаты, согласующиеся с наблюдательными данными. Таким
путем было, в частности, установлено, что в тех зонах в звездах, где энергия
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переносится излучением (а не конвекцией), ролью перемешивания вещества
можно полностью пренебрегать. Впрочем, в последнее время это положение
подвергается некоторой ревизии.

Почему вопрос о перемешивании столь важен? Термоядерные реакции по-
степенно изменяют химический (точнее, ядерный) состав вещества. Если пе-
ремешивание достаточно интенсивно, звезда в ходе эволюции остается хими-
чески однородной. Если же перемешивания нет, то из-за сильной зависимости
скоростей термоядерных реакций от температуры ядерное топливо в централь-
ных областях звезды будет выгорать быстрее, чем на периферии. Со временем
звезда должна будет стать химически неоднородной. В конце концов ядерное
топливо близ центра полностью исчерпается. В звезде возникнет, как говорят,
выгоревшее ядро. Строение звезды окажется при этом совсем не таким, как при
полном перемешивании. Ясно поэтому, что вопрос о скорости перемешивания
вещества в звездах — отнюдь не второстепенная деталь.

К концу сороковых годов XX в. эти вопросы оказались выясненными, и
проблема эволюции звезд созрела для решения. Прошло еще несколько лет,
давших в руки астрофизикам два новых важных технических средства. Во-
первых, появились компьютеры. Они сразу же были использованы для расче-
тов эволюционных последовательностей звездных моделей. Во-вторых, возму-
жала и с созданием системы U, B, V обрела прочную основу фотоэлектрическая
фотометрия. Началось ее широкое применение для изучения звезд в скопле-
ниях. Использование этих технических новинок в сочетании с накопленными
ранее сведениями принесло долгожданный успех. Пути эволюции звезд пере-
стали быть загадкой. Звездная астрофизика вступила в пору зрелости. Пришла
пора сбора урожая.

1.5. Понимание
становится шире и

глубже

В 1960-е годы картина звездной эволюции
была дополнена множеством новых важных
элементов. Прежде всего следует сказать о
двух вещах. Во-первых, было установлено,
что тонкие различия химического состава

звездных атмосфер могут служить своеобразным зондом для изучения про-
цессов, происходящих в недрах звезд, в частности, перемешивания вещества.
Во-вторых, были поняты многие особенности эволюции тесных двойных звезд,
в которых, как оказалось, важную роль играет перетекание вещества с одного
компонента на другой.

В 1960 –1970-е годы несколькими группами исследователей были произведе-
ны обширные расчеты эволюционных последовательностей моделей звезд раз-
ных масс и разного химического состава. Их результаты сразу нашли широкое
применение для количественной интерпретации разнообразных наблюдатель-
ных данных о звездах и звездных системах. Отныне астрономы–наблюдатели
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получили возможность пользоваться плодами труда теоретиков, не слишком
углубляясь в дебри теории. С этого момента теория звездной эволюции ста-
ла повседневно используемым рабочим инструментом. Вскоре она обрела у
астрономов статус непогрешимой истины, став своего рода астрофизическим
Священным Писанием. Однако история на этом не остановилась.

В 1967 г. было сделано выдающееся открытие, значение которого для пони-
мания картины звездной эволюции трудно переоценить. Были открыты пуль-
сары (Э.Хьюиш с сотрудниками; Нобелевская премия 1974 г., см. Приложе-
ние III, с. 522). Они тут же были отождествлены с нейтронными звездами —
телами звездных масс с плотностями порядка ядерной. На возможность суще-
ствования таких объектов в природе было указано еще в 1930-е годы, сразу же
после открытия нейтрона (1932 г.). За несколько лет до пульсаров были откры-
ты рентгеновские источники (Р.Джиаккони, Нобелевская премия 2002 г.; см.
Приложение III, с. 522), и в начале 1970-х годов в двойной системе Cyg X-1 был
обнаружен компактный объект, являющийся, судя по его массе, черной дырой
звездной массы. С этого времени в течение более трех десятилетий исследо-
вание продуктов вспышек сверхновых — нейтронных звезд, звездных черных
дыр и быстро расширяющихся в межзвездную среду газовых остатков сверх-
новых находились на переднем крае астрофизики. Вспышка сверхновой 1987A
в Большом Магеллановом Облаке дала новые замечательные подтверждения
целого ряда предсказаний астрофизиков–теоретиков.

Значительный прогресс был достигнут в понимании самых ранних этапов
формирования звезд. Здесь определяющую роль сыграли и продолжают играть
наблюдения, причем не только в оптическом, но особенно в инфракрасном и
радиодиапазонах. Реальная картина оказалась гораздо богаче, чем та, которую
давали ранние простые сферически–симметричные модели теоретиков.

Возможность непосредственно заглянуть в недра хотя бы ближайшей звез-
ды — Солнца — еще полвека назад казалась несбыточной мечтой. Однако в
начале 1970-х годов было впервые зарегистрировано нейтринное излучение
Солнца, приходящее напрямую из самых центральных его частей. Несмотря
на трехкратное расхождение между теоретически рассчитанным и измеренным
потоком высокоэнергичных солнечных нейтрино, это убедительно подтвердило
не только правильность представлений об идущих в центральных частях Солн-
ца термоядерных реакциях, но и показало, что рассчитанная по модели совре-
менного Солнца температура в его центре имеет погрешность не более несколь-
ких процентов — поистине замечательное достижение. С тех пор исследования
нейтринного излучения Солнца стремительно развивались (Нобелевская пре-
мия 2002 г., см. Приложение III, с. 522). В 2001 г. стало окончательно ясно, что
причина имевшихся расхождений между теоретически рассчитанным и наблю-
даемым потоком солнечных электронных нейтрино коренится не в неточности
модели строения Солнца, а в проблемах теории элементарных частиц. Оказа-
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лось, что масса покоя нейтрино отлична от нуля.
Еще один способ прозондировать недра Солнца неожиданно открылся в

1970-х годах. Речь идет о гелиосейсмологии. Детальность сведений о внутрен-
них слоях Солнца, которые удалось к сегодняшнему дню получить из анализа
колебаний его непосредственно наблюдаемых наружных слоев, буквально по-
ражает. Современная стандартная модель солнечных недр оказалась верна с
точностью до долей процента! Воистину, сомневаться в наши дни в правиль-
ности основных представлений о строении и эволюции Солнца и звезд — это
примерно то же самое, что сомневаться в существовании атомов.

Последняя из бурно развивающихся областей звездной астрофизики, о ко-
торой мы упомянем, это изучение наконец-то обнаруженных в 1990-е годы ко-
ричневых, или бурых карликов — объектов, промежуточных между звездами
самых малых масс и газовыми планетами–гигантами. В комбинации с откры-
тием в те же годы множества внесолнечных планет–гигантов это привело к
постепенному осознанию того, что никакой ,,пропасти" между звездами и пла-
нетами, по-видимому, на самом деле нет. Скорее всего, спектр масс самограви-
тирующих газовых шаров, населяющих мир, непрерывен.

Наш беглый обзор истории развития представлений о строении и эволюции
звезд далеко не полон. Достаточно сказать, что термин ,,магнитное поле" не
был употреблен ни разу. Но нельзя объять необъятное. Даже того, что было
упомянуто, если изучать эти вопросы всерьез, более чем достаточно для одного
учебного курса.



2. ЭВОЛЮЦИЯ ЗВЕЗД: ЧТО, ПОЧЕМУ И КАК

2.1. Звезда как
физический объект

Приступая к детальному изучению любого
предмета, стоит с самого начала составить
о нем некоторое общее представление, иначе
потом деревья могут заслонить лес. Какова

же в самых общих чертах картина звездной эволюции? Об этом и пойдет сейчас
речь.

Прежде всего зададим себе простой вопрос: что такое звезда? Ответить
на него не так-то легко. Общее представление о природе звезд имеет любой
современный человек, однако его явно недостаточно, чтобы произвести четкое
разграничение между звездами и ,,не-звездами". Конечно, в естествознании,
в отличие от математики, роль формальных определений невелика. И все же
давайте четко договоримся о том, что мы будем понимать под звездой.

Звезда — это гравитационно связанная пространственно
обособленная непрозрачная для излучения масса вещества,
в которой в значительных масштабах происходят, происхо-
дили или будут происходить термоядерные реакции превра-
щения водорода в гелий.

Сразу видно, что это определение далеко от канонов строгости математи-
ки: мы считаем, что понятие о пространственной обособленности понятно ин-
туитивно, не вполне ясно, что значит, что сжигающие водород термоядерные
реакции происходят ,,в значительных масштабах" и т. д. Главное в этом опре-
делении то, что оно подчеркивает три принципиальных момента, отличающих
звезду от других космических объектов. Во-первых, масса должна сдерживать-
ся собственным полем тяготения, и потому не может быть слишком малой, а
звезда — особенно протяженной. Во-вторых, вещество должно быть распре-
делено непрерывно, иметь не слишком малую плотность и быть достаточно
сильно нагретым — только тогда оно непрозрачно. Если бы условие непро-
зрачности для излучения в определении не упоминалось, то под него подошли
бы такие объекты как галактики, шаровые звездные скопления и т. п. Наконец,
третья принципиальная особенность, отличающая звезду от других природных
объектов, — это идущие в ее недрах водородные термоядерные реакции. Тот
факт, что это свойство звезд, открытое всего каких-то 70 – 80 лет назад, прини-
мается нами в качестве составной части определения самого́ понятия звезды —
объекта, с которым люди знакомы с момента своего появления как биологи-
ческий вид, может показаться особенно странным, вызывающим сильнейший
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психологический протест. Кажется, что здесь все поставлено с ног на голову.
Не будем, однако, торопиться с категорическими суждениями.

Все мы гораздо больше привыкли к ,,школьному" определению: ,,Звезда —
это гигантский раскаленный самосветящийся газовый шар", и не задумыва-
емся над тем, что оно совершенно не способно охватить все то многообразие
объектов, которое астрономия объединяет сегодня под словом ,,звезда". Бе-
лые карлики — звезды размером с земной шар или около того, составляющие
заметную долю всех звезд в Галактике, едва ли кто назовет гигантскими
объектами. И уж во всяком случае совсем скромные размеры имеют нейтрон-
ные звезды, радиусы которых всего каких-нибудь 10 – 15 км. Посмотрим те-
перь, как обстоит дело со словом ,,раскаленный". Под поверхностью звезды
обычно понимают слои, откуда исходит излучение тех длин волн, на которых
звезда теряет бо́льшую часть энергии. У звезд поздних спектральных типов
с большими инфракрасными избытками основная энергия излучается в дале-
кой ИК-области. Температура ,,поверхностей" этих звезд лишь немного выше
температуры на поверхности планеты Венера. Тот факт, что звезда представ-
ляет собой самосветящийся объект, также не есть ее отличительный признак.
Планета Юпитер, например, излучает в пространство заметно больше энер-
гии, чем получает от Солнца, то есть тоже является самосветящимся телом.
Не лучше обстоит дело и с утверждением, что звезда — это газовое образова-
ние. Поверхность нейтронных звезд, по-видимому, твердая. Похоже, что в ней
время от времени образуются трещины, происходят звездотрясения. Наконец,
если звезда быстро вращается вокруг оси или входит в состав тесной двойной
системы, то ее форма может сильно отличаться от сферической, так что она
вовсе не похожа на шар. Как видим, привычное понятие о звезде на поверку
оказывается никуда не годным.

Иным из вас эта критика покажется мало убедительной: ведь львиная до-
ля всех звезд все же действительно представляет собой гигантские раскален-
ные самосветящиеся газовые шары. Однако вдумаемся в слова ,,действительно
представляет собой". Откуда мы это знаем, и когда узнали? Вильяму Герше-
лю, например, наше ,,школьное" определение звезды показалось бы отнюдь не
очевидным. Он думал, что на Солнце под раскаленным слоем облаков есть
холодная твердая поверхность, быть может обитаемая... Да и гораздо позже,
около ста лет назад, большинство астрономов полагало, что Солнце не газооб-
разное, а жидкое. Так думали еще и Джинс, и Рессел. Представление о звездах
как о газовых шарах — отнюдь не намного более прямой наблюдательный факт,
чем утверждение, что они являются водородными термоядерными реактора-
ми. Главная разница в том, что к первому из этих высказываний мы привыкли
с детства, и поэтому принять его за аксиому нам психологически легче, чем
второе утверждение, с которым большинство из нас познакомилось гораздо
позже. Впрочем, не ломлюсь ли я в открытую дверь? Ведь не исключено, что
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психологическая трудность, о которой идет речь, существует только для людей
старшего поколения, а нынешним студентам обведенное в рамку определение
звезды кажется вполне естественным.

Более серьезно другое возражение. Под приведенное определение вполне
подходят сверхмассивные черные дыры, с массами ∼ (106 ÷ 1011)M¯, находя-
щиеся в ядрах галактик. Считать их особой разновидностью звезд не принято
(хотя вполне можно было бы). От этого дефекта свободно другое, так сказать,
,,количественное" определение звезды, отличающееся от ранее приведенного
лишь тем, что в нем слова про водородные термоядерные реакции заменены
на указание возможных масс звезд:

Звезды : 1032 <∼ M <∼ 1035 г, или 10−1M¯ <∼ M <∼ 102M¯.

Как мы вскоре убедимся, масса и в самом деле является во многих отношениях
определяющей характеристикой звезды.

Объекты с массами 10−2M¯<∼M <∼10−1M¯, точнее, с 0.01M¯6M 60.07M¯,
или еще точнее, с 13MJ 6 M 6 87MJ , где MJ — масса Юпитера, называ-
ются субзвездами, или бурыми карликами (brown dwarfs). Это, так сказать,
,,полузвезды". Термоядерные реакции превращения водорода в гелий на опре-
деленных этапах эволюции в этих объектах происходят, но не ,,в значительных
масштабах". В них выгорает лишь тяжелый водород — дейтерий 2D, превра-
щающийся в легкий изотоп гелия 3He, обычный же водород не горит. Бурые
карлики обнаружены и в качестве спутников обычных звезд, и как одиночные
объекты. К концу 2011 г. их найдено около 2000. Внешне эти объекты мало
чем отличаются от обычных звезд, и в публикациях можно встретить обороты
вроде такого: ,,эта слабая звезда — бурый карлик". Не исключено, что в бу-
дущем бурые карлики будут все же причислены к звездам (нам это казалось
бы естественным), однако пока полноправными гражданами звездного царства
они еще не стали.

Это было написано лет десять тому назад. Сегодня (в 2018 г.) бурые карли-
ки уже рассматриваются просто как ультрахолодные (ultracool) звезды недавно
введенных спектральных типов L, T и Y. Для многих сотен из них имеются
надежно измеренные параллаксы и собственные движения, содержащиеся в
появившемся в апреле 2018 г. втором релизе данных проекта Гея (Gaia Data
Release 2). [Конечно, непривычный термин ,,релиз данных" режет ухо, но ведь
постепенно мы привыкли-таки к пресс-релизам. Пора привыкать и к релизам
данных.]
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Замечание. Термин бурый карлик в русской астрономической литературе не
является общепринятым. Английский brown dwarf обычно переводят на русский
как коричневый карлик, что нам кажется неудачным, если не сказать сильнее —
неверным. Ведь brown bear — это вовсе не коричневый, а бурый медведь! И
brown coal — это бурый уголь, а для слова "буреть"(становиться бурым) словарь
предлагает такой перевод: grow brown. Да и многочисленные господа и госпожи
Brown носят такую фамилию вовсе не потому, что их предки были коричневыми,
а скорее всего потому, что их волосы по цвету напоминали медвежьи шкуры —
попросту говоря, они были шатенами.

А как вам понравится такое: ,,...a brown dwarf [is] something between red and
black". Так термин brown dwarf высмеивает Virginia Trimble (см. в Списке Лите-
ратуры #6 C.J.Hansen et al., page 50).

В объектах с M 6 13MJ не происходит никаких термоядерных реакций, и
они считаются планетами. В самое последнее время обнаружены одиночные
газовые планеты, не обращающиеся вокруг звезд. У самых холодных из них
температура атмосфер составляет ∼300 K и даже меньше. Здесь будет уместно
напомнить, что болометрическая светимость Юпитера примерно вдвое превос-
ходит темп притока энергии к нему от Солнца. Поэтому потоков тепла, идущих
из недр одиноких юпитеров, должно быть достаточно, чтобы в течение милли-
ардов лет их атмосферы не вымерзали и планеты оставались газовыми.

Существование у звезд верхнего предела масс ∼ 102M¯ — один из замеча-
тельных наблюдательных фактов, касающихся звезд. Понятно, что отсутствие
в природе сверхмассивных звезд должно объясняться процессами, происходя-
щими при их формировании. См., в частности, п. III.3.5, c. 135.

Черные дыры, или, если быть осторожнее, кандидаты в черные дыры обыч-
ных звездных масс (∼101M¯) обнаружены в составе двух десятков двойных
звезд. В ядрах галактик найдены черные дыры с массами от ∼106M¯ (наша
Галактика) до ∼109M¯. (Этот верхний предел продержался лет 30. Недавно
его подняли до ∼1011M¯). Таким образом, ,,звездные" черные дыры отделены
по массе от ,,галактических", по крайней мере пока. Если будут обнаружены
черные дыры с 102M¯ <∼M <∼ 106M¯ (скорее всего, в ядрах нормальных галак-
тик или в шаровых скоплениях), то придется специально договариваться, где
проводить границу между еще звездами и уже не звездами.

2.2. Физическая
классификация

звезд

Приведенное только что обсуждение ясно
показало, сколь разнообразны звезды по сво-
им свойствам. Пожалуй, лишь с натяжкой
о них можно говорить как о едином клас-
се объектов. Фактически слово звезда — это

некоторый собирательный термин. Подобно тому как различают четыре основ-
ных состояния вещества — твердое, жидкое, газообразное и плазменное, можно
выделить четыре не менее сильно отличающихся друг от друга вида звездных



22 Гл. I. Качественная картина

объектов:
• Нормальные звезды
• Белые карлики
• Нейтронные звезды
• Черные дыры

С физической точки зрения эти виды звезд радикально отличаются друг от
друга.

Обычными, или нормальными звездами, а иногда для краткости и про-
сто звездами, будем называть те звезды, в которых главным фактором, проти-
востоящим самогравитации вещества, служит давление обычного невырожден-
ного газа. Плотности этих звезд не могут быть очень велики, а температуры
в их недрах должны быть очень высоки. Только тогда будет существовать
то колоссальное давление, которое необходимо, чтобы сдерживать гравитацию
и чтобы в то же время электронная компонента газа не была вырожденной.
Обычные звезды составляют в природе абсолютное большинство. Они очень
разнообразны по своим свойствам и допускают дальнейшую, и очень деталь-
ную классификацию, несомненно, хорошо известную читателю (звезды глав-
ной последовательности, гиганты, субкарлики, звезды горизонтальной ветви
и т. п.). Этот вид звезд не является вполне ,,чистым" в том смысле, что наря-
ду с тепловым давлением газа определенную (иногда и заметную) роль у них
могут играть три дополнительных фактора. Во-первых, это давление излуче-
ния. Оно существенно для звезд высокой светимости. Во-вторых, в части массы
звезды электронный газ все же может быть вырожденным, так что фактически
мы имеем тогда дело с объектами, промежуточными между обычными звез-
дами и белыми карликами. Таковы красные гиганты сравнительно небольших
масс. Наконец, в-третьих, в звездах малых масс газ оказывается существенно
неидеальным из-за кулоновского взаимодействия частиц.

Важнейшая физическая особенность нормальных звезд состоит в том, что у
них механическое равновесие теснейшим образом связано с тепловой структу-
рой, так как давление в нормальных звездах обеспечивается тепловым движе-
нием частиц. Поэтому потери энергии на излучение должны с неизбежностью
вести к постепенной перестройке внутренней структуры звезды. Это верно как
в отношении тех этапов жизни звезды, когда она светит за счет выделения
гравитационной энергии, то есть когда эффективно происходит сжатие звезды
(хотя наружные ее слои могут при этом даже и удаляться от центра), так и
тогда, когда энергию поставляют термоядерные реакции. Дело в том, что они
не только выделяют энергию, но и вызывают изменение концентрации реаги-
рующих частиц. По этой причине темп выделения энергии должен постепенно
меняться, даже если температура и оставалась бы постоянной (чего на самом
деле нет). Кроме того, происходит хотя и очень медленное, но принципиаль-
но важное изменение среднего молекулярного веса (по крайней мере в области
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протекания термоядерных реакций). Это вызывает постепенное изменение дав-
ления. В итоге звезда перестраивается. Таким образом, наличие связи между
тепловой и механической структурой звезды ведет к тому, что из-за потерь
энергии на излучение строение такой звезды со временем должно становиться
иным, то есть звезда должна эволюционировать.

Белые карлики — гораздо более компактные объекты. Их типичные ра-
диусы ∼ 10−2 R¯, то есть несколько тысяч километров, а массы ∼ (0.3÷1)M¯.
У большинства белых карликов их массы близки к 0.6 M¯. Из-за высокой плот-
ности вещества электронная компонента газа в их недрах сильно вырождена.
Давление этого вырожденного электронного газа и противостоит самограви-
тации у белых карликов. Вклад же в давление от ионной компоненты газа,
которая не является вырожденной, пренебрежимо мал. Что касается гравита-
ции, то на поверхности белого карлика по земным меркам она очень сильная.
Скажем, при M = 1 M¯ (как у спутника Сириуса) ускорение силы тяжести
g∼5 · 108 см/с2 = 5000 км/с2, скорость убегания ve ∼ 7 · 108 см/с=7000 км/с,
гравитационный потенциал |ϕ| ∼ 3 · 1017 (см/c)2. Однако, поскольку ve ¿ c и
|ϕ| ¿ c 2, гравитация все же не настолько сильна, чтобы нельзя было пользо-
ваться ньютоновской теорией.

При сильном вырождении давление газа зависит от температуры слабо, а в
пределе полного вырождения и вовсе перестает от нее зависеть. Поэтому, став
белым карликом, звезда может пребывать в этом состоянии сколь угодно долго,
так как потери энергии на излучение у белых карликов, в отличие от обычных
звезд, почти не влияют на их механическое равновесие. Основным источником,
из которого они черпают энергию своего излучения, служит тепловая энергия
ионов. Ионный газ остывает, но на давлении это почти не сказывается, по-
скольку, как только что говорилось, основной вклад в давление из-за своего
сильного вырождения дает электронный газ, а не газ ионов. По достижении
в ходе охлаждения некоторой критической температуры должна происходить
кристаллизация — ионы выстраиваются в решетку.

Светимости белых карликов низки, ∼ (10−2 ÷ 10−4)L¯. Поэтому тепловой
энергии, запасенной в недрах белого карлика с момента его рождения, хватает
надолго. Когда по прошествии миллиардов лет она иссякает, звезда должна по-
тухнуть, превратившись в гипотетического ,,черного карлика". (Наименьшие
наблюдаемые светимости белых карликов составляют ∼ 10−4.5L¯). Таким об-
разом, всю свою долгую жизнь белый карлик просто остывает, подобно тому,
как, почти не меняя размера, медленно остывает сильно нагретый булыжник.
От булыжника, правда, есть существенное отличие: вещество в белом карлике
удерживается не кулоновыми силами, а гравитацией. Она действует на тя-
желые частицы — ионы, давление же почти целиком создают вырожденные
электроны, ,,привязанные" к ионам электростатическими силами, обеспечива-
ющими макроскопическую электронейтральность газа.
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Для всей теории звезд, в частности, для понимания того, что происходит со
звездами разных начальных масс в конце их жизни, фундаментальное значе-
ние имеет следующее утверждение: масса белого карлика не может превышать
некоторого критического значения, близкого к 1.46 M¯ (предел Чандрасекара):

Белые карлики : M <∼ 1.46 M¯.

Считается, что белые карлики — конечный продукт эволюции нормальных
звезд с начальной массой <∼ (10 ÷ 11)M¯. Так как массы белых карликов не
могут превышать чандрасекаровского предела, в ходе эволюции должна про-
исходить значительная потеря вещества (по крайней мере у звезд с начальной
массой > 1.4 M¯). Есть два механизма. Во-первых, на фазе красного гиган-
та значительная масса уносится звездным ветром. Во-вторых, непосредствен-
но перед рождением белого карлика, который постепенно вызревает в недрах
красного гиганта в ходе его эволюции, звезда оказывается на асимптотической
ветви гигантов и сбрасывает свои наружные слои, которые образуют плане-
тарную туманность. Белый карлик ,,вылупляется".

Если белый карлик входит в состав тесной двойной системы, то перетека-
ние вещества с невырожденной компоненты может служить причиной весьма
разнообразных явлений. Вокруг белого карлика может образоваться аккре-
ционный диск. В нем могут развиваться неустойчивости, время от времени
приводящие к выпадению вещества на поверхность белого карлика. Это со-
провождается выделением большой гравитационной энергии. Так объясняют-
ся происходящие квазипериодически вспышки различного рода катаклизмиче-
ских переменных — повторных новых, звезд типов U Gem, SS Cyg и др.

Возможен и другой вариант. Если перетекание происходит с малой интен-
сивностью, то богатое водородом вещество, теряемое обычной звездой, может
накапливаться в наружных слоях белого карлика (в недрах белого карлика во-
дорода нет, ведь это обнажившееся выгоревшее ядро звезды). При возгорании
накопившегося в этом поверхностном слое водорода происходит термоядерный
взрыв. Таков механизм вспышек новых. При взрыве натекшее вещество раз-
брасывается со скоростями порядка 1000 км/с.

Наконец, аккреция на белый карлик с массой, близкой к чандрасекаровско-
му пределу, может в конце концов, по достижении предельной массы, вызвать
нарушение механического равновесия, приводящее к взрывному возгоранию
углеродно–кислородной смеси, из которой состоит белый карлик. В результате
звезда полностью разрушается и ее вещество разбрасывается в окружающем
пространстве со скоростями ∼ 10 000 км/с. Такое событие наблюдается как
вспышка сверхновой типа Ia (SN Ia). Понимание этого механизма объясняет
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удивительную близость параметров вспышек всех сверхновых этого типа —
одинаковую светимость в максимуме и одинаковую характерную форму кри-
вой блеска (по которой их и выявляют). Эти две особенности сверхновых типа
Ia делают их идеальными объектами для определения космологических рас-
стояний. Сверхновые SN Ia не просто очень яркие, а потому видны с очень
больших расстояний, но к тому же еще и обладают одинаковой светимостью
в максимуме блеска. Сопоставление видимого блеска богатого набора SN Ia с
параметрами красного смещения z тех галактик, к которым они принадлежат,
в 1998 г. привело к одному их крупнейших астрономических открытий — уста-
новлению того, что в настоящее время Вселенная расширяется ускоренно. В
основе этого открытия, удостоенного в 2011 г. Нобелевской премии (см. При-
ложение III, с. 522), лежит, как видим, стандартность условий взрыва SN Ia,
обусловленная существованием универсальной чандрасекаровской предельной
массы.

Нейтронные звезды — это объекты с массами ∼ (1.4 ÷ 2) M¯, с радиу-
сами ∼10 км и с плотностями порядка ядерной (∼1014 ÷ 1015 г/см3), так что
нейтронная звезда подобна гигантскому атомному ядру с числом нуклонов по-
рядка 1057. Однако, в отличие от обычных ядер, частицы в нейтронной звезде
удерживаются не за счет короткодействующего сильного ядерного взаимодей-
ствия, а гораздо более слабой, но зато дальнодействующей силой гравитации.
Гравитационная энергия связи нейтронной звезды по порядку величины равна
GM2/R ∼0.1Mc2 ∼3 · 1053 эрг.

Существенно, что объектов с плотностями ∼ 1010 ÷ 1013 г/см3, промежу-
точных между белыми карликами и нейтронными звездами, не обнаружено.
Как будет показано в дальнейшем, такие объекты существовать в природе не
могут.

Нейтронные звезды, как показывает само их название, состоят в основном
из нейтронов. В какой-то мере они подобны белым карликам. Давление, гради-
ент которого противостоит гравитации, создается у них сильно вырожденными
нейтронами. Как и у белых карликов, это давление не зависит от температуры
и полностью определяется плотностью вещества. Однако сходство с белыми
карликами по существу этим и ограничивается. Имеются два принципиальных
отличия. Во-первых, гравитационное поле нейтронных звезд сильное (потен-
циал на поверхности |ϕ| ∼ 0.1c2). Поэтому обычной ньютоновской теории тя-
готения здесь недостаточно. Получение сколько-нибудь точных количествен-
ных результатов требует использования релятивистской теории тяготения. Она
нужна не только при изучении внутреннего строения нейтронных звезд, но и
при исследовании явлений в их окрестностях (аккреция и т. п.). Во-вторых,
в отличие от электронного газа в белых карликах, вещество недр нейтронных
звезд не является идеальным газом. Существенную роль играет трудно учи-
тываемое взаимодействие нейтронов. Поэтому уравнение состояния вещества
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нейтронных звезд известно плохо. Как следствие, не известен сколько-нибудь
точно и верхний предел возможных масс нейтронных звезд, так называемый
предел Оппенгеймера – Волкова — аналог чандрасекаровского предела. По-
видимому, он больше 2 M¯, но во всяком случае не превосходит 3 M¯:

Нейтронные звезды : M <∼ 3 M¯.

Подчеркнем, что причина существования этого предела иная, чем у белых
карликов. Здесь дело не в том, что нейтроны становятся релятивистскими —
этого из-за гораздо бо́льших масс нейтронов (по сравнению с электронами) не
происходит даже при плотностях ∼1014 г/см3. Ограничение на массы нейтрон-
ных звезд накладывают эффекты ОТО и неидеальность нейтронного газа.

Считается, что нейтронные звезды — это конечный продукт эволюции звезд
с начальными массами от (10 ÷ 11)M¯ до (30 ÷ 50)M¯ (этот верхний предел
известен плохо).

До недавних пор считалось, что массы практически всех нейтронных звезд –
компонентов двойных систем близки к 1.6 M¯. Однако в последние годы были
обнаружены как маломассивные нейтронные звезды, с массами около 1M¯,
так и объекты с M ∼ 2M¯. Наибольшая надежно известная к настоящему
времени (май 2013 г.) масса нейтронной звезды составляет (2.01±0.04)M¯. Это,
в частности, накладывает существенные ограничения на уравнение состояния
вещества нейтронных звезд.

У одиночных нейтронных звезд-радиопульсаров потери энергии на излу-
чение покрываются главным образом за счет кинетической энергии вращения
звезды, так что период вращения со временем постепенно увеличивается. Опре-
деляющую роль в трансформации энергии вращения в излучение играет маг-
нитное поле, достигающее 1012 ÷ 1014 Гс. Заметим, что представление о том,
что периоды вращения всех пульсаров очень малы — доли секунд, секунды,
неверно. Среди боле чем ∼2000 пульсаров, открытых к настоящему времени,
имеются десятки объектов с периодами более 100 секунд.

У нейтронных звезд – компонентов тесных двойных систем потери энергии
на излучение обеспечиваются гравитационной энергией, освобождающейся при
аккреции вещества со второго компонента пары. При этом к нейтронной звезде
подводится также угловой момент, и в результате угловая скорость ее вращения
может возрастать. По-видимому, так возникают миллисекундные пульсары. Их
иногда называют подкрученными (по-английски recycled).

В 1974 г. был открыт пульсар, являющийся компонентом тесной двойной
системы, второй компонент которой — также нейтронная звезда. Орбитальный
период системы составляет всего около 8 часов (сейчас он известен с 12 зна-
ками). Орбита обладает значительным эксцентриситетом. Исследование этой
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системы позволило впервые надежно установить существование гравитацион-
ных волн, излучение которых (происходящее с мощностью ∼ 1.5%L¯) заметно
сказывается на изменении орбитального периода — обе компоненты движутся
по спиралевидным орбитам. За счет излучения гравитационных волн измене-
ние во времени прохождения периастра за 30 лет составило ∼ 45 с. Открытие
и исследование этого пульсара, убедительно подтвердившего ОТО, в 1993 г.
было удостоено Нобелевской премии (см. Приложение III, с. 522).

Наконец, нельзя не сказать о выдающемся открытии 2017 г. Были заре-
гистрированы гравитационные волны, порожденные слиянием двух нейтрон-
ных звезд с массами 1.1 M¯ и 1.6 M¯. Это событие, произошедшее 14 августа
2017 г., получило обозначение GW170814, где GW — это Gravitational Wave, а
далее идет дата в формате ГГММДД. Через 1.6 секунды после прихода грави-
тационной волны телескопы на спутниках Ферми и Интеграл зафиксировали
короткий гамма–всплеск (продолжительностью ∼ 2 с). Это было, во-первых,
неоспоримым доказательством того, что гравитационные волны распространя-
ются со скоростью света, в чем, впрочем, особых сомнений не было. Во-вторых,
выяснилось, чем порождаются короткие гамма–всплески. Как оказалось, слия-
ние двух нейтронных звезд произошло в галактике NGC4993, находящейся на
расстоянии ∼ 40 Мпк. Короткое время спустя после регистрации гравитаци-
онных волн десятками обсерваторий у NGC4993 было обнаружено и детально
исследовано послесвечение. Его мониторинг продолжался несколько недель.
Электромагнитное излучение было зарегистрировано во всех диапазонах — от
рентгена до радио. (О том, каким образом удалось детектировать сами грави-
тационные волны, см. чуть ниже, в конце этого пункта).

Черные дыры звездных масс — это компактные объекты с массами, су-
щественно превосходящими максимальный верхний предел масс нейтронных
звезд (3M¯). Всего к настоящему времени в двойных системах обнаружено
два десятка таких объектов с массами от ∼ 5M¯ до ∼ 16M¯. Между масса-
ми нейтронных звезд и черных дыр имеется явно выраженный пробел, так что
эти два класса объектов четко отделены друг от друга. Звездные черные дыры
служат конечным продуктом эволюции самых массивных звезд, с начальными
массами (30 ÷ 50)M¯ и более.

Основной параметр невращающейся черной дыры — это ее масса, опре-
деляющая ее гравитационный, или шварцшильдовский радиус RG = 2 GM/c2 .
Шварцшильдовский радиус определяет горизонт событий — границу области,
откуда доходит информация во внешний мир. Область внутри шварцшильдов-
ского радиуса наблюдать невозможно в принципе. Для объекта с M = 10M¯
гравитационный радиус составляет ∼30 км.

,,Голая" черная дыра электромагнитного излучения не испускает и может
быть обнаружена только по создаваемому ею гравитационному полю. Однако
если черная дыра входит в состав двойной системы, она может наблюдать-
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ся как рентгеновский источник. Вещество с нормальной компоненты двойной
может перетекать в окрестность черной дыры. При этом выделяется колос-
сальная гравитационная энергия. До 0.1 массы покоя натекающего на черную
дыру вещества может превращаться в электромагнитное излучение. Вещество,
теряемое нормальной компонентой пары, образует вокруг черной дыры быстро
вращающийся аккреционный диск. Из-за внутреннего трения этот диск оказы-
вается нагрет до 106 ÷ 108 K. В итоге за счет аккреции черная дыра в двойной
системе становится ярким рентгеновским источником.

Наименьшая по размеру устойчивая орбита в окрестности шварцшильдов-
ской черной дыры имеет радиус 3 RG. Вещество, оказавшееся на меньшем рас-
стоянии, заглатывается черной дырой. Скорость движения вещества по по-
следней устойчивой орбите для черных дыр звездных масс близка к скорости
света.

Главным критерием, по которому черные дыры в двойных системах отлича-
ют от других компактных звездных объектов, является их масса, определяемая
обычным способом по кривой лучевых скоростей. Имеются и другие крите-
рии: для черных дыр вариации блеска, происходящие на характерных време-
нах вплоть до 10−3 с, никогда не являются периодическими. У ряда объектов
профиль рентгеновской линии железа Kα, формирующийся в аккреционном
диске, заметно смещен в длинноволновую сторону из-за красного смещения,
вызванного сильным гравитационным полем черной дыры. Кроме того, ли-
ния сильно расширена, что свидетельствует о вращении аккреционного диска
с огромными скоростями, близкими к скорости света. Это возможно лишь в
непосредственной окрестности черной дыры, на расстояниях всего в несколько
шварцшильдовских радиусов.

Что касается численности звезд разных физических типов, то оценки тако-
вы. На ∼1011 нормальных звезд в нашей Галактике приходится ∼1010 белых
карликов, ∼108 нейтронных звезд и ∼107 звездных черных дыр.

Поистине эпохальное событие произошло в 2015 г. — были впервые зареги-
стрированы гравитационные волны. Подготовка эксперимента заняла более 25
лет. Он был рекордным во многих отношениях. В США были созданы две уста-
новки с двумя четырехкилометровой длины камерами с глубоким вакуумом, на
концах которых на хитроумных подвесах располагались зеркала. Лазерные ин-
терференционные дальномеры непрерывно с высоким временны́м разрешением
измеряли расстояния между этими зеркалами с фантастической точностью в
∼ 10−16 см (на три порядка меньше размера протона!). Гравитационная волна
изменяет расстояние между этими зеркалами, но на столь малую величину,
что только после того, как точность измерений была доведена до указанного
только что уровня, эти изменения расстояний стали доступны измерениям. Об-
работка результатов заняла пять месяцев. Лишь после этого было объявлено
о регистрации гравитационной волны GW150914 продолжительностью в деся-
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тые доли секунды. Она была порождена слиянием двух черных дыр с массами
36M¯ и 29M¯ (тем самым верхний предел масс звездных черных дыр поднял-
ся с 16M¯ до 36M¯). Событие произошло на расстоянии ∼ 410 Мпк от нас
(красное смещение z=0.09). В результате этого слияния, или мерджинга чер-
ных дыр за время менее 1 с выделилась энергия E ∼ 3 M¯c2 ∼ 5 · 1054 эрг.
Бо́льшая ее часть ушла на возбуждение гравитационной волны.

В создании установок и проведении экспериментов принимало участие бо-
лее 1200 физиков и инженеров из ∼ 150 университетов и исследовательских
центров 20 стран, в том числе и России (так называемая коллаборация LIGO —
Lazer Interferometric Gravitational-wave Observatory). В 2017 г. — буквально
при первой возможности — трое ключевых участников этого грандиозного про-
екта — Р.Вайс, Б.Бариш и К.Торн — были удостоены Нобелевской премии (см.
Приложение III, с. 522).

Замечательно, что в 2017 г. было зарегистрировано еще три слияния пар
черных дыр, с массами соответственно (14.2 + 7.5)M¯ (GW151226, расстояние
440 Мпк, z=0.09), (31.2 + 19.4)M¯ (GW170104, расстояние 880 Мпк, z=0.18)
и (30.5 + 25.3)M¯ (GW170814, расстояние 540 Мпк, z=0.11).

В 2017 г. к двум находящимся в США грвитационно–волновым установкам
коллаборации LIGO добавилась третья того же типа, на этот раз европейская,
расположенная в Италии (коллаборация VIRGO, названная по имени богато-
го скопления галактик в созвездии Дева, или по-латыни Virgo). Синхронная
работа этих трех сильно разнесенных установок позволила локализовать на
небе место слияния двух нейтронных звезд, о чем говорилось выше. В бли-
жайшие несколько лет к уже имеющимся гравитационно–волновым установкам
должны добавиться еще три — в Индии, Японии и Австралии. Без преувели-
чения можно сказать, что мы вступаем в новую эру развития астрофизики —
радиационно–гравитационную.

2.3. Аксиоматика
теории эволюции

звезд

В основе теории эволюции звезд лежит
несколько совсем простых, вполне естествен-
ных предположений. Звезды рождаются из
разреженного межзвездного вещества. На
это указывает множество разнообразных

астрономических фактов, обсуждать которые здесь не место. Жизнь звезды
начинается с обособления в массивном межзвездном облаке фрагмента, начи-
нающего сжиматься под действием самогравитации. С некоторого момента воз-
действие окружающей среды на такой зародыш звезды становится пренебре-
жимо малым. Вся дальнейшая жизнь нарождающейся звезды целиком опре-
деляется физическими параметрами того фрагмента межзвездного облака, из
которого она возникает.

Очевидно, что самогравитация вещества звезды играет во всей ее жизни
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важнейшую, можно сказать, главенствующую роль. Поэтому начальная масса
звезды — ее определяющая характеристика.

Далее, ясно, что важную роль должен играть химический состав вещества,
из которого звезда формируется. (Правильнее было бы говорить о ядерном, а
не о химическом составе, но по традиционно используемой в астрономии тер-
минологии химический состав ≡ ядерный состав). Как на начальном этапе,
когда происходит быстрое сжатие (коллапс) будущей протозвезды, так и позже,
когда уже устанавливается механическое равновесие и охваченная конвекци-
ей протозвезда продолжает сжиматься медленно, гравитационное разделение
элементов произойти не может. Поэтому к моменту, когда в звезде начинаются
термоядерные реакции, она должна быть химически однородной. Это одно из
основных предположений теории строения звезд. Заметим, что возраст звез-
ды принято отсчитывать от момента начала реакций горения водорода (фаза
начальной главной последовательности, см. следующий пункт).

Два других важных параметра — угловой момент и напряженность маг-
нитного поля. В стандартной теории эволюции одиночных звезд принимается,
что вращения нет, или, точнее, что звезды вращаются настолько медленно,
что на их строении и развитии осевое вращение заметно не сказывается. Тем
самым формально считается, что у только что родившейся звезды угловой
момент равен нулю. Разумность этого предположения подтверждается, напри-
мер, медленностью осевого вращения Солнца, у которого экваториальная ско-
рость вращения vr = 2 км/с в двести с лишним раз меньше круговой скорости
(v1 ≈ 440 км/с). По-видимому, во многих случаях, в частности, у будущих звезд
с M <∼M¯ бо́льшая часть начального углового момента фрагмента межзвезд-
ного облака, сжимающегося в звезду, переходит в орбитальный угловой момент
рождающихся вместе со звездой планет (или второго компонента звездной па-
ры, если возникает двойная звезда). Угловой момент может и просто теряться
в процессе рождения звезды, причем важную роль в торможении вращения и
вообще в переносе момента, по-видимому, играет магнитное поле.

При сжатии облака с вмороженным в него слабым магнитным полем его
напряженность растет, однако не настолько, чтобы стать фактором, заметно
влияющим на механическое равновесие звезды. По-видимому, на всех этапах
жизни большинства звезд, кроме конечного, магнитное поле не играет в их
судьбе определяющей роли. Во всяком случае, таково предположение обычной
теории строения и эволюции звезд. В ней принимается, что ролью магнитного
поля можно полностью пренебречь. Это, впрочем, не относится к конечному
этапу эволюции, когда звезда переходит в ту или иную компактную конфи-
гурацию (белый карлик, нейтронную звезду, черную дыру). В физике этих
экзотических объектов магнитные поля играют огромную роль.

Резюмируем сказанное:
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Весь жизненный путь одиночной звезды полностью
определяется ее начальной массой и исходным хими-
ческим составом.

Поскольку у звезд одного типа населения, скажем, у звезд плоской состав-
ляющей нашей Галактики, начальный химический состав примерно один и тот
же, масса оказывается фактически единственным параметром, определяющим
различие строения и путей эволюции таких звезд.

,,Не слишком богатая теория" — подумает иной читатель. — ,,Каково было
бы, если бы вся судьба человека целиком определялась тем, сколько младенец
весил при рождении..." Однако с одиночными звездами, похоже, дело обстоит
именно так. Никакой иной важной ,,генетической" информации, кроме началь-
ной массы и исходного химического состава, у них нет.

Вдумчивый читатель, возможно, заметил, что неявно нами было сделано
еще одно допущение: мы предполагали, что пути эволюции звезд устойчивы к
малым вариациям начальных данных и влиянию различных малых ,,внешних"
возмущений, таких как медленное осевое вращение, приливное взаимодействие
с достаточно удаленным вторым компонентом звездной пары и т. п.

2.4.
Астрономические

следствия

Тремя главнейшими глобальными характе-
ристиками звезды являются ее масса M , све-
тимость L и радиус R. Вместо радиуса, кото-
рый в большинстве случаев непосредственно

измерить нельзя, обычно пользуются другим параметром, который находится
из наблюдений гораздо проще и надежнее, — эффективной температурой Teff .
По определению, если H — полный поток излучения с единицы поверхности
звезды, то полагают H = σT 4

eff , где σ — постоянная Сте́фана
(
σ = 5.67 · 10−5

эрг/(см2град4 с)
)
. Таким образом, эффективная температура — это та тем-

пература черного тела, при которой поток с единицы его поверхности равен
заданному потоку. Тогда L = 4πR2 σT 4

eff , так что Teff и L однозначно определя-
ют R. Поэтому вместо тройки параметров {M,L, R} звезду можно описывать
также и набором {M, L, Teff}.

Небольшой комментарий. Даже в очень солидных руководствах
по физике звезд можно встретить утверждение, что спектры звезд
близки к чернотельным с температурой, равной Teff . Для Солнца и
звезд близких к нему спектральных классов это действительно так.
Однако у более горячих звезд, с Teff ' 10 000 К, например у Веги,
спектр совершенно не похож на планковский. Достаточно сказать,
что у звезд класса А основная характерная деталь их спектров —
это большой бальмеровский скачок на длине волны λ 3646 Å.

Согласно изложенному в предыдущем пункте, для звезды с заданным хи-
мическим составом значения глобальных параметров {M,L, Teff} однозначно
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определяются начальной массой M0 и возрастом звезды t, так что

M = M(M0, t), L = L(M0, t), Teff = Teff(M0, t).

В пространстве с декартовыми координатами {M, L, Teff} каждой звезде
будет соответствовать точка, а совокупности звезд одинакового возраста t —
некоторая кривая (изохрона). Ее параметрические уравнения даются при-
веденными только что формулами (параметр — M0). В частности, в нача-
ле ядерной эволюции, когда загорается водород (возраст t = 0), мы имеем
M = M0, L = L(M0, 0), Teff = Teff(M0, 0). Таким образом, все эти звезды
(точнее, изображающие их точки) в пространстве {M, L, Teff} заполняют не
какую-то трехмерную область или двумерную поверхность, а лежат на некото-
рой пространственной кривой — кривой нулевого возраста. Проекция этой кри-
вой на плоскость {Teff , L} — это геометрическое место точек, изображающих
звезды нулевого возраста на диаграмме Герцшпрунга – Рессела, или начальная
главная последовательность (по-английски — Zero Age Main Sequence, сокра-
щенно ZAMS). Проекция же кривой нулевого возраста на плоскость {M, L} —
это зависимость масса – светимость для звезд начальной главной последо-
вательности. Далее, поскольку при горении водорода с превращением его в
гелий выделяется бо́льшая часть всей запасенной в веществе ядерной энергии,
следует ожидать, что эта первая фаза ядерной эволюции будет и самой продол-
жительной. Поэтому большинство звезд должно располагаться вблизи кривой
нулевого возраста.

Итак, приняв предположения, сформулированные в предыдущем пункте,
мы немедленно приходим к выводу о том, что должна существовать главная
последовательность (ГП), а лежащие на ней звезды должны удовлетворять со-
отношению масса – светимость. Поскольку эти две статистические зависимости
между основными глобальными параметрами звезд действительно существу-
ют, это вселяет надежду, что мы на верном пути и сделанных предположений
достаточно, чтобы разобраться в физике звезд, по крайней мере на ранних
этапах их термоядерной эволюции. Простейшей, а в некотором смысле и важ-
нейшей задачей теории эволюции звезд, можно сказать, ее пробным камнем
был расчет кривой нулевого возраста с целью воспроизвести форму и распо-
ложение главной последовательности и зависимость масса – светимость. Это
удалось сделать без введения каких-либо существенных дополнительных допу-
щений. Этого успеха было вполне достаточно, чтобы начать двигаться дальше.
Ведь не могло же быть случайным полное согласие формы и расположения в
пространстве {M, L, Teff} имеющей непростую форму рассчитанной теоретиче-
ски кривой двоякой кривизны — кривой нулевого возраста — с тем, что реально
наблюдается.

Со временем форма кривой в пространстве {M,L, Teff}, описывающей звез-
ды одинакового возраста, так называемая изохрона, будет меняться. Запасы
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ядерной энергии в звезде пропорциональны ее массе, а светимость, то есть
темп расходования этой энергии, — грубо говоря, массе в кубе. Поэтому эво-
люция звезды должна протекать тем быстрее, чем больше ее начальная масса.

2.5. Основной
сценарий звездной

эволюции

До сих пор речь шла о внешних, непосред-
ственно наблюдаемых проявлениях звездной
эволюции, то есть о тех изменениях, которые
светимость, радиус и даже масса звезды пре-
терпевают со временем. Теперь мы опишем

в общих чертах то, что происходит внутри звезды и определяет эти внешние
изменения.

Рассмотрим для определенности звезду с начальной массой 15M¯. Как и
у всех звезд достаточно большой массы, сколько-нибудь значительного про-
межутка времени, когда такая массивная рождающаяся звезда светит за счет
кельвиновского сжатия, нет. Почти одновременно с тем, как устанавливается
механическое равновесие, начинается и горение водорода. Сначала оно проис-
ходит за счет pp–цепочек, однако выделяющейся энергии оказывается недоста-
точно, чтобы покрывать потери на излучение, и температура в центральных
частях звезды продолжает медленно возрастать. Из-за необходимости преодо-
левать в CN–цикле более высокие кулоновские барьеры, чем для реакций pp–
цепочек, скорость энерговыделения в CN–цикле зависит от температуры силь-
нее, чем для pp–цепочек. В итоге когда температура достигает примерно 18 —
20 млн К, CN–цикл берет верх над pp-цепочками. Рост температуры продол-
жается до тех пор, пока темп энерговыделения не становится равным темпу
потерь на излучение. Это означает, что звезда вступила на главную последо-
вательность.

Из-за очень сильной зависимости скоростей реакций CN–цикла от темпера-
туры энерговыделение оказывается сосредоточено в малой области близ цен-
тра звезды — там, где температура самая высокая. Поэтому потоки энергии в
центральных областях должны быть большими. Энергия, практически равная
полной светимости звезды — а для звезд большой массы она очень велика —
проносится через поверхность сферы малого радиуса. Одно только излучение
не способно перенести такие большие потоки. В газе возникает неустойчивость
и развивается конвекция, которая берет на себя перенос большей части энер-
гии. Наличие такого конвективного ядра у всех достаточно массивных звезд
имеет важные последствия. Выгорание водорода происходит главным образом
близ самого центра звезды, но обусловленное конвекцией быстрое перемеши-
вание вещества в пределах всего конвективного ядра приводит к тому, что во-
дородное топливо непрерывно доставляется к месту его интенсивного выгора-
ния, а вся ядерная область, охваченная конвекцией, в каждый данный момент
остается химически однородной. В конце концов водород в конвективном ядре
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полностью выгорает, и у звезды появляется гелиевое ядро. Температура в нем
недостаточна для того, чтобы началось горение гелия. Ядерный источник в
центре звезды гаснет. Жизнь звезды на главной последовательности окончена.

Следующий этап — быстрый переход звезды в область красных гигантов.

2.6. Вариации
основного сценария

Прежде всего, обсудим те изменения, кото-
рые надо внести в описанный сценарий для
звезд других масс. Начальные этапы, вплоть
до выгорания водорода и образования гели-

евого ядра, проходят все звезды (это следует из нашего определения звезды).
Что будет происходить после этого, зависит от начальной массы звезды. Пере-
числим возможные варианты.

1. M0 6 0.8M¯.
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Глава II

МЕХАНИЧЕСКОЕ
РАВНОВЕСИЕ ЗВЕЗДЫ

. . . история существования любой звезды — это поистине ти-
таническая борьба между силой гравитации, стремящейся
ее неограниченно сжать, и силой газового давления, стремя-
щейся ее распылить, рассеять в окружающем межзвездном
пространстве. Многие миллионы и миллиарды лет длится
эта ,,борьба". В течение этих чудовищно больших сроков си-
лы равны. Но в конце концов, как мы увидим дальше, победа
будет за гравитацией. Такова драма эволюции любой звезды.

И.С.Шкловский





Звезды, не являющиеся переменными, находятся в механическом равновесии.
Сейчас мы примем это как гипотезу, кажущуюся вполне разумной. По крайней
мере со времен Гиппарха, то есть примерно за 2 · 103 лет, звезды заметно не
изменились. Это прямой наблюдательный факт, делающий предположение об
их механическом равновесии естественным. На самом деле надо еще показать,
что нарушение равновесия привело бы к перестройке звезды за время, малое по
сравнению с 2000 лет. Как мы вскоре узнаем, это действительно так, а потому
механическое равновесие непеременных звезд может рассматриваться как на-
блюдательный факт. Доказательство этого и извлечение отсюда следствий —
простых, но важных, — и составляет содержание настоящей главы.

В разд. 1 дается элементарный вывод простейшей формы уравнения ме-
ханического равновесия. Затем показывается, что нарушение равновесия при-
вело бы к очень быстрой перестройке звезды, за время порядка секунд для
белых карликов, минут или часов — для звезд ГП и от ∼ 1 до ∼ 103 суток
для красных гигантов и сверхгигантов. В конце раздела приводятся более об-
щие формы уравнения механического равновесия. В частности, обсуждается
равновесие вращающейся звезды. Приводится также уравнение механическо-
го равновесия сферически-симметричной звезды согласно общей теории от-
носительности, позволяющее оценить и учесть отклонения поля тяготения от
ньютонова. В разд. 2 рассматривается теорема вириала — замечательное ин-
тегральное соотношение, вытекающее из условия механического равновесия.
Обсуждение следствий теоремы вириала для физики звезд служит предметом
разд. 3. Даются оценки гравитационной энергии звезд. Кратко обсуждается
процесс их медленного гравитационного сжатия, важный не только, а пожа-
луй, даже не столько как поставщик энергии, сколько как один из главных
движущих факторов звездной эволюции. Наконец, на основе теоремы вириала
рассматривается вопрос об устойчивости механического равновесия самограви-
тирующей массы, в частности, выводится критерий гравитационной неустой-
чивости — отправной пункт теории формирования звезд.

1. УРАВНЕНИЕ МЕХАНИЧЕСКОГО РАВНОВЕСИЯ

1.1. Вывод
уравнения

гидростатического
равновесия

Сделаем естественное предположение, что
звезда обладает сферической симметрией.
Тем самым мы пренебрегаем влиянием трех
факторов: осевого вращения, приливных эф-
фектов (если звезда не является одиночной)

и крупномасштабных магнитных полей. Их роль далеко не всегда мала, однако

39



40 Гл. II. Механическое равновесие звезды

начинать нужно, конечно, с простейшего сферически–симметричного случая.
Следующий шаг — учет перечисленных трех факторов как малых поправок —
позволяет вместе с тем получить количественную оценку точности и области
применимости исходного предположения о сферической симметрии. Этим мы
сейчас заниматься не будем (см., впрочем, п. 1.7 этого раздела).

Силе гравитации, стремящейся сжать звезду, противостоит давление, точ-
нее, его градиент. Баланс этих двух сил и определяет механическое равновесие
звезды.

Рассмотрим элемент объема dV = dσ dr в форме цилиндра с осью, на-
правленной по радиусу, который находится на расстоянии r от центра звезды
(рис. II.1.1). На него действует направленная к центру сила притяжения δFG

массой Mr, заключенной внутри сферы радиуса r, и противоположная ей си-
ла давления δFP . Масса, сферически–симметрично распределенная вне сферы
радиуса r, силы тяжести внутри этой сферы, как хорошо известно, не создает
(почему это так?). Ясно, что δFG есть вес dV , то есть произведение ускорения
силы тяжести −GMr/r2 на массу этого элемента ρ dV :

δFG = − GMr

r2
ρ dV,

где ρ — плотность. Сила δFP , поддерживающая цилиндрический объем dV в
равновесии, возникает только из-за разницы в давлениях на его верхнее и ниж-
нее основания, так как радиальная составляющая давления на боковые стенки
равна нулю. Пусть dP — приращение давления на dr. Тогда

δFP = P dσ − (P + dP ) dσ = − dP dσ.

Давление P убывает наружу, поэтому dP отрицательно, так что δFP > 0.
В состоянии равновесия сила притяжения должна в точности уравновеши-

ваться давлением, так что δFG + δFP = 0, или dP dσ = − ρ (GMr/r2) dσ dr,
откуда окончательно

dP

dr
= − ρ

GMr

r2
. (1.1)

Это есть уравнение гидростатического равновесия звезды. Оно является ма-
тематическим выражением условия механического равновесия самогравитиру-
ющей сферически–симметричной массы.

Входящая в уравнение гидростатики величина Mr есть масса внутри сферы
радиуса r:

Mr = 4π

∫ r

0

ρ r′2 dr′ ,
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Рис. II.1.1:
К выводу уравнения механического равновесия

сферически–симметричной звезды.

так что

dMr

dr
= 4πr2ρ . (1.2)

Величину Mr иногда называют текущей массой, а по-английски — shell mass.
Соотношения (1.1) и (1.2) относятся к числу основных уравнений строения

звезд. Они ясно показывают определяющую роль давления в структуре звезды.
Эти два уравнения содержат три неизвестные функции: P = P (r), Mr = Mr(r)
и ρ = ρ(r). Поэтому для расчета равновесной конфигурации их недостаточно.
Давление P есть функция, вообще говоря, двух термодинамических перемен-
ных, скажем, плотности ρ и температуры T , определяемая уравнением состо-
яния P = P (ρ, T ). Привлечение его тоже не замыкает систему уравнений, так
как появляется новая неизвестная функция T = T (r). Таким образом, иссле-
дование механического равновесия звезды в общем случае нельзя отделить
от изучения ее тепловой структуры. Полная система уравнений оказывает-
ся поэтому сложной, она нелинейна и т. п. Главное орудие ее исследования и
решения — численные методы.

Однако для выяснения многих важных общих закономерностей и выработ-
ки ясного понимания влияния главных факторов полезно изучить пусть не
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такие уж близкие к реальности, многого не учитывающие, но зато достаточно
простые модели звезд. Другой способ разобраться в физике звезд — понять, не
решая уравнений равновесия, какие ограничения на те или иные параметры
звезд эти уравнения накладывают. Это либо соотношения между глобальными
характеристиками звезды, такими как ее гравитационная потенциальная энер-
гия, интеграл от давления по объему и т. п., либо некоторые строгие неравен-
ства, позволяющие сделать заключения о физических условиях в недрах звезд.
В дальнейшем мы используем все эти возможности. Однако сначала нам нужно
доказать, что звезды действительно находятся в механическом равновесии.

1.2. Динамическая
шкала времени

В жизни звезды бывают периоды, когда она
сжимается или расширяется. Например, на
начальных этапах развития, до вступления
на ГП, происходит сжатие. Наоборот, при пе-

реходе от ГП к стадии красного гиганта радиус звезды увеличивается. Малое
число звезд на диаграмме Герцшпрунга – Рессела вне ГП и области гигантов
служит прямым наблюдательным свидетельством того, что эти этапы являют-
ся сравнительно кратковременными. Как вскоре будет показано, для звезд, не
слишком сильно отличающихся по своим свойствам от Солнца, характерное
время такой перестройки — порядка 107 лет. Применимо ли уравнение гид-
ростатического равновесия вообще, и на таких этапах эволюции в частности?
Ответ оказывается положительным. Нарушение гидростатического равнове-
сия, как уже говорилось, должно приводить к изменению структуры звезды
за время порядка суток, часов, минут или даже секунд, в зависимости от ее
типа. Таким образом, уравнение гидростатического равновесия должно быть
применимо всегда, кроме трех случаев: а) быстрое начальное сжатие прото-
звезд, б) звездные взрывы и в) пульсирующие звезды.

Характерные времена звездных пульсаций (обычно это сутки или часы), ко-
торые, понятно, определяются периодом собственных колебаний звезды, могут
служить наблюдательным подтверждением применимости условия механиче-
ского равновесия на всех космогонических шкалах времени (106 лет и более).
Теоретическое же обоснование этого состоит в следующем. Если равновесие
нарушено, то возникает движение. Оно вызывается силой тяжести, несбалан-
сированной градиентом давления. По второму закону Ньютона имеем тогда

∂P

∂r
= − ρ

GMr

r2
− ρr̈. (1.3)

Слева написано ∂/∂r, а не d/dr, так как теперь P = P (r, t). Второй член в
правой части будет пренебрежимо мал по сравнению с первым, пока ускорение
r̈ не станет одного порядка с локальным ускорением силы тяжести g = GMr/r2.
Если же эти два члена окажутся сравнимыми по величине, то движение по



II.1. Уравнение механического равновесия 43

своему характеру будет близко к свободному падению вещества в поле силы
тяжести звезды.

Итак, существенное нарушение механического равновесия приводит к дви-
жениям, происходящим со скоростями, типичными для свободного падения.
Характерное время такого движения есть время, необходимое для полного сжа-
тия звезды при отсутствии сил давления, под действием одной только силы тя-
жести. Это время называют временем свободного падения или динамическим
временем звезды. Мы будем обозначать его tG (индекс G — от Gravitation).

Получим порядковую оценку времени такого схлопывания звезды. Ее мож-
но найти из соображений размерности. В задаче фигурируют следующие раз-
мерные величины, определяющие характер движения: масса звезды M , ее ра-
диус R, наконец, так как движение происходит под действием силы тяготения,
то и гравитационная постоянная G. Величину с размерностью силы из этих
определяющих параметров можно построить двумя путями: одна характерная
сила задачи — сила тяготения GM2/R2, другую по второму закону Ньютона
можно представить как [масса]×[ускорение], или M · R/t2G. Приравнивая эти
два выражения, для tG находим

tG ≈
(

R3

GM

)1/2

.

Это, конечно, не точная формула, а лишь порядковая оценка. Безразмерный
коэффициент τ , превращающий оценку в строгое равенство, так что

tG = τ

(
R3

GM

)1/2

,

как можно ожидать, не отличается по порядку от единицы.
Следующее утверждение показывает, что это действительно так: если плот-

ность в звезде не возрастает наружу, а в остальном ее распределение произ-
вольно, то

1.57 . . . =
π

2
> τ > π

2
√

2
= 1.11 . . . ,

причем знак равенства соответствует случаю, когда практически вся масса
звезды сосредоточена в центре.

Действительно, рассмотрим сначала звезду с ρ = const. Уравнение свобод-
ного падения пробной материальной точки с поверхности звезды до центра в
,,колодец", прорытый сквозь звезду, получается отбрасыванием члена ∂P/∂r в
общем уравнении движения (1.3):

r̈ = − G
Mr

r2
.
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В случае ρ = const, когда Mr = (4π/3)r3ρ = (M/R3)r3, оно представляет собой
уравнение гармонических колебаний:

r̈ +
GM

R3
r = 0 .

Время достижения пробной частицей центра звезды есть одна четверть пери-
ода этого гармонического колебания, так что

tG =
π

2

(
R3

GM

)1/2

.

Итак, для однородного гравитирующего шара безразмерное время свободного
падения пробного тела с поверхности до центра равно τ = π/2 = 1.57.

Противоположный предельный случай — звезда радиуса R, практически
вся масса которой M сосредоточена в центре (модель Роша). В этом случае
свободное падение можно рассматривать как вырожденный случай кеплеро-
вой задачи, когда материальная точка движется в поле тяготения точечной
массы M по ,,эллипсу" с большой полуосью R/2 и эксцентриситетом e = 1.
Этот вырожденный эллипс представляет собой отрезок. Время свободного па-
дения есть половина периода обращения по такому ,,эллипсу". С другой сторо-
ны, по третьему закону Кеплера период обращения по этому ,,эллипсу" в 23/2

раза меньше периода обращения по круговой орбите радиуса R, составляю-
щего 2π(R3/GM)1/2. Последнее выражение легко получить, приравнивая силу
притяжения центробежной силе при движении по окружности. В результате
для безразмерного времени свободного падения τ получаем в этом предельном
случае τ = π/(2

√
2) ≈ 1.11.

Из физических соображений следует, что для любого монотонно возраста-
ющего к центру распределения плотности безразмерное время τ свободного
падения пробного тела в скважину, пробуренную до центра, должно быть за-
ключено между только что найденными крайними значениями (почему?). Мы
видим, что величина τ во всех случаях в самом деле близка к единице, и при
порядковых оценках — а обычно только они и нужны — можно полагать τ = 1.

Обращает на себя внимание малая чувствительность времени свободного
падения к структуре звезды. Значения τ в самых крайних случаях различают-
ся всего в

√
2 раз. Почему это так? Независимо от того, каково распределение

плотности в звезде, движение начинается под действием одной и той же силы
GM/R2 (на единицу массы). Поэтому отнимающий много времени начальный
разгон происходит примерно одинаковым образом. По мере падения пробного
тела в ,,колодец" слои, оказывающиеся снаружи, перестают его притягивать, и
в этом причина того, почему ход плотности вдоль радиуса сказывается на за-
коне падения. Однако существенные различия в движении появляются только
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Рис. II.1.2:

Свободное падение пробной частицы в звезде.
Верхняя кривая — модель Роша (вся масса сосредоточена в
центре); нижняя кривая — звезда из несжимаемой жидкости

(ρ = const).

тогда, когда уже достигнута значительная скорость и пройдена заметная часть
всего пути (рис. II.1.2).

Приведенное рассуждение в какой-то мере искусственно: мы изучали паде-
ние пробной частицы в ,,колодец", считая все остальное вещество неподвиж-
ным, тогда как на самом деле следовало бы рассматривать одновременное сжа-
тие всей конфигурации. Естественно предположить, что при таком сжатии на-
ружные слои не обгоняют внутренние. Если это так, то нового рассмотрения
нам не потребуется. Очевидно, что каково бы ни было первоначальное распре-
деление плотности вдоль радиуса, время сжатия конфигурации в точку будет
в этом случае таким же, как и для модели Роша. Поэтому в дальнейшем мы
будем всегда брать τ = π/(2

√
2), то есть полагать

tG =
π

2
√

2

(
R3

GM

)1/2

. (1.4)

Выражение для tG можно записать также в форме

tG =
(

3π

32

)1/2 1√
G ρ

. (1.5)

Как видим, время свободного падения однозначно определяется начальной
средней плотностью ρ.
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Если требуется лишь порядковая оценка, как это обычно и бывает, то труд-
но запоминающийся множитель (3π/32)1/2 = 0.543 можно приближенно заме-
нить на 1/

√
π = 0.564 и вместо последней формулы пользоваться следующим

приближенным выражением:

tG ∼ 1√
πG ρ

. (1.6)

1.3. Гравитационный
коллапс в жизни

звезд

Может показаться, что обсуждавшееся выше
сжатие в режиме свободного падения с от-
сутствующим давлением — идеализация, да-
лекая от реальности. Это не так. Подобный
коллапс играет важную роль в жизни звезд.

Во-первых, он происходит при их рождении. Начальное сжатие межзвездных
молекулярных облаков H2, в которых рождаются звезды, происходит в режи-
ме, близком к свободному падению. Почему? При сжатии выделяется гравита-
ционная энергия. Если она переходит в энергию теплового движения частиц,
то это приводит к росту давления и замедлению сжатия. Однако пока облако
прозрачно для собственного излучения, гравитационная энергия, выделяюща-
яся при сжатии, в основном высвечивается, и поэтому роста давления почти
не происходит. Даже когда облако непрозрачно, его коллапс не прекращает-
ся, пока не завершится диссоциация молекул H2 и последующая ионизация
атомарного водорода, на что главным образом и расходуется выделяющаяся
гравитационная энергия.

Во-вторых, коллапсом ядра звезды завершается термоядерная эволюция
всех достаточно массивных звезд (с начальными массами от 10M¯ или око-
ло того). В результате термоядерной переработки первоначально водородно-
гелиевой смеси в ходе эволюции звезды у нее возникает ядро из имеющих наи-
большую энергию связи на нуклон ядер 56Fe. Дальнейшее выделение ядерной
энергии в таком ядре невозможно. Гравитационная же энергия, выделяющаяся
при сжатии этого горячего (T ∼1010 К) железного ядра, расходуется главным
образом не на нагрев газа, а на выбивание из ядер железа α–частиц при по-
глощении ими фотонов высокой энергии. При достижении T ∼1010 К такие
фотоны появляются в заметном количестве в хвосте теплового планковского
излучения, в его виновской области. Процесс фоторасщепления ядер аналоги-
чен обычной фотоионизации, но поглощаемая при этом энергия на шесть по-
рядков превосходит ту, которая требуется для ионизации водорода. Когда идет
фоторасщепление ядер железа, гидростатическое равновесие невозможно, так
как рост давления при сжатии ядра при этом практически прекращается, и
возрастающая сила тяжести оказывается нескомпенсированной медленно рас-
тущим давлением. Начинается коллапс ядра.
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Еще одна причина нарушения устойчивости, ведущего к гравитационно-
му коллапсу звезды, — наступающая при высоких плотностях нейтронизация
вещества путем обратных β-распадов. Если в звезде электронный газ сильно
вырожден, то его давление значительно превосходит давление ионной компо-
ненты газа, и именно оно — давление электронного газа — и противостоит са-
могравитации. При этом давление почти не зависит от температуры и растет с
увеличением плотности. В сильно вырожденном газе электроны занимают все
нижние квантовые энергетические состояния вплоть до энергии Ферми, опре-
деляемой плотностью. Когда при росте плотности в газе появляются электроны
с энергией, достаточной для превращения связанных в ядрах протонов в ней-
троны, что происходит при ρ ∼ 1010 г/см3, этим электронам энергетически
выгоднее быть захваченными ядрами, чем, оставаясь свободными, занимать
более высокие энергетические состояния. В такой ситуации рост плотности
не ведет к росту электронной концентрации, а значит — и давления, так как
электроны с энергией, превышающей порог начала нейтронизации, поглоща-
ются ядрами. Возрастающая при сжатии сила тяжести не уравновешивается
почти не растущим давлением, и начинается коллапс.

Итак, и начало, и конец гидростатической эволюции звезд сопровождаются
коллапсом, происходящим в режиме, близком к свободному падению.

1.4.
Обсуждение

Из результата, найденного в п. 1.2, можно
извлечь гораздо больше, чем видно на пер-
вый взгляд.

Прежде всего заметим, что так как обгона одного слоя падающего веще-
ства другим по предположению не происходит, формулы, аналогичные (1.4)
и (1.5), будут иметь место и для времени tG(r) сжатия в точку любой внут-
ренней сферической части звезды (или лучше сказать — самогравитирующей
конфигурации) с r 6 R:

tG(r) =
π

2
√

2

(
r3

GMr

)1/2

=
(

3π

32

)1/2

(G ρr)
−1/2

, (1.7)

где Mr и ρr — соответственно масса и средняя плотность в шаре радиуса r.
Отсюда следует, что при ρ = const все слои опадают на центр одновременно.
Если в первоначальной конфигурации плотность убывает с расстоянием, то
и ρr уменьшается с ростом r. Согласно (1.7), в этом случае внутренние слои
должны достигать центра раньше наружных, так что обгона действительно
нет. В центре образуется точечная масса, растущая со временем. Сжатие при
свободном падении происходит, таким образом, негомологично, то есть ρ(r, t)
нельзя получить из первоначального распределения плотности ρ(r, 0) масштаб-
ным преобразованием.
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Эти факты чрезвычайно важны для понимания качественных особенностей
гидродинамических стадий звездной эволюции, когда механического равнове-
сия нет, в частности, процессов рождения звезд из межзвездных облаков. Ра-
зумеется, на самом деле картина гораздо сложнее. Нужно учитывать эффекты
давления, влияние ударной волны, образующейся при выпадении вещества на
зародыш звезды, сформировавшийся близ центра, и т. п.

Возвращаемся к вопросу о динамическом времени звезды. На него можно
взглянуть с другой стороны. Равновесие звезды определяется балансом сил
давления и гравитации. Пусть возникло малое возмущение давления. Оно бу-
дет распространяться по звезде как звуковая волна. Если изменения в струк-
туре звезды происходят достаточно медленно, так что бо́льшая часть веще-
ства движется со скоростями, малыми по сравнению со скоростью звука, то
волны давления будут обгонять движущееся вещество и вызывать изменения
структуры, компенсирующие начальное возмущение. Волны давления не бу-
дут успевать восстановить равновесие только тогда, когда движения в звезде
происходят со скоростями порядка скорости звука, а это, как можно пока-
зать, движения, близкие к свободному падению. После только что сказанного
неудивительно, что периоды собственных колебаний звезд оказываются того
же порядка, что и tG. Ясно, впрочем, что точные их значения, помимо массы
и радиуса звезды, должны определяться еще одним безразмерным парамет-
ром, характеризующим упругость звездного вещества. Для обычных звезд им
служит соответствующим образом усредненный по звезде эффективный пока-
затель адиабаты Γ1 газа из смеси частиц и фотонов (см. Гл. XI, п. 1.3).

Наконец, последнее замечание. Период обращения спутника, движущегося
по круговой орбите непосредственно над поверхностью звезды, равен 4

√
2 tG,

если tG определено согласно (1.4). Очевидно, что это есть вместе с тем ми-
нимально возможный период осевого вращения недеформируемой звезды —
в противном случае на экваторе центробежная сила превысит силу тяжести.
Поэтому знание периода осевого вращения P позволяет дать оценку средней
плотности объекта. Для недеформируемой звезды, то есть в пренебрежении
изменением формы звезды под действием центробежных сил, что, как можно
думать, не должно сказаться на порядке величины, из (1.5) находим тогда

ρ > 3π

GP 2
,

или
ω2 6 4π

3
G ρ ,

где ω = 2π/P — угловая скорость вращения. Когда достигается равенство,
атмосфера, окружающая нашу идеализированную недеформируемую звезду,
улетает с нее. В действительности центробежные силы деформируют звезду,
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причем по-разному в зависимости от степени концентрации вещества к цен-
тру. С учетом этого численный коэффициент в правой части будет другим.
А.Пуанкаре в конце XIX века показал, что при твердотельном вращении де-
формируемой звезды с произвольным распределением плотности

ω2 < 2π G ρ . (1.8)

Доказательство см. в п. 1.7.
Если сделать то или иное дополнительное допущение, то можно, конечно,

получить и более сильные ограничения на ω. Так, для твердотельно вращаю-
щихся сфероидов Маклорена — фигур равновесия несжимаемой жидкости —
имеем ω2 < 0.45π Gρ, причем они устойчивы, лишь если ω2 < 0.37π Gρ. Для мо-
дели Роша, то есть для точечной массы, окруженной несжимаемой оболочкой
пренебрежимо малой массы, ω2 < 0.72π G ρ.

Как видим, наши нестрогие рассуждения (ведь недеформируемая звезда —
фикция) дали достаточно хорошую оценку. Для реалистичных моделей звезд
коэффициент при G ρ в правой части должен быть заключен между 4π/3 (неде-
формируемая звезда) и 0.72π (модель Роша). Мы в дальнейшем будем прини-
мать его равным π, так что

ω2 < π G ρ . (1.9)

Перепишем это неравенство в форме

ρ >
4π

GP 2
=

1.9 · 108

P 2
. (1.10)

Применим его к пульсару в Крабе NP 0532. Для него P = 0.033 с, и поэтому
ρ > 1011 г/см3, так что это может быть только нейтронная звезда, но никак
не белый карлик (для них ρ ∼ 105 ÷ 107 г/см3). Предположение о том, что
мы имеем здесь дело с пульсациями белого карлика, также не проходит, по-
скольку при их характерных плотностях периоды колебаний должны быть не
менее нескольких секунд. Это также фактически следует из (1.5); подробнее
см. следующий пункт. В 1982 г. был открыт пульсар PSR 1937+214=4C 21.53 с
периодом P = 1.558 · 10−3 с, долгое время являвшимся наименьшим из извест-
ных. Для этого пульсара, совершающего 642 оборота в секунду(!), согласно
(1.10) должно быть ρ > 0.8 · 1014 г/см3. Недавно открыт пульсар, вращаю-
щийся еще быстрее — он совершает 716 оборотов в секунду (так что для него
ρ > 0.97 · 1014 г/см3). Есть предположение, что эти пульсары вращаются с уг-
ловой скоростью, близкой к критической. Учет эффектов ОТО, которые для
пульсаров, вообще говоря, не являются малыми, в данном случае влияет на
результат несущественно.
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1.5. Динамическое
время звезд разных

типов

Дадим численные оценки времени свободно-
го падения для объектов разных типов. Вы-
ражения (1.4) и (1.5) в числах принимают
вид

tG = 4.3 · 103(R3/M)1/2 =
0.54√
G ρ

=
2.1 · 103

√
ρ

. (1.11)

В солнечных единицах R ≡ R/R¯, M ≡ M/M¯ имеем

tG = 1.8 · 103
(
R3/M

)1/2
, (1.12)

так что для Солнца время свободного падения составляет около получаса (это
полезно помнить). Период основного радиального колебания Солнца по деталь-
ным расчетам его моделей оказывается примерно вдвое больше.

Для звезд главной последовательности (ГП) зависимость масса–радиус
можно аппроксимировать выражением R = Mr с r = 1 при M < 1 и
r = (2/3÷ 3/4) при M > 1. Поэтому согласно (1.12) время свободного падения
должно монотонно расти с массой звезды, хотя и не очень быстро. Оно изме-
няется от нескольких минут для маломассивных (M ' 0.1) холодных карликов
поздних подклассов М до нескольких часов для горячих О–звезд с массами в
десятки масс Солнца.

Так как tG и период собственных колебаний звезды — величины одного по-
рядка, то приведенные числа позволяют составить представление о периодах
радиальных колебаний звезд ГП или близких к ним по положению на диаграм-
ме Герцшпрунга – Рессела. Примером пульсирующих переменных, лежащих на
ГП, служат переменные типа δ Sct с эффективными температурами ∼7500 K и
периодами порядка часа, близкими, как это и должно быть, к теоретическому
часовому периоду основной моды радиальных колебаний Солнца.

Гиганты и сверхгиганты — группа весьма разнородных объектов. Их ра-
диусы заключены в промежутке от примерно R ∼ 10 до R ∼ 103, а массы
могут быть как малы (M∼ 1 , гиганты II типа населения), так и велики (до
десятков M¯, сверхгиганты населения I). Соответственно этому, характерные
времена движений, возникающих в них при нарушении механического равнове-
сия, должны быть заключены от ∼10 часов до 2÷3 лет. Как хорошо известно,
имеется множество типов переменных звезд с периодами из этого интервала.
Переменных же с периодом, скажем, в 10 лет не наблюдается, как это и должно
быть.

Обратимся к белым карликам. Массы типичных белых карликов близки к
массе Солнца (в среднем они ∼ 0.6 M¯, хотя в тесных двойных встречаются бе-
лые карлики и заметно меньших масс), а их радиусы примерно на два порядка
меньше солнечного. Поэтому согласно (1.12), для типичного белого карлика tG
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составляет всего несколько секунд. Такого же порядка должны быть и периоды
радиальных колебаний белых карликов. Согласно (1.12) они тем больше, чем
меньше масса белого карлика, так как радиусы белых карликов с ростом мас-
сы убывают (см. Гл. X). Расчеты ряда авторов, хорошо согласующиеся между ???
собой, дают значения периодов радиальных колебаний белых карликов около
20, 10 и 4 секунд при M = 0.4; 0.8 и 1.2 соответственно. Переменность с пери-
одами в десятки секунд обнаружена у белых карликов малых масс — бывших
новых, входящих в состав тесных двойных систем. Типичный пример — DQ Her
(бывшая Новая Геркулеса 1934), показывающая колебания блеска с периодом
71 с и амплитудой ∼ 0.1m. Впрочем, здесь, по-видимому, мы имеем дело не с
радиальными колебаниями самого́ белого карлика, а с более сложными колеба-
тельными явлениями, происходящими в его аккреционном диске. Обнаружены
также переменные белые карлики с гораздо большими периодами, доходящи-
ми до ∼ 103 с. Ряд фактов, в частности мультипериодичность, указывает на
то, что это пульсации, а не вращение. Ясно, однако, что это не могут быть
радиальные колебания в основной моде — периоды слишком велики для этого.
Здесь наблюдаются нерадиальные колебания. Простые статистические оценки
показывают, что число пульсирующих белых карликов в Галактике должно
быть очень велико. По-видимому, это самые распространенные в природе пе-
ременные звезды.

Заканчиваем наше несколько ушедшее в сторону обсуждение. Не правда
ли, поистине замечательные выводы позволила сделать простейшая оценка ха-
рактерного динамического времени, фактически следующая просто из размер-
ностей.

1.6. Гидростатика
звезды как частный

случай ее
гидродинамики

Обсуждавшееся до сих пор уравнение ме-
ханического равновесия (1.1) является част-
ным случаем общего гидродинамического
уравнения движения, выражающего закон
сохранения импульса. В эйлеровых перемен-
ных оно имеет вид

∂v
∂t

+ (v · ∇)v =
1
ρ
∇P −∇ϕ + F , (1.13)

где v = v(r, t) — скорость движения вещества в фиксированной точке r в
момент t, ϕ — гравитационный потенциал собственного поля тяготения звез-
ды, F — равнодействующая сил, приложенных к единице массы движущегося
вещества (,,жидкости"), которые отличны от градиента давления и силы тя-
жести, создаваемой самой рассматриваемой звездой. Эти силы включают, в
частности, вязкость, магнитные силы, во вращающихся звездах — центробеж-
ную и кориолисову силы, в двойных — силу тяготения, создаваемую спутником,
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и т. д. Выражение, стоящее в (1.13) слева, есть полная, или субстанциальная
производная dv/dt, в правой же части стоит равнодействующая всех сил, при-
ложенных к единице массы. Таким образом, (1.13) — это просто второй закон
Ньютона, записанный для единицы массы движущейся жидкости.

Входящий в уравнение движения (1.13) гравитационный потенциал ϕ свя-
зан с плотностью уравнением Пуассона — основным уравнением теории потен-
циала:

∆ϕ = 4π Gρ, (1.14)

где ∆ — оператор Лапласа. Вместо уравнения Пуассона иногда удобнее поль-
зоваться интегральным представлением потенциала через плотность:

ϕ = − G

∫

V

ρ(r′)
|r− r′| dV ′, (1.15)

где интегрирование идет по всему объему звезды.
Уравнения (1.13) – (1.14) следует решать совместно с уравнением нераз-

рывности
∂ρ

∂t
+ div (ρv) = 0, (1.16)

выражающим закон сохранения массы. Чтобы замкнуть систему, надо при-
влечь еще два уравнения — уравнение энергии и уравнение состояния. При-
водить их здесь мы не будем, поскольку наша цель состоит сейчас не в об-
суждении общих уравнений звездной гидродинамики, а в первую очередь в
том, чтобы показать, частным случаем каких более общих уравнений являет-
ся рассматривавшееся выше простейшее уравнение механического равновесия
(1.1).

Итак, убедимся, что (1.1) — это действительно частный случай (1.13) –
(1.14). При отсутствии макроскопических движений (v = 0) и внешних полей
(F = 0) уравнение движения (1.13) переходит в уравнение гидростатики

1
ρ
∇P = −∇ϕ. (1.17)

Если, далее, имеется сферическая симметрия, то P = P (r), ϕ = ϕ(r), где
r = |r| — расстояние от центра симметрии, и (1.17) записывается в форме

dP

dr

r
r

= − ρ
dϕ

dr

r
r

,

откуда
dP

dr
= − ρ

dϕ

dr
. (1.18)
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Уравнение Пуассона (1.14) принимает вид

1
r2

d

dr

(
r2 dϕ

dr

)
= 4π Gρ . (1.19)

Из (1.19) имеем
dϕ

dr
=

4πG

r2

∫ r

0

ρ(r′) r′2 dr′ , (1.20)

или
dϕ

dr
=

GMr

r2
.

Подстановка последнего выражения в уравнение гидростатического равнове-
сия (1.18) приводит его к виду (1.1).

Заметим, что для потенциала в сферически-симметричной звезде из (1.20)
легко найти следующее выражение (r 6 R):

ϕ(r) = − 4πG

r

∫ r

0

ρ r′2 dr′ − 4πG

∫ R

r

ρ r′ dr′, (1.21)

или, при учете (1.2),

ϕ(r) = − GMr

r
−

∫ M

Mr

GdMr′

r′
. (1.22)

Каков физический смысл каждого из членов в правой части этой формулы?
Воспользовавшись предположением о сферической симметрии, получите (1.21)
также из (1.15).

1.7. Равновесие
вращающейся

звезды

Рассмотрим теперь механическое равнове-
сие одиночной немагнитной звезды, твер-
дотельно вращающейся с постоянной угло-
вой скоростью ω и обладающей цилиндри-
ческой симметрией относительно оси враще-

ния. Пусть r1 — расстояние произвольной точки звезды от оси вращения, ко-
торую мы примем за ось z. К силе тяжести −∇ϕ в этом случае добавляется
направленная от оси вращения центробежная сила ω2r1, где r1 — вектор, лежа-
щий в плоскости, перпендикулярной к оси вращения и соединяющий эту ось
и рассматриваемую точку (так что r1 = |r1|). Условие равновесия вместо (1.17)
принимает поэтому вид

1
ρ
∇P = −∇ϕ + ω2r1. (1.23)
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Так как по симметрии задачи все величины могут зависеть лишь от z и r1,
то векторное уравнение (1.23) эквивалентно двум скалярным

1
ρ

∂P

∂r1
= − ∂ϕ

∂r1
+ ω2r1,

1
ρ

∂P

∂z
= − ∂ϕ

∂z
,

(1.23a)

которые по-прежнему должны решаться совместно с уравнением Пуассона
(1.14).

На первый взгляд кажется, что замена сферической симметрии на цилин-
дрическую, обусловленная вращением, ведет к тому, что P , ρ и ϕ становятся
функциями двух переменных — r1 и z. В действительности положение все же
немного проще. При твердотельном вращении центробежная сила, очевидно,
обладает потенциалом (индекс R — от Rotation)

ϕR = − ω2

2
r2
1 . (1.24)

Поэтому, если ввести полный, или эффективный потенциал ϕ̃ — сумму грави-
тационного потенциала и потенциала центробежной силы:

ϕ̃ ≡ ϕ + ϕR, (1.25)

то (1.23) перепишется в виде

1
ρ
∇P = −∇ϕ̃. (1.26)

Согласно определению градиента, ∇P в любой точке направлен по нор-
мали к проходящей через эту точку поверхности P = const (изобарическая
поверхность), а ∇ϕ̃ — по нормали к поверхности ϕ̃ = const (эквипотенциаль-
ная, или уровенная поверхность). Поскольку согласно (1.26) градиент давления
всюду антипараллелен градиенту потенциала, то в произвольной точке изоба-
рическая и эквипотенциальная поверхности, проходящие через нее, должны
касаться друг друга. Ясно, что так может быть только тогда, когда семейства
поверхностей P = const и ϕ̃ = const совпадают. Поэтому на любой уровен-
ной поверхности давление постоянно, а значит, оно является функцией одной
переменной — полного потенциала ϕ̃:

P = P (ϕ̃). (1.27)
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Далее, согласно последней формуле ∇P = (dP/dϕ̃) ∇ϕ̃, что по подстановке в
(1.26) приводит уравнение равновесия к виду

dP

dϕ̃
= − ρ . (1.28)

Поскольку, как следует из (1.27), dP/dϕ̃ зависит только от ϕ̃, то отсюда видно,
что плотность также должна быть функцией лишь ϕ̃:

ρ = ρ(ϕ̃). (1.29)

Получите этот результат непосредственно из уравнения равновесия (1.26), пока-
зав, что ∇ρ и ∇ϕ̃ коллинеарны.

Таким образом, в равновесной твердотельно вращающейся звезде давление
и плотность (а потому, в силу уравнения состояния, также и температура) яв-
ляются функциями одной переменной — полного потенциала ϕ̃. Сам же этот
потенциал зависит, разумеется, от двух переменных, например, расстояния от
оси вращения r1 и расстояния от плоскости экватора |z|. Часто вместо цилин-
дрических координат r1, z используют сферические координаты r — рассто-
яние от центра и µ ≡ cos θ, где θ — полярный угол, отсчитываемый от оси
вращения. Понятно, что возможен и такой подход: считать, что потенциал,
давление и температура являются функциями одной только плотности, ее же
рассматривать как функцию двух переменных — (r1, z) или (r, µ).

Доказанные только что факты играют существенную роль в теории вра-
щающихся звезд. Эти результаты остаются в силе и в общем случае диффе-
ренциального вращения с ω = ω(r1), см. Упр. 5, с. 99. Они лежат в основе
большинства методов расчета моделей вращающихся звезд.

В заключение покажем, что угловая скорость звезды, вращающейся как
твердое тело, ограничена сверху (так называемый предел Пуанкаре, уже упо-
минавшийся в п. 1.4):

ω2 < 2π G ρ , (1.30)

где ρ — средняя плотность звезды. Применим к (1.25) оператор Лапласа. Так
как в цилиндрических координатах он имеет вид

∆ =
1
r1

∂

∂r1

(
r1

∂

∂r1

)
+

∂2

∂z2
+

1
r2
1

∂2

∂φ2
,

где φ — азимутальный угол, то в силу (1.24) имеем ∆ϕR = − 2ω2, тогда как
∆ϕ, согласно уравнению Пуассона (1.14), равно 4π Gρ. Поэтому

∆ϕ̃ = 4π Gρ− 2ω2 .
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Проинтегрируем это равенство по всему объему звезды V . Поскольку
∫

V

∆ϕ̃ dV =
∫

V

div grad ϕ̃ dV =
∫

S

grad ϕ̃ dS,

где S — поверхность звезды, dS — ориентированный элемент этой поверхности,
то в результате получим

∫

S

grad ϕ̃ dS = 4πGM − 2ω2V.

Если звезда находится в равновесии, то эффективная сила тяжести g =
− grad ϕ̃ в любой точке ее поверхности должна быть направлена внутрь. По-
этому grad ϕ̃ dS > 0, так что интеграл в левой части последней формулы поло-
жителен, а значит, 4π GM − 2ω2V > 0, что и дает (1.30).

1.8. Уравнение
равновесия звезды в

ОТО

Гравитационные поля звезд гораздо
сильнее земного. Так, ускорение си-
лы тяжести на поверхности Солнца
GM¯/R2

¯ ' 3 · 104 см/с2, то есть при-
мерно в 30 раз больше земных 10 м/с2.

Скорость убегания с его поверхности ve ' 600 км/с, что также существен-
но больше второй космической скорости для Земли (11 км/с). Такого же
порядка (500 ÷ 1000 км/с) скорости убегания ve и у всех звезд ГП. Впро-
чем, земное гравитационное поле, являющееся для человека естественной
единицей измерения — об этом позаботилась биологическая эволюция, —
для природы в астрономическом масштабе ничем не выделено. Поэтому оно
не может служить подходящим эталоном при измерении гравитационных
полей. Естественный стандарт доставляет скорость света c. Если ve ¿ c, то
гравитационное поле на поверхности звезды следует считать слабым, при
ve ∼ c — сильным. В первом случае применимо классическое ньютоновское
описание поля тяготения, во втором необходимо пользоваться эйнштейновской
общей теорией относительности (ОТО).

Согласно закону сохранения энергии, в нерелятивистском случае

v2
e

2
=

GM

R
. (1.31)

Поэтому скорость убегания — прямая мера гравитационного потенциала на
поверхности. Теперь понятно, что за меру того, сколь сильным является гра-
витационное поле в произвольной точке, естественно принять значение безраз-
мерного отношения |ϕ| /c2, где ϕ — потенциал. Оказывается, что внутри звезды
потенциал по порядку величины не отличается от его значения на поверхно-
сти. Это показывают расчеты моделей звезд, как обычных, так и компактных.
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Поэтому если GM/R¿ c2, то гравитационное поле можно считать слабым по
всей звезде. Иначе это можно сформулировать так. Обозначим через RG радиус
тела массы M , при котором скорость убегания с его поверхности, рассчитанная
по классической формуле (1.31), равна скорости света:

RG =
2 GM

c2
, (1.32)

или в числах RG = 3 M км. Соответствующая средняя плотность

ρG =
M

(4π/3) R3
G

=
2 · 1016

M2
г/см3

.

Величину RG называют гравитационным, или шварцшильдовским радиусом
массы M . Если реальный радиус тела RÀRG, его гравитационное поле слабое,
если же R ∼ RG, или ρ ∼ ρG, оно сильное.

Из последней формулы видно, что объекты обычных звездных масс
(M<∼102) могут иметь сильные гравитационные поля лишь при колоссальных
средних плотностях. Только нейтронные звезды столь компактны, что облада-
ют действительно сильными гравитационными полями: |ϕ| ∼ 0.1 c2 на поверх-
ности. Нейтронные звезды являются, таким образом, существенно релятивист-
скими объектами, и как следует понять их природу можно лишь на основе
ОТО. К сожалению, дело осложняется тем, что свойства вещества очень высо-
кой плотности известны плохо и надежных данных о его уравнении состояния
нет.

Согласно приведенному критерию, для белых карликов эффекты ОТО
должны быть малы. На самом деле это не совсем так. Когда масса белого
карлика близка к предельно допустимой для них, звезда находится близ гра-
ницы устойчивости, и поэтому малые эффекты могут вызвать нарушение рав-
новесия. В этом случае учет даже небольших отклонений поля тяготения от
ньютонова становится необходимым.

Утверждая, что в пределах всей звезды потенциал того же порядка, что и
на ее поверхности, мы были не вполне точны. Для красных гигантов это не
так. У них потенциал близ центра по порядку отличается от потенциала на
поверхности. Поэтому значения GM/R, которые для красных гигантов очень
малы, не характеризуют звезду в целом. Потенциал близ центра красного ги-
ганта обычно порядка потенциала на поверхности типичного белого карлика.
Хотя он (по абсолютной величине) гораздо больше GM/R, релятивистские эф-
фекты для красных гигантов все же почти всегда можно не учитывать. Что же
касается звезд ГП и близких к ним по положению на диаграмме ГР, то здесь
поправки на ОТО не играют практически никакой роли.
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Следует ясно понимать, что релятивистский объект отнюдь не обязатель-
но должен иметь высокую плотность. Это так только для тел звездной
массы. Объект же, скажем, с M ∼ 3 · 109 (как в ядре галактики M87)
создает сильное гравитационное поле при весьма скромной средней плот-
ности ∼ 2 · 10−3 г/см3 — почти как у воздуха!

Релятивистское уравнение гидростатического равновесия сферически-сим-
метричной звезды известно как уравнение Толмена – Оппенгеймера – Волкова.
Оно имеет вид

dP

dr
= − G

(
ρ +

P

c2

)
(
Mr + 4π r3 P

c2

)

r2

(
1− 2 GMr

c2r

) , (1.33)

где

Mr = 4π

∫ r

0

ρ r′2 dr′. (1.34)

Для слабых гравитационных полей, удерживая в (1.33) лишь члены порядка
не выше 1/c2, получаем

dP

dr
= − Gρ

Mr

r2

(
1 +

P

c2ρ
+ 4πr3 P

c2Mr
+

2 GMr

c2r

)
. (1.35)

Это есть уравнение механического равновесия в постньютоновском прибли-
жении.

Вывод уравнения (1.33) не входит в нашу задачу, однако некоторые ком-
ментарии необходимы. Прежде всего подчеркнем, что здесь радиальная пе-
ременная r не есть эвклидово расстояние от центра. Согласно основной идее
ОТО, наличие массы изменяет геометрию пространства и течение времени. В
сферически-симметричном случае кривизна пространства и замедление хода
времени должны, очевидно, зависеть только от расстояния от центра симмет-
рии. Радиальная координата r вводится таким образом, что длина окружно-
сти с центром при r = 0 равна 2πr. Иначе говоря, r по определению есть
радиус кривизны поверхности трехмерной сферы площади 4πr2. Однако из-за
кривизны пространства объем соответствующего шара отличен от (4π/3) r3 и
составляет

4π

∫ r

0

(
1− 2 GMr

c2r

)−1/2

r2 dr .

Величина Mr, даваемая (1.34), есть релятивистский аналог массы–энергии
внутри трехмерной сферы радиуса r. В частности, величина

M = 4π

∫ R

0

ρ r2 dr, (1.36)
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где R — радиус конфигурации, определяемый условием ρ(R) = 0, есть масса
объекта, измеряемая по его полю тяготения удаленным наблюдателем. Она
не равна суммарной массе покоя всех слагающих звезду частиц. Пусть N —
концентрация барионов, µ0 — средняя масса покоя на один барион. Так как
объем шарового слоя толщиной dr в рассматриваемом случае равен 4πr2

(
1 −

2 GMr/(c2r)
)−1/2

dr, то полная масса покоя

M0 = 4π

∫ R

0

µ0 N

(
1− 2 GMr

c2r

)−1/2

r2 dr. (1.37)

Разность M0−M известна как гравитационный дефект массы конфигурации.
Эти результаты — следствие эйнштейновских уравнений гравитационно-

го поля для статического сферически-симметричного случая. Геометрия про-
странства – времени может быть описана при этом линейным элементом

ds2 = e2Φc2 dt2 − e2Λ dr2 − r2
(
dθ2 + sin2θ dφ2

)
. (1.38)

Множитель e2Φ описывает замедление хода времени в гравитационном поле,
e2Λ — кривизну пространства. Для статического сферически-симметричного
поля, очевидно, Φ = Φ(r) и Λ = Λ(r). Оказывается, что

eΛ =
(
1− 2 GMr

c2r

)−1/2

, (1.39)

а Φ определяется уравнением

c2 dΦ
dr

= G

(
Mr + 4πr3 P

c2

)

r2

(
1− 2 GMr

c2r

) , (1.40)

так что релятивистское уравнение гидростатики можно записать также в фор-
ме

dP

dr
= −

(
ρ +

P

c2

)
c2 dΦ

dr
. (1.41)

Величина c2Φ(r) играет роль гравитационного потенциала. Помимо механиче-
ского равновесия, ею определяется и гравитационное красное смещение фото-
на, испускаемого на r, при его наблюдении на бесконечности (не ограничивая
общности, можно считать Φ(∞) = 0).

Выражение (1.38) для линейного элемента применимо как внутри, так и вне
тела. Так как ρ = 0, P = 0 и Mr = M при r > R, то (1.39) и (1.40) дают

eΛ = e−Φ =
(
1− 2 GM

c2r

)−1/2

, r > R, (1.42)
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и вне тела (1.38) принимает вид метрики Шварцшильда

ds2 =
(
1− 2 GM

c2r

)
c2 dt2 − dr2

1− 2 GM

c2r

− r2
(
dθ2 + sin2θ dφ2

)
. (1.43)

Из этого выражения видно, что значение r = 2 GM/c2 ≡ RG является выде-
ленным: коэффициент при dt2 меняет знак, а при dr2 — к тому же терпит
разрыв. Частица, свободно падающая в радиальном направлении из бесконеч-
ности в центрально-симметричном гравитационном поле, описываемом метри-
кой Шварцшильда (1.43), при r = RG приобретает скорость, равную c. Этот
строгий результат в точности совпадает с тем, что дал нам классический ин-
теграл энергии (1.31) при бездумной подстановке в него ve = c (то есть вне
области его применимости). Это не более чем совпадение. Из классики можно
было надеяться получить лишь правильную порядковую оценку RG ∼ GM/c2.
То, что на самом деле верным оказался и коэффициент, — дело случая.

В чем качественные отличия гидростатики звезды по Ньютону и по Эйн-
штейну? Для удобства сопоставления выпишем соответствующие уравнения
рядом:

dP

dr
= − ρ

GMr

r2
, (H)

dP

dr
= − ρ

GMr

r2

(
1 +

P

c2ρ

)
(
1 + 4πr3 P

c2Mr

)

(
1− 2 GMr

c2r

) . (Э)

Классическое уравнение равновесия само по себе не накладывает ограничений
на массу и радиус конфигурации, в ОТО же это не так. Как видно из (Э), рав-
новесие возможно лишь при r > RG. В противном случае в наружных частях
конфигурации было бы dP/dr > 0, что несовместимо со статикой. Далее, вид-
но, что при одинаковых ρ, P и Mr значения |dP/dr| в релятивистском случае
больше, чем в ньютоновском: в числителе в правой части (Э) в обеих круг-
лых скобках появились дополнительные положительные слагаемые (давление
в ОТО не только ,,давит", но и ,,весит"), знаменатель же из-за множителя(
1− 2 GMr/(c2r)

)
уменьшился. Итак, гравитация в статическом сферическом

теле согласно теории относительности оказывается сильнее, чем по ньютонов-
ской теории. Проявлением этого служит, в частности, уменьшение предельной
массы белых карликов из-за учета эффектов ОТО (см. Гл. X, разд. 4, с. 466).



2. ТЕОРЕМА ВИРИАЛА

2.1. Гравитационная
энергия звезды

Теорема вириала — это замечательное своей
простотой и общностью соотношение между
гравитационной энергией связи конфигура-
ции и ее внутренней энергией, являющееся

прямым следствием условия механического равновесия. В комбинации с за-
коном сохранения энергии и принципом Паули теорема вириала позволяет в
общих чертах понять, каковы должны быть основные этапы в жизни звезды.

Теорема вириала широко используется также в галактической и внегалак-
тической астрономии. Это одно из очень важных и часто применяемых в сего-
дняшней астрофизике соотношений, такая же простая и безотказная рабочая
лошадка как третий закон Кеплера, формула эффекта Доплера и т. п. Поэто-
му мы обсудим теорему вириала довольно подробно. Сначала рассматривается
вопрос о нахождении гравитационной энергии звезды. Далее для простейших
случаев приводятся два вывода теоремы вириала, внешне очень разных. Затем
даются более общие формы теоремы вириала, позволяющие учесть макроско-
пические движения, влияние крупномасштабных магнитных полей и др.

Переходим к нахождению гравитационной энергии связи звезды EG, то есть
энергии, которую надо затратить, чтобы полностью рассеять составляющее
звезду вещество, удалив его на бесконечность. Это один из важнейших гло-
бальных параметров звезды. Мы получим для EG два выражения — одно об-
щее, годное при произвольном распределении вещества, и второе — частное,
справедливое при сферической симметрии.

Энергия гравитационного взаимодействия точечных масс mi и mj

(,,частиц"), находящихся на расстоянии rij , равна −Gmimj/rij . Знак минус
стоит потому, что при удалении частиц энергия не выделяется, а затрачивает-
ся. Для системы частиц

EG = − 1
2

G
∑

i, j

′ mimj

rij
,

где суммирование идет по всем i, j, а штрих у знака суммы означает, что i 6= j.
Множитель 1/2 появляется из-за того, что при таком суммировании энергия
взаимодействия каждой пары частиц учитывается дважды. Обозначив

ϕi = − G
∑

j

′ mj

rij
,
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можем переписать выражение для EG в виде

EG =
1
2

∑

i

mi ϕi .

Величина ϕi есть, очевидно, гравитационный потенциал в месте расположения
i-ой частицы, создаваемый всеми остальными массами.

Если вещество распределено непрерывно, то суммирование заменяется ин-
тегрированием, причем под ,,частицей" теперь следует понимать массу ρ dV ,
заключенную в элементарном объеме dV . Поэтому

EG =
1
2

∫

V

ϕρ dV, (2.1)

где интегрирование идет по всему объему, содержащему вещество. Эта форму-
ла справедлива при произвольном распределении вещества.

Отметим, что наряду с (2.1) для EG имеется также и другое представление,
а именно

EG = −
∫

V

(r · ∇ϕ) ρ dV. (2.1′)

Сейчас оно нам не понадобится, и потому пока мы ограничиваемся лишь его
упоминанием. Вывод см. в п. 2.5, где оно используется.

Если имеется сферическая симметрия, то ρ dV = ρ 4πr2dr = dMr, и поэтому
(2.1) принимает вид

EG =
1
2

∫ M

0

ϕdMr .

Интегрируя по частям и учитывая, что в рассматриваемом случае dϕ/dr =
GMr/r2, легко получить, что (проверить!)

EG = − GM2

2R
−

∫ R

0

GM2
r

2r2
dr,

где M и R — масса и радиус конфигурации. Отсюда после еще одного инте-
грирования по частям окончательно находим

EG = −
∫ M

0

GMr

r
dMr . (2.2)
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Рис. II.2.1:
К вычислению гравитационной энергии

сферически-симметричной звезды.

Убедитесь, что выражение (2.2) есть частный случай (2.1′), соответствую-
щий сферической симметрии. Проверьте также, что (2.2) можно получить
подстановкой в (2.1) явного выражения (1.21) для ϕ через ρ.

Формулу (2.2) легко вывести и непосредственно из физических соображе-
ний. Удаляем вещество со звезды слой за слоем. Тогда на некотором этапе
будем иметь звезду радиуса r и массы Mr, от которой отделен слой массы
dMr, находящийся на расстоянии r′ от центра звезды (Рис. II.2.1).

На единицу массы в этом шаровом слое действует сила притяжения
GMr/r′2, и поэтому для смещения слоя на dr′ надо совершить работу(
GMr dMr/r′2

)
dr′. Энергия, необходимая для перемещения массы dMr с по-

верхности на бесконечность, равна, таким образом,

− dEG = GMr dMr

∫ ∞

r

dr′

r′2
=

GMr

r
dMr .

Суммируя работу по последовательному удалению всех слоев, составляющих
звезду, приходим к (2.2).

При сжатии массы M в звезду радиуса R выделяется энергия |EG|, опреде-
ляемая (2.2). Эта энергия частично идет на нагрев звезды, частично же рас-
ходуется на излучение. Оценим ее. Вводя безразмерные переменные — долю
массы q ≡ Mr/M и долю радиуса x ≡ r/R, можем переписать (2.2) в виде

EG = − ω
GM2

R
, (2.3)
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где ω — безразмерный структурный множитель, определяемый ходом плотно-
сти в звезде:

ω =
∫ 1

0

q dq

x
.

Внимание! Та же буква ω используется нами для обозначения угловой
скорости вращения звезды (см., например, п.п. 1.4 и 1.7).

Для оценки ω заметим, что так как x = r/R 6 1, то ω >
∫ 1

0
q dq = 1/2.

Знак равенства соответствует нереальной модели звезды в виде пустотелой
тонкой тяжелой сферической оболочки радиуса R. Для однородного шара
Mr = (4π/3) r3ρ = x3M , и EG легко вычисляется, что дает ω = 3/5. Очевидно,
что когда плотность растет к центру, как это на самом деле обычно и есть,
то ω > 3/5. Действительно, чтобы получить такое распределение плотности из
однородного, надо часть вещества с периферии перенести ближе к центру, что
будет сопровождаться выделением дополнительной гравитационной энергии.
Так как M и R считаются при этом фиксированными, то ω должно возрас-
тать.

В столь сильно различающихся по распределению массы моделях, как
,,мяч" с тонкими тяжелыми стенками и однородный шар, значения ω оказы-
ваются, таким образом, очень близки: ω = 0.5 и 0.6, соответственно. В обоих
случаях они не сильно отличаются от единицы.

Проверьте, что линейному падению плотности ρ = ρc (1 − r/R) отвечает
ω = 26/35 = 0.74.

Можно думать, что и для более реалистичных моделей, у которых плот-
ность возрастает к центру довольно быстро, ω все же будет порядка еди-
ницы. И действительно, если в звезде P ∝ ρ1+1/n — в этом случае говорят,
что звезда есть политропа индекса n, — то, как будет показано в п. IV.2.1
(с. 181), ω = 3/(5 − n). Звезды главной последовательности по своему строе-
нию близки к политропам с n от 1.5 до примерно 3.5. Соответственно этому,
для них значения ω заключены в интервале от ∼ 0.9 до 2. Это иллюстрируется
Рис. II.2.2, дающим ω для моделей химически однородных звезд различных
масс (расчеты В.Б.Ильина, Астрономический институт СПбГУ; химический
состав: X = 0.70, Y = 0.27, Z = 0.03). Видно, что из всех звезд начальной
главной последовательности наибольшими значениями ω, а значит, и наиболь-
шей концентрацией вещества к центру обладают звезды с массами, близкими
к солнечной, точнее, раза в полтора – два бо́льшими M¯.

Полезно знать также значение ω для Солнца в его нынешнем состоянии,
когда оно прожило на ГП уже около половины отпущенного ему срока:

ω¯ = 1.62 .
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Рис. II.2.2:
Безразмерная гравитационная потенциальная

энергия химически однородных звезд разных масс
(X=0.70, Y=0.27, Z=0.03).

Это значение рассчитано нами по сравнительно недавней (2000 г.) модели сего-
дняшнего Солнца (J.N.Bahcall et al., http://www.sns.ias.edu/∼jnb). Значению
EG для современного Солнца, приводимому в третьем издании стандартного
справочника К.Аллена ,,Астрофизические величины" (М.: Мир, 1977), соот-
ветствует ω¯ = 1.7.

Обсуждение численных значений EG для звезд разных типов и их измене-
ний в ходе звездной эволюции мы отложим до п. 3.2.

2.2. Вывод теоремы
вириала из условия
гидростатического

равновесия

Получим теперь соотношение, выражающее
теорему вириала для простейшего случая
сферически-симметричной нормальной звез-
ды. Исходим из уравнения механического
равновесия

dP

dr
= − ρ

GMr

r2

и уравнения, определяющего Mr:

dMr

dr
= 4πr2ρ .
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Перемножив их крест-накрест и домножив результат на r, получим

4πr3dP = − G
MrdMr

r
,

или
3V dP = dEG,

где обозначено V = (4π/3)r3, dEG = − GMrdMr/r. Проинтегрируем это ра-
венство по всей звезде. Согласно (2.2), интеграл от dEG есть гравитационная
энергия звезды EG. Левую часть преобразуем интегрированием по частям. С
учетом того, что в центре звезды V = 0, а на поверхности P = 0, окончательно
находим

EG + 3
∫

P dV = 0 , (2.4)

где интегрирование идет по всему объему звезды. Это соотношение и выра-
жает теорему вириала для сферически-симметричной звезды, находящейся в
механическом равновесии. Поскольку dMr = ρ dV , его можно записать также
в форме

EG = − 3
∫ M

0

P

ρ
dMr . (2.4 ′)

По определению нормальной звезды, давление в ней создается идеальным
невырожденным нерелятивистским газом. Поэтому P = NkT , где N — концен-
трация частиц. В звездах газ можно считать одноатомным. В пренебрежении
энергией возбуждения и ионизации по сравнению с кинетической энергией по-
ступательного движения частиц объемная плотность энергии газа равна тогда
eтепл = (3/2)NkT , так что P = (2/3)eтепл. Полная энергия теплового движения
всех составляющих звезду частиц

ET ≡
∫

eтепл dV =
3
2

∫
P dV, (2.5)

и поэтому для нормальной звезды вириальное соотношение (2.4) принимает
вид

EG + 2ET = 0 . (2.6)

Это простейшая и одновременно наиболее употребительная форма теоремы
вириала. Другой вариант ее записи получается, если ввести полную энергию
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нормальной звезды E, равную, очевидно,

E = EG + ET .

Тогда вместо (2.6) будем иметь

E = − ET и E =
EG

2
. (2.7)

Во всей теории звезд едва ли найдется другой пример столь же внешне
простого результата, который был бы в то же время столь же важен, как и
скромные на вид равенства (2.6) и (2.7). Обсуждение будет дано в п. 3.3, с. 95.

Заметим, что для нерелятивистского (скорости всех частиц¿ c) идеального
газа с произвольной степенью вырождения справедливо соотношение

P =
2
3

eкин. (2.8)

Вывод этого важного результата см. в п. 2.5. Полная запасенная в звезде энер-
гия поступательного движения частиц, которым в идеальном газе и создается
давление, равна поэтому

EK ≡
∫

eкин dV =
3
2

∫
P dV. (2.9)

Когда газ не вырожден, поступательные движения частиц — это их тепловые
движения, и eкин = eтепл. Поэтому EK = ET , и (2.9) переходит в (2.5). В вырож-
денном же газе EK > ET , так что если давление в звезде создается нереляти-
вистским вырожденным газом, то (2.9) выполняется, а (2.5) — нет. Важнейший
пример такого случая — белые карлики малой массы (M <∼0.3M¯); подробнее
см. Гл. X.

Для ультрарелятивистского газа, то есть такого, в котором скорости боль-
шинства частиц близки к (или равны) скорости света, вместо соотношения (2.8)
имеем

P =
1
3

eкин. (2.10)

Поэтому если бы в звезде давление создавалось только ультрарелятивистским
газом (например, фотонным), то мы имели бы

EK = 3
∫

P dV,

и вириальное соотношение (2.4) приняло бы вид

EG + EK = E = 0. (2.11)
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Чтобы самогравитирующая система была в устойчивом равновесии, ее пол-
ная энергия должна быть отрицательной. Поэтому согласно (2.11) звезда, дав-
ление в которой создается ультрарелятивистским газом, была бы неустойчи-
вой. Таким образом, если бы давление в звезде создавалось только излучени-
ем, она не могла бы существовать из-за неустойчивости. В действительности,
конечно, давление в звездах создается не только фотонами, но и частицами
обычного газа. Поэтому в чистом виде рассматриваемый предельный случай
не реализуется. Однако можно думать, что когда давление излучения начина-
ет преобладать над газовым, равновесие звезды оказывается, так сказать, под
угрозой. Как мы покажем в дальнейшем, вклад давления излучения растет с
массой звезды. При достаточно больших массах давление излучения должно
было бы стать доминирующим. При этом звезда оказалась бы системой, очень
слабо связанной гравитацией. Наблюдения показывают, что таких звезд в при-
роде не существует. Количественное обсуждение роли давления излучения —
одного из факторов, определяющих верхний предел возможных масс звезд —
∼100M¯ — см. в разд. III.3 и IV.3, п.п. 3.3 — 3.5.

В предыдущем абзаце имеются следующие утверждения, приводимые по-
чти во всех руководствах по физике звезд: ,,...когда давление излучения начи-
нает преобладать над газовым, равновесие звезды оказывается, так сказать,
под угрозой... При достаточно больших массах давление излучения долж-
но было бы стать доминирующим. При этом звезда оказалась бы системой,
очень слабо связанной гравитацией." Эти утверждения ошибочны. Действи-
тельно, полное давление P равно сумме газового PT = (2/3)eтепл и светового
PR = (1/3)eизл, где eтепл и eизл — объемные плотности энергии газа (тепловые
движения частиц) и излучения. Поэтому

∫
P dV =

∫
PT dV +

∫
PR dV =

2
3
ET +

1
3
ER, (2.12)

и вириальное соотношение (2.4) принимает вид

EG + 2 ET + ER = 0. (2.13)

Полная же энергия звезды (гравитация+газ+излучение) равна

E = EG + ET + ER, (2.14)

что в комбинации с предыдущим соотношением дает

E = −ET . (2.15)

Как видим, каков бы ни был вклад в давление, даваемый излучением, полная
энергия находящейся в равновесии конфигурации остается равной тепловой
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энергии газа звезды (со знаком минус, разумеется). Поэтому давление излу-
чения не может нарушить глобальное равновесие звезды, даже если оно инте-
грально сильно преобладает над газовым, то есть даже если ER À ET .

Примером звезд, в которых давление создается ультрарелятивистским га-
зом, служат белые карлики с массами, близкими к чандрасекаровскому пре-
делу M♦ ' 1.4M¯. В них давление создается вырожденным электронным га-
зом, который при плотностях ρ À 2 · 106 г/см3 становится ультрарелятивист-
ским. Здесь мы имеем дело с экзотическим случаем формулы (2.11), когда при
M → M♦ в рамках считающейся классической чандрасекаровской модели бе-
лого карлика его радиус стремится к нулю, так что EG → −∞. Одновременно
из-за роста плотности P → ∞, и потому EK → +∞. Поэтому полная энергия
E = EG + EK в пределе при M → M♦ представляет собой неопределенность
вида ∞−∞. Ее раскрытие (дело не вполне тривиальное!) показывает, что в
действительности в этом предельном случае полная энергия конечна и отрица-
тельна (см. с. 457). В реальном мире этот крайний случай не осуществляется,
поскольку чандрасекаровская модель белого карлика, к которой относятся эти
результаты, при приближении массы к M♦ становится неприменимой. Это не
более чем пропедевтические сведения, иным из читателей, возможно, пока не
вполне понятные. Детальное рассмотрение см. в Гл. X.

2.3. Динамический
вывод теоремы

вириала

С точки зрения динамики теорема вириа-
ла есть некоторое утверждение статистиче-
ского характера относительно совокупности
взаимодействующих частиц. Рассмотрим си-
стему материальных точек с массами mi, на-

ходящихся в ri под действием сил Fi. В нерелятивистском случае уравнение
движения i-ой частицы имеет вид

mir̈i = Fi .

Умножим его скалярно на ri. Мы имеем

d 2r2
i

dt2
= 2ri · r̈i + 2ṙ2

i .

Это частный случай формулы Лейбница для n-ой производной произведе-
ния при n = 2. Далее, r2

i = r2
i , где ri = |ri|, а ṙ2

i = v2
i , так что ri · r̈i =

(1/2) (d2r2
i /dt2)− v2

i . Поэтому

1
2

d 2

dt2
(
mi r2

i

)−mi v2
i = Fi · ri .
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Суммируя по всем частицам, получаем

1
2

d2I

dt2
− 2EK =

∑

i

Fi · ri , (2.16)

где I есть момент инерции системы:

I =
∑

i

mi r2
i ,

а EK — ее полная кинетическая энергия:

EK =
∑

i

mi v2
i

2
.

Сумма, стоящая в правой части (2.16), известна как вириал Клаузиуса (отсюда
и название теоремы).

В студенческих конспектах часто фигурирует теорема некоего Вириала,
однако назвать национальность господина Вириала студенты затрудняют-
ся.
Ревнители чистоты русского языка считают термин ,,теорема вириала"
научным жаргоном и настаивают на том, что следует говорить ,,теорема
о вириале". Если согласиться с ними, то из математики по тем же сообра-
жениям пришлось бы изгнать все теоремы существования, превратив их
в теоремы о существовании.
Термин ,,вириальная теорема" — точный перевод virial theorem — мог бы
рассматриваться как разумный компромисс, если бы в нем была нужда.

Применим (2.16) к звезде. Если магнитное поле отсутствует, то силы, входя-
щие в вириал, — это электростатические силы кулоновского взаимодействия со-
ставляющих звезду частиц газа — ионов и свободных электронов, а также гра-
витационные силы их взаимного притяжения. Электростатические силы гораз-
до сильнее гравитационных. Так, сила кулоновского отталкивания двух прото-
нов e2/r2 больше силы их ньютонова притяжения Gm2

p/r2 в e2/Gm2
p ∼ 1036 раз.

Тем не менее вклад электростатических сил в вириал обычно мал. Ионизован-
ный газ электрически нейтрален, и поэтому со стороны звезды в целом никакой
кулоновой силы на объем не действует. Несбалансированные электростатиче-
ские силы действуют на частицы только при их столкновениях. При этом стал-
кивающиеся частицы дают в вириале два члена, сумма которых равна нулю,
так как для них r практически совпадают, а F равны по величине и противо-
положны. Поэтому силами кулоновского взаимодействия мы пренебрежем, то
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есть будем считать газ идеальным. (Обсуждение кулоновских поправок, обу-
словленных неравномерностью распределения заряда на малых расстояниях
из-за поляризации плазмы, см. в разд. XI.2.)

Единственными силами, дающими вклад в вириал, остаются тогда ньюто-
новские силы взаимного притяжения частиц

Fij = − G
mimj

r3
ij

(ri − rj) ,

где Fij — сила, действующая на частицу i со стороны частицы j, и rij = |ri−rj |.
Объединив частицы в па́ры, перепишем вириал в виде

∑

i

Fi · ri =
∑∗

(Fij · ri + Fji · rj) ,

где
∑∗ означает, что суммирование идет по всем па́рам. Учитывая, что Fij =

−Fji, будем иметь ∑

i

Fi · ri =
∑∗

Fij · (ri − rj) .

Величина, стоящая под знаком правой суммы, равна

Fij · (ri − rj) = − G
mimj

r3
ij

(ri − rj)2 = − G
mimj

rij
,

то есть представляет собой потенциальную энергию взаимодействия частиц i и
j. Поэтому вся сумма, то есть вириал, равна в данном случае гравитационной
энергии звезды EG, и (2.16) принимает вид

1
2

d 2I

dt2
= EG + 2EK . (2.17)

Приведенный вывод ясно показывает, что это соотношение есть следствие
того, что гравитационное взаимодействие происходит по закону обратных квад-
ратов. Заметим мимоходом, что в небесной механике (2.17) известно как урав-
нение Лагранжа – Якоби.

Подчеркнем, что EK в вириальном соотношении (2.17) включает в себя ки-
нетическую энергию как теплового движения частиц, так и всех макроскопиче-
ских движений вещества (обусловленных вращением, пульсациями, конвектив-
ными токами и т.п.). Если не происходит разлета или неограниченного сжатия,
то при усреднении (2.17) по промежутку времени, большому по сравнению с
характерным временем крупномасштабных движений, левая часть обращается
в нуль. Таким образом, если под EK и EG понимать усредненные по времени
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величины, то вместо (2.17) будем иметь

EG + 2EK = 0. (2.18)

Существенно, что здесь, в отличие от п. 2.2, при выводе не предполагалось
ни сферической симметрии системы, ни того, что вклад в ее кинетическую
энергию EK дают лишь хаотические тепловые движения частиц. Поэтому вири-
альное соотношение EG+2EK = 0 имеет более широкую область применимости,
чем его частный случай — соотношение EG + 2ET = 0, полученное в предыду-
щем пункте из уравнения гидростатики для сферически-симметричной звезды,
состоящей из идеального газа. Если нормальная звезда находится в механиче-
ском равновесии, то вириальное соотношение EG +2EK = 0 будет выполняться
и тогда, когда в ней происходят установившиеся макроскопические движения
вещества. В частности, оно имеет место для вращающейся звезды, причем вра-
щение не обязательно твердотельное. Если вращение происходит быстро, вклад
кинетической энергии вращения в EK может быть значительным.

2.4. Более общие
вириальные
соотношения

Хотя в большинстве случаев той ,,детской"
формы теоремы вириала, в которой она бы-
ла получена выше, оказывается достаточно,
стоит привести и более общие вириальные
соотношения — ,,для взрослых". Обобщение

будет произведено в нескольких направлениях. В настоящем пункте нестаци-
онарная (с членом Ï ) теорема вириала выводится в форме, применимой не
только к звезде в целом, но и к ее частям. Важнейшие частные случаи этого
общего соотношения обсуждаются в следующем пункте. Далее, в п. 2.6 дает-
ся так называемая магнитная теорема вириала, то есть теорема вириала для
самогравитирующей плазмы, находящейся в магнитном поле. Наконец, п. 2.7
дается понятие о тензорной теореме вириала — важном средстве исследова-
ния несферических самогравитирующих систем. Круг вопросов, связанных с
теоремой вириала и ее астрономическими применениями, далеко не исчерпы-
вается тем, что мы излагаем. Достаточно сказать, что имеется даже моногра-
фия, целиком посвященная теореме вириала и ее применениям к физике звезд
(G.W.Collins, The Virial Theorem in Stellar Astrophysics, Tucson, 1978). Впро-
чем, и к этой книге можно сделать целый ряд дополнений.
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До конца этого раздела мы будем заниматься строгими, подчас доволь-
но громоздкими выводами формул. Физических пояснений будет даваться
мало. Они отнесены в последующие разделы. Поэтому читатели, которых
больше интересуют астрономические следствия теоремы вириала, чем ее
всестороннее обоснование, могут просто принять на веру те из имеющихся
далее в этом разделе формул, которые специально отмечены (они исполь-
зуются в дальнейшем), и прямо перейти к чтению последующих, менее
формальных разделов.

Соотношение, выражающее теорему вириала в весьма общей (нестационар-
ной) форме, нетрудно вывести из гидродинамического уравнения движения
(1.13). Его левая часть ∂v/∂t+(v ·∇)v есть попросту ускорение d2r/dt2 фикси-
рованного элемента жидкости, и поэтому уравнение движения можно записать
также в виде

r̈ = − 1
ρ
∇P −∇ϕ + F . (2.19)

Умножим его скалярно на ρ r и проинтегрируем затем по объему V ∗ — произ-
вольной части полного объема звезды V , которая ограничена изобарической
поверхностью S∗, так что на ней P = P ∗ = const.

В результате в левой части появится интеграл от ρ r · r̈ по объему V ∗. Так
как r · r̈ = (1/2)d2r2/dt2 − v2, то этот интеграл приводится к виду

∫

V ∗
r · r̈ ρ dV =

1
2

d2I∗

dt2
− 2E∗

макр , (2.20)

где

I∗ =
∫

V ∗
r2ρ dV,

а E∗
макр есть кинетическая энергия макроскопических движений вещества, на-

ходящегося в объеме V ∗:

E∗
макр =

∫

V ∗

ρ v2

2
dV.

Отметим, что как сам объем V ∗, занимаемый рассматриваемой (фиксирован-
ной) массой, так и плотность ρ изменяются со временем: V ∗ = V ∗(t), ρ = ρ(r, t).
Выше при преобразованиях мы использовали тот факт, что для произвольной
величины Q = Q(r, t), характеризующей движущееся вещество,

d

dt

∫

V ∗
Qρ dV =

∫

V ∗

dQ

dt
ρ dV.

Это есть следствие того, что фактически интегрирование ведется по выделен-
ной фиксированной массе.
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Первый член в правой части порождает слагаемое

−
∫

V ∗
r · ∇P dV.

Для его упрощения заметим прежде всего, что r · ∇P = div(P r) − 3P . По-
являющийся объемный интеграл

∫
V ∗ div(P r) dV преобразуем по теореме Гаус-

са в поверхностный
∫

S∗ P r · dS. Так как по предположению S∗ — изобариче-
ская поверхность, на которой P = P ∗ = const, то последний интеграл равен
P ∗

∫
S∗ r · dS. Еще раз пользуясь теоремой Гаусса — на этот раз в обратную

сторону, то есть преобразуя поверхностный интеграл в интеграл по объему, —
находим P ∗

∫
S∗ r ·dS = P ∗

∫
V ∗ div r dV = 3P ∗V ∗, так как div r = 3. В результате

оказывается, что

−
∫

V ∗
r · ∇P dV = 3

∫

V ∗
P dV − 3P ∗V ∗ . (2.21)

Наконец, второй и третий члены в правой части уравнения движения по умно-
жении его на ρ r и интегрировании по V ∗ дают вириал

Vir∗ =
∫

V ∗
r · (−∇ϕ + F)ρ dV. (2.22)

Собирая вместе выражения (2.20) – (2.22), приходим окончательно к сле-
дующему вириальному соотношению для произвольной части звезды, ограни-
ченной изобарической поверхностью:

1
2

d 2I∗

dt2
= 2E∗

макр + 3
∫

V ∗
P dV − 3P ∗V ∗ + Vir∗ . (2.23)

При выводе вириального соотношения для части звезды не обязательно бы-
ло исходить из модели сплошной среды. Можно рассматривать и совокупность
материальных точек, движение которых описывается уравнениями Ньютона
mi r̈i = Fi. При таком подходе вириальное равенство получается в форме,
слегка отличной от (2.23):

1
2

d 2I∗

dt2
= 2E∗

K − 3P ∗V ∗ + Vir∗ , (2.24)

где E∗
K — кинетическая энергия поступательного движения частиц, находя-

щихся в объеме V ∗, слагаемое −3P ∗V ∗ — вклад в вириал, даваемый силой
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давления P ∗, действующей на ограничивающую V ∗ поверхность (которую по-
прежнему считаем изобарической), Vir∗ — вириальный член, обусловленный
силами, которые действуют на частицы, расположенные внутри V ∗:

Vir∗ =
∑

V ∗
ri · Fi . (2.25)

Суммирование распространяется здесь на все имеющиеся в объеме V ∗ частицы;
Fi — равнодействующая сил, приложенных к i-ой частице.

2.5. Частные
случаи

а) В важнейшем частном случае, когда V ∗ —
весь объем звезды (V ∗ = V ), а единственной
силой, дающей вклад в вириал, является си-
ла взаимного притяжения частей звезды, так

что в (2.22) F = 0, соотношение (2.23) переходит в

1
2

d 2I

dt2
= 2Eмакр + 3

∫

V

P dV + EG . (2.26)

Здесь Eмакр — полная кинетическая энергия макроскопических движений ве-
щества во всей звезде, а EG , как всегда, гравитационная энергия конфигура-
ции. Действительно, поскольку на поверхности звезды давление равно нулю,
то P ∗ = 0 при V ∗ = V . Поэтому для получения (2.26) из (2.23) нам достаточно
показать, что гравитационную энергию связи звезды EG можно представить в
виде (уже упоминавшемся в п. 2.1)

EG = −
∫

V

(r · ∇ϕ) ρ dV, (2.27)

поскольку согласно (2.22) при F = 0 и V ∗ = V вириал дается именно этим
выражением.

Доказательство (2.27) исходит из обычного представления для потенциала

ϕ(r) = − G

∫

V

ρ(r′)
|r− r′| dV ′.

Поскольку ∇r(|r− r′|−1) = − (r− r′)/|r− r′|3, то

r · ∇ϕ = G

∫

V

r · (r− r′)
|r− r′|3 ρ(r′) dV ′. (2.28)
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Подинтегральное выражение можно преобразовать, воспользовавшись тожде-
ством r · (r− r′) = |r− r′|2− r′ · (r′− r). В результате получим для r ·∇ϕ другое
представление

r · ∇ϕ = −ϕ−G

∫

V

r′ · (r′ − r)
|r− r′|3 ρ(r′) dV ′. (2.29)

Подставим (2.29) в (2.27) и изменим порядок интегрирования в появляющемся
двойном интеграле. Сравнивая результат с тем, что дает (2.27) при подстановке
в него (2.28), приходим к соотношению

EG =
∫

V

ϕρ dV −EG ,

доказывающему тождественность (2.27) и обычного выражения для гравита-
ционной энергии связи произвольной конфигурации, полученного в п. 2.1:

EG =
1
2

∫

V

ϕρ dV.

б) В звездах больших масс заметный вклад в давление наряду с ча-
стицами газа дают также фотоны. В этом случае P = Pg + Pr, где Pg — давле-
ние максвелловского идеального газа, Pr — давление излучения. В любой точке
внутри звезды поле излучения очень близко к термодинамически равновесно-
му с температурой, равной локальной температуре T . Поэтому Pr = (1/3) eизл,
где eизл — объемная плотность энергии равновесного излучения: eизл = aT 4,
a — постоянная плотности излучения. Имеем также Pg = (2/3)eтепл, где eтепл —
плотность энергии тепловых движений частиц максвелловского газа. Следова-
тельно,

3
∫

V

P dV = 2ET + ER ,

где ET и ER — соответственно полная тепловая энергия вещества и полная
энергия излучения, запасенные в звезде:

ET =
∫

V

eтепл dV, ER =
∫

V

eизл dV. (2.30)

В итоге при учете давления излучения (2.26) дает

1
2

d 2I

dt2
= EG + 2EK + ER , (2.31)

где EK — полная кинетическая энергия системы:

EK = Eмакр + ET .
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В частности, в стационарном случае

EG + 2EK + ER = 0. (2.32)

Заметим, что при пренебрежении энергией возбуждения и ионизации полная
энергия звезды

E = EG + EK + ER .

Поэтому, как уже говорилось ранее (см. с. 68), в стационарном случае всегда
E = −EK , независимо от того, какова роль давления излучения.

При ER = 0 формула (2.31) переходит в соотношение (2.17), полученное
ранее другим путем. Этот путь, однако, не давал возможности учесть вклад
энергии излучения. Что же до формулы (2.32) при ER = 0, то она дает хорошо
уже знакомое нам равенство EG + 2EK = 0. Впрочем, при выводе (2.23) мы
предполагали, не оговаривая этого специально, что звезда не вращается — в
противном случае в уравнение движения следовало бы ввести члены, учитыва-
ющие центробежную и кориолисову силы. Тем самым равенство EG +2EK = 0,
следующее из (2.32) при ER = 0, доказано здесь лишь для невращающейся
звезды. В действительности же, как было установлено в предыдущем пункте,
оно имеет место для звезды с произвольным, не обязательно твердотельным,
вращением. Таким образом, два разных способа вывода вириального соотноше-
ния — а) исходя из уравнения движения жидкости и б) отправляясь от уравне-
ний движения системы материальных точек — отчасти дополняют друг друга,
давая результаты хотя и очень близкие, но все же не полностью перекрываю-
щиеся.

в) Применим теперь (2.24) к малому объему V ∗ = dV покоящегося веще-
ства (Ï∗ = 0), на которое внешние силы не действуют, так что Fi в (2.25)
обусловлены только взаимодействием частиц самого́ рассматриваемого мало-
го объема. В этом случае P ∗ равно, очевидно, давлению P в этом объеме, а
E∗

K = eкин dV , где eкин — объемная плотность энергии поступательного движе-
ния частиц. Предположим сначала, что вещество — это идеальный газ. Тогда
силы взаимодействия между частицами Fi равны нулю по определению, так
что Vir∗ = 0, и (2.24) дает

P =
2
3

eкин . (2.33)

Эта полезная формула уже встречалась нам выше (в частности, в п. 2.2),
будет использоваться она и в дальнейшем. Существенно, что при ее выводе
никаких предположений о распределении частиц по скоростям не делалось.
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Поэтому она применима независимо от степени вырождения газа, если толь-
ко газ идеальный и энергии частиц нерелятивистские.

Откажемся теперь от первого из этих предположений (об идеальности газа).
В сильно ионизованном газе, из которого состоят звезды, отклонения от иде-
альности вызываются кулоновскими взаимодействиями частиц. Хотя макро-
скопически плазма нейтральна, в микромасштабах это не так. Положительные
и отрицательные заряды распределены в ней не вполне хаотически — электро-
ны образуют облака отрицательного заряда вокруг положительно заряженных
ионов (поляризация плазмы). В обычных звездах роль этого эффекта оказы-
вается малой, так что газ близок к идеальному.

Однако для сильно остывших белых карликов это уже далеко не так. Ку-
лоновские взаимодействия решающим образом влияют на поведение ион-
ной составляющей их вещества, которая должна из-за этих взаимодей-
ствий образовывать кристаллическую решетку. Подробнее см. Гл. X.

Как учет кулоновских поправок изменяет (2.33)? Кулоновские взаимодей-
ствия, как и гравитационные, происходят по закону обратных квадратов. Это
позволяет преобразовать кулоновский вириал для малого объема V ∗ = dV
совершенно таким же образом, как это делалось с входящим в (2.17) гравита-
ционным вириалом всей звезды. В результате оказывается, что при действии
только кулоновских сил ∑

dV

ri · Fi = eкул dV,

где eкул — объемная плотность энергии кулоновского взаимодействия в макро-
скопически нейтральной плазме:

eкул =
∑

V =1

∗ eiej

rij
. (2.34)

Здесь ei, ej — заряды частиц. Символ
∑∗

V =1 означает, что суммирование идет
по всем па́рам заряженных частиц, находящимся в единичном объеме. Учет
этого кулоновского члена в вириальном соотношении (2.24), записанном для
малого объема dV , ведет к тому, что (2.33) заменяется на

P =
2
3

eкин +
1
3

eкул . (2.35)

Мы не будем сейчас находить плотность кулоновской энергии eкул, посколь-
ку это не имеет отношения к теореме вириала (см. п. XI.2.3). Ограничимся
двумя замечаниями. Во-первых, отметим, что кулоновская энергия eкул от-
рицательна. Таким образом, согласно (??) давление в плазме ниже, чем в
идеальном газе той же температуры и плотности. Во-вторых, укажем, что
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eкул и eкин зависят от плотности (и температуры) по-разному. В частности,
в сильно ионизованном невырожденном почти идеальном (eкул ¿ eкин) газе
eкул ∝ (ρ3/T )1/2. Так как eкин ∝ ρ T , то eкул/eкин ∝ (ρ/T 3)1/2. Следовательно,
в невырожденном газе отклонения от идеальности с ростом плотности уве-
личиваются, как это подсказывается и ,,интуицией". Впрочем, полагаться на
нее нужно с осторожностью. Так, в сильно вырожденном (нерелятивистском)
электронном газе eкин ∝ ρ5/3, а eкул ∝ ρ4/3. Поэтому eкул/eкин ∝ ρ−1/3, и такой
газ тем ближе к идеальному, чем он плотнее.

Более подробное обсуждение эффектов кулоновского взаимодействия см. в
разд. X.4 и XI.2.

2.6. Магнитная
теорема вириала

Важная роль магнитных полей в космосе
была в полной мере осознана сравнительно
поздно. Неудивительно, что при рассмотре-
нии равновесия и динамики космических га-

зовых масс — как звезд, так и межзвездной среды, — давление магнитного поля
долгое время не учитывалось вовсе. Так, в теорему вириала соответствующий
член был введен лишь в 50-е годы XX в. (С.Чандрасекар и Э.Ферми).

Вещество звезд — это ионизованный газ высокой проводимости, то есть
плазма. Для нее, разумеется, ε = µ = 1, где ε и µ — диэлектрическая и маг-
нитная проницаемости; поэтому в макроскопических уравнениях Максвелла
B = H, D = E. Если имеется магнитное поле напряженности H и в проводни-
ке, в данном случае — плазме, течет ток, плотность которого j, то на единицу
объема действует сила

ρF =
1
c

(j×H). (2.36)

Соответствующая сила на единицу массы есть, очевидно, F. Эта пондеромо-
торная сила должна учитываться в гидродинамическом уравнении движения
(2.19). С другой стороны, в обычное выражение для силы тока

j = σ

(
E +

1
c

(v ×H)
)

,

где σ — проводимость, в свою очередь, входит скорость v. Поэтому уравне-
ния гидродинамики оказываются ,,сцепленными" с уравнениями Максвелла в
одну систему — систему уравнений магнитной гидродинамики. Ее детальное
обсуждение не входит в нашу задачу, которая гораздо скромнее — найти, какой
вклад в вириал дает сила (2.36) и тем самым — какой дополнительный член
магнитное поле вводит в вириальное соотношение. Мы покажем, что вместо



80 Гл. II. Механическое равновесие звезды

(2.26) для магнитной звезды как целого выполняется равенство

2Eмакр + 3
∫

V

P dV + EM + EG = 0, (2.37)

где P — обычное давление (за вычетом магнитного) и EM — полная энергия
магнитного поля звезды:

EM =
∫

VM

H2

8π
dV. (2.38)

Интегрирование в (2.38) распространяется по всей области пространства VM , в
которой имеется поле. Равенство (2.37) будем называть магнитной теоремой
вириала.

Прежде чем обратиться к выводу (2.37), рассмотрим магнитногидродина-
мическое уравнение движения. Ввиду высокой проводимости плазмы током
смещения (1/c)∂E/∂t в уравнении Максвелла

rotH =
4π

c
j +

1
c

∂E
∂t

можно пренебречь по сравнению с пропорциональным σ током проводимости
(4π/c) j. Это стандартное предположение магнитной гидродинамики. Тогда

j =
c

4π
rotH ,

и поэтому (2.36) принимает вид

ρF =
1
4π

(rotH×H) , (2.36′)

откуда

ρF = − 1
8π
∇H2 +

1
4π

(H · ∇)H . (2.36′′)

Здесь мы воспользовались известной формулой векторного анализа

(rotA)×A = − 1
2
∇A2 + (A · ∇)A ,

где A = |A|. Вводя F отсюда в (2.19), получаем уравнение движения в часто
используемой в магнитной гидродинамике форме:

r̈ = − 1
ρ
∇

(
P +

H2

8π

)
+

1
4πρ

(H · ∇)H−∇ϕ . (2.39)
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Для наших целей это уравнение целесообразно, однако, преобразовать даль-
ше. Воспользуемся тождеством

(A · ∇)A = −A div A +∇ · AA ,

где AA – тензор с компонентами AiAj , а ∇ ·AA — его дивергенция, то есть, по
определению, вектор с составляющими ∂(AjAi)/∂xj , i = 1, 2, 3. Здесь и далее
по повторяющимся индексам (в данном случае — j) предполагается суммиро-
вание. Последняя формула становится очевидной, если ее расписать в компо-
нентах:

Aj
∂Ai

∂xj
= −Ai

∂Aj

∂xj
+

∂(AiAj)
∂xj

.

Взяв A = H и учтя, что div H = 0 (это уравнение Максвелла), получим

(H · ∇)H = ∇ · HH .

Далее, согласно определениям градиента скалярного поля и дивергенции тен-
зора имеем тождество ∇a = ∇ · (aI), где I — единичный тензор, то есть тензор
с компонентами Iij = δij . Здесь δij — символ Кронекера. Значит,

∇
(

P +
H2

8π

)
= ∇ ·

((
P +

H2

8π

)
I

)
.

Введя тензор давления

P =
(

P +
H2

8π

)
I− 1

4π
HH, (2.40)

мы можем поэтому переписать уравнение (2.39) в следующей окончательной
форме:

ρ r̈ = −∇ · P− ρ∇ϕ. (2.41)

Внешне это уравнение очень похоже на обычное уравнение движения идеаль-
ной жидкости под действием силы тяжести, с той разницей, что градиент ска-
лярного давления ∇P заменен в правой части на ∇ · P.

Тензор давления P слагается из члена P I, обусловленного обычным изо-
тропным давлением при отсутствии магнитного поля, и максвелловского тен-
зора магнитных напряжений

M =
1
4π

(
H2

2
I− HH

)
.

Если говорить на наглядном языке силовых линий, то магнитные напряже-
ния обусловлены тем, что магнитные силовые линии подобны стремящимся
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сжаться растянутым пружинам, которые в то же время отталкиваются друг
от друга.

Вывод магнитной теоремы вириала из (2.41) проводится по той же схеме,
что и при изотропном (скалярном) давлении. Небольшие отличия есть лишь
при преобразовании объемного интеграла от r · (∇ · P).

Прежде всего, использовавшуюся в скалярном случае для преобразования
величины r ·∇P векторную формулу r ·∇P = div(rP )−3P надлежит заменить
ее тензорным обобщением

r · (∇ · P) = div(r · P)− Pii . (2.42)

Последняя формула становится очевидной (self-explanatory, как говорят по-
английски), если ее расписать в компонентах (напоминаем: по повторяющимся
индексам — суммирование)

xi
∂Pij

∂xj
=

∂

∂xi
(xj Pji)− Pii .

Член Pii — это след тензора давления P, то есть сумма его диагональных
компонент. Он равен утроенному среднему давлению P (усреднение — по на-
правлениям). Из (2.40) находим

Pii = 3P = 3
(

P +
1
3

H2

8π

)
. (2.43)

Величина (1/3)H2/(8π) есть среднее магнитное давление. Оно составляет, та-
ким образом, одну треть плотности энергии магнитного поля.

Далее (2.42) следует проинтегрировать по области V+, представляющей со-
бой объединение области V, содержащей вещество, и области VM , в которой
есть магнитное поле. В результате (2.42) и (2.43) дадут

∫

V+

r · (∇ · P) dV = − 3
∫

V

P dV −
∫

VM

H2

8π
dV +

∫

V+

div(r · P) dV.

Последний интеграл в правой части равен нулю. Чтобы в этом убедиться, его
нужно преобразовать по теореме Гаусса в поверхностный и учесть, что, по
определению области V+, на ограничивающей ее поверхности и P , и H равны
нулю.

Сказанного достаточно, чтобы считать магнитную теорему вириала (2.37)
доказанной.

2.7. Тензорная
теорема вириала

Существует ряд факторов, которые нару-
шают сферическую симметрию звезды: осе-
вое вращение, приливное взаимодействие со
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спутником, влияние крупномасштабных магнитных полей, наконец, неради-
альные колебания. При отсутствии сферической симметрии получить решения
уравнения гидростатики, а тем более гидродинамики звезды нелегко, а в иных
случаях — и просто невозможно. К счастью, в этом часто и нет нужды. Отве-
ты на такие важнейшие для астрофизики вопросы как вопрос об устойчивости
состояния равновесия звезды, расчет частот ее колебаний и др. во многих слу-
чаях удается найти без решения полной системы уравнений строения звезды.
Для этого развит ряд методов, об одном из которых — вириальном — и будут
сейчас даны начальные сведения.

Суть вириального метода состоит в том, что по уравнению движения стро-
ится цепочка моментных уравнений, гораздо более простых, чем само урав-
нение движения, но все же достаточно информативных, чтобы из них можно
было извлечь существенные сведения о состоянии системы. Мы ограничимся
тем, что приведем без вывода и поясним эти, как говорят, вириальные урав-
нения для простейшего случая звезды, состоящей из идеальной сжимаемой
жидкости.

Уравнение движения идеальной жидкости под действием силы взаимного
притяжения ее частей (и, разумеется, градиента давления), записанное в инер-
циальной системе отсчета, имеет вид

ρ
dv
dt

= −∇P − ρ∇ϕ ,

где dv/dt — лагранжева (полная) производная скорости.
Сейчас нам будет удобно записать это уравнение движения в виде

ρ
dvi

dt
= − ∂P

∂xi
− ρ

∂ϕ

∂xi
, i = 1, 2, 3. (2.44)

Будем считать, что на поверхности звезды давление обращается в нуль. Ви-
риальные уравнения первого, второго, третьего и т. д. порядков получаются
путем последовательного умножения обеих частей (2.44) на 1, xj , xjxk и т. д.
и интегрирования по объему звезды. Уравнения первого порядка интереса не
представляют. Оказывается, что их можно привести к виду

d2

dt2

∫

V

ρ xi dV = 0,

так что они выражают равномерность движения центра инерции. Гораздо ин-
тереснее уравнения второго порядка. Их можно представить в форме

1
2

d 2Iij

dt2
= 2EK

ij + EG

ij + δij

∫

V

P dV, (2.45)
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где Iij — тензор инерции системы:

Iij =
∫

V

xixj ρ dV,

EK
ij — тензор кинетической энергии макроскопических движений:

EK

ij =
1
2

∫

V

vivj ρ dV,

наконец, EG
ij — тензор потенциальной энергии:

EG

ij =
1
2

∫

V

ρϕij dV,

в котором ϕij — тензорное обобщение обычного ньютоновского потенциала:

ϕij(r) = − G

∫

V

ρ(r′)
(xi − x′i)(xj − x′j)

|r− r′|3 dV. (2.46)

В стационарном случае Ïij = 0, и (2.45) принимает вид

2EK

ij + EG

ij + δij

∫

V

P dV = 0. (2.47)

Очевидно, что все введенные только что тензоры симметричны. Поэто-
му одно тензорное соотношение (2.45) — это совокупность шести скалярных
(i, j = 1, 2, 3; i 6 j).

След Iii тензора инерции Iij есть, очевидно, центральный момент инерции:

I = Iii =
∫

V

ρ r2 dV.

Аналогичным образом, след тензора EK
ij — это кинетическая энергия системы:

Eмакр = EK

ii =
∫

V

ρ v2

2
dV,

а след EG
ij — ее гравитационная потенциальная энергия:

EG = EG

ii =
1
2

∫

V

ρϕii dV,

поскольку след ϕii тензорного потенциала ϕij согласно (2.46) представляет
собой скалярный ньютоновский потенциал: ϕii = ϕ. Здесь, как обычно, счита-
ется, что по повторяющимся индексам производится суммирование, так что,
например, EG

ii = EG
11 + EG

22 + EG
33.
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Записав (2.45) для диагональных компонент входящих в эти равенства тен-
зоров и сложив почленно получающиеся уравнения (короче: произведя свертку
тензоров в (2.45)), получим

1
2

d 2I

dt2
= 2Eмакр + EG + 3

∫

V

P dV,

то есть обычное скалярное вириальное соотношение. Таким образом, тензорное
вириальное уравнение (2.45) является обобщением скалярной теоремы вириа-
ла, вытекающей из него как следствие. Ясно, что шесть скалярных равенств,
которым эквивалентно одно тензорное соотношение (2.45), накладывают на
распределения давления, плотности и макроскопических скоростей в звезде
гораздо более жесткие ограничения, чем одно скалярное соотношение, выра-
жающее обычную теорему вириала. По сути дела, в этом и коренится высокая
эффективность тензорных вириальных соотношений как средства исследова-
ния несферических звезд.

Путем умножения (2.44) на xjxk и интегрирования по объему звезды V
можно получить вириальные уравнения третьего порядка. Число их — 18. Ис-
пользуются они (а тем более 30 вириальных уравнений четвертого порядка)
редко, главным образом при изучении нерадиальных колебаний звезд. Однако
говорить об этих и других применениях тензорных вириальных соотношений
пока преждевременно, поскольку мы еще не рассматривали астрофизических
следствий, вытекающих даже из простейшей скалярной теоремы вириала. Об-
суждению этого посвящен следующий раздел.

Тензорные вириальные уравнения были введены в астрофизику в 50-е го-
ды XX века Е.Паркером при изучении динамических эффектов, вызываемых
крупномасштабными магнитными полями. Однако их принято связывать в
первую очередь с именем С.Чандрасекара, и это справедливо. В начале 1960-х
годов он показал, что использование тензорных вириальных уравнений мо-
жет служить систематическим методом исследования звездных структур и по-
лучил с его помощью много интересных тонких результатов. Эти исследова-
ния С.Чандрасекара и его сотрудников подытожены в быстро ставшей класси-
ческой монографии С.Чандрасекара ,,Эллипсоидальные фигуры равновесия"
(1969; русский перевод — М.: Мир, 1973). Подробный вывод тензорного вири-
ального равенства (2.45) можно найти в начале главы II этой книги. После
описанного выше (см. с. 83) первого шага последовательность действий при
выводе остается той же, что и в скалярном случае, хотя в деталях, конечно,
есть отличия.

Самостоятельный вывод (2.45) — это превосходное упражнение, которое
мы всячески рекомендуем читателю в качестве пробы сил. Указание: см.
Упр. 7◦, с. 99.
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3.1. Кельвиновская
шкала времени

Наиболее очевидным свойством звезд явля-
ется то, что они светятся. За счет чего по-
крываются их энергетические потери? Этот
вопрос возник, как только был сформулиро-

ван закон сохранения энергии, однако найти исчерпывающий ответ на него
сумели лишь век спустя.

С самого начала было очевидно, что одним из источников энергии может
быть гравитация. Так, Р.Мейер, один из отцов закона сохранения энергии, по-
лагал, что Солнце светится за счет кинетической энергии выпадающего на него
метеорного вещества. В течение многих десятилетий гипотеза Мейера счита-
лась чуть ли не смехотворной и упоминалась лишь как исторический курьез.
Теперь мы знаем, что модернизированный вариант механизма Мейера — ак-
креция — играет в мире звезд важную роль.

Другой пионер принципа сохранения энергии Г. Гельмгольц предположил,
что свечение Солнца может поддерживаться его медленным вековым сжатием,
что приводит, разумеется, к выделению гравитационной энергии. Вскоре вслед
за Гельмгольцем Дж.Томсон (впоследствии лорд Кельвин) уточнил его оценку
времени такого сжатия, учтя неоднородность в распределении вещества вдоль
радиуса. Уже давно известно, что гравитационной энергии явно недостаточно,
чтобы обеспечить свечение Солнца и звезд на протяжении бо́льшей части их
жизни. И тем не менее процесс медленного гравитационного сжатия Гельм-
гольца – Кельвина, обычно называемый кельвиновским сжатием, играет очень
важную роль в жизни любой звезды. Начнем, однако, с энергетики.

Гравитационная энергия связи звезды равна

EG = − ω
GM2

R
, (3.1)

где ω — безразмерный структурный множитель, определяемый распределени-
ем плотности. Обычно он близок к единице (см. п. 2.1). (Важное исключение
из этого правила — красные гиганты. Для них ω значительно превосходит еди-
ницу). Разделив |EG| на светимость звезды L и взяв для простоты ω = 1, полу-
чим порядковую оценку времени, в течение которого звезда могла бы светить
за счет сжатия, если бы ее светимость оставалась постоянной:

tT ≈ GM2

RL
. (3.2)

Это есть так называемое тепловое характерное время звезды (индекс T — от
Thermal). Происхождение названия вскоре прояснится. Говорят также, что tT

86
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Рис. II.3.1:
Уильям Томсон

(William Thomson ≈ Lord Kelvin, 1824 – 1907) (слева)
Герман Гельмгольц

(Herman L.F. von Helmholtz, 1821 – 1894) (справа)
В период открытия закона сохранения энергии и разработки контракци-
онного механизма поддержания излучения Солнца Гельмгольц был про-
фессором физиологии (!) Кенигсбергского университета. Уильям Томсон
долгие годы был профессором университета в Глазго. Титула лорда Кель-
вина его удостоили за научные заслуги в 1892 г. И Гельмгольц, и Кельвин

были членами Петербургской Академии Наук.

определяет кельвиновскую, или контракционную шкалу времени. Разумеется,
это выражение для tT можно получить и просто из соображений размерности,
точно так же, как и в случае динамического времени. Определяющими пара-
метрами являются масса, радиус и светимость звезды, а также гравитационная
постоянная, поскольку энергия по предположению поставляется гравитацион-
ным сжатием. Величина с размерностью времени, построенная из этих пара-
метров, и есть GM2/RL.

На самом деле обычная звезда способна высветить лишь половину выде-
ляющейся при сжатии гравитационной энергии, другая половина идет на ее
нагрев. Докажем это очень важное утверждение. Когда внутренних источ-
ников энергии в звезде нет, то есть в ней не идут термоядерные реакции, ее
светимость поддерживается только за счет сжатия. Поэтому L = − Ė, где E —
полная энергия звезды (за вычетом остающейся по предположению постоянной
ядерной энергии). Для нормальной звезды (идеальный одноатомный газ, от-
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сутствие вырождения, пренебрежимо малый вклад излучения во внутреннюю
энергию) имеем E = EG + EK , где EK — полная кинетическая энергия звезды,
обусловленная как макроскопическими, так и тепловыми движениями. Соглас-
но теореме вириала, для нормальной звезды EG + 2EK = 0 (см. п. 2.2), так что
E = EG/2. Поэтому L = − Ė = − ĖG/2, то есть нормальная звезда, лишен-
ная внутренних источников энергии, теряет на излучение ровно половину
выделяющейся при ее сжатии гравитационной энергии, вторая же половина
идет на нагрев звезды. В этом случае, теряя энергию на излучение, звезда от
этого нагревается, так что можно сказать, что звезда как целое обладает от-
рицательной теплоемкостью. В англоязычной литературе принято говорить,
что в этом случае происходит выделение гравотермальной энергии (gravother-
mal energy). К сожалению, в русской литературе этот очень удачный термин,
передающий самую суть дела, почти не используется. Во всяком случае студен-
там гораздо больше нравится отрицательная теплоемкость, чем малопонятная
гравотермальная энергия.

Отрицательность теплоемкости нормальной звезды — факт не просто боль-
шой, а чрезвычайной важности. Выделение энергии при термоядерных реак-
циях растет с увеличением температуры. Из-за того, что теплоемкость звезды
как целого отрицательна, если бы в ней произошел быстрый рост энерговыде-
ления, то это вызвало бы мгновенное повышение температуры. Реакцией на это
было бы очень быстрое расширение звезды, происходящее на динамической (а
не на тепловой!) шкале времени. Избыток выделившегося тепла практически
мгновенно перекачался бы в гравитационную энергию. Поэтому в нормальных
звездах любые быстрые флуктуации температуры в зоне протекания термо-
ядерных реакций не растут, а тут же подавляются.

С учетом сказанного выше, в правой части выражения для tT следует доба-
вить множитель 1/2. Если не пренебрегать также отличием ω от единицы, то
приходим к следующему более аккуратному выражению для кельвиновского
времени:

tT =
ω

2
GM2

RL
. (3.3)

В дальнейшем в зависимости от случая будет использоваться как (3.2), так и
(3.3).

Пусть звезда светится за счет кельвиновского сжатия. Будем сначала для
простоты считать, что оно происходит гомологически, то есть без перестройки
структуры звезды, так что

ρ(r, t) =
M

R3(t)
f

(
r

R(t)

)
.
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Тогда ω остается постоянным, и ĖG = ω (GM2/R2) · Ṙ = − (EG/R) · Ṙ . Но L =
− ĖG/2, откуда при учете (3.3) находим, что радиус уменьшается со скоростью

− Ṙ =
R

tT

.

Эта формула объясняет происхождение термина ,,контракционная шкала вре-
мени"(contraction — сжатие).

В действительности для звезды, энергетические расходы которой на излу-
чение покрываются выделением гравитационной энергии, скорость изменения
радиуса может сильно отличаться от R/tT . Если степень концентрации веще-
ства к центру с течением времени убывает, то |Ṙ| будет больше R/tT (факти-
чески этот случай едва ли реализуется). Наоборот, если звезда эволюциони-
рует так, что степень концентрации вещества возрастает со временем, как это
обычно и бывает, то −Ṙ < R/tT . Может даже оказаться, что радиус будет со
временем расти, хотя звезда и лишена других источников энергии, кроме гра-
витационного. Энергии, выделяющейся при перемещении масс внутри звезды
к центру, может оказаться достаточно не только для поддержания светимости,
но и для того, чтобы вызвать расширение наружных слоев. Такого рода пере-
стройка происходит при уходе звезды с главной последовательности в область
гигантов. Правда, при этом в звезде выделяется также и ядерная энергия.

В заключение этого пункта получим простое выражение для скорости из-
менения гравитационной энергии звезды при кельвиновском сжатии:

ĖG = −
∫ M

0

P

ρ2
ρ̇ dMr . (3.4)

Оно понадобится нам в дальнейшем. Структура формулы (3.4) подсказыва-
ет, что при ее выводе целесообразно исходить из вириального соотношения(
формула (2.4′), c. 66

)
:

EG = − 3
∫ M

0

P

ρ
dMr ,

откуда

ĖG = 3
∫ M

0

P

ρ2
ρ̇ dMr − 3

∫ M

0

Ṗ

ρ
dMr . (3.5)

Первый интеграл в правой части — это то, что нам требуется. Чтобы най-
ти второй интеграл, обратимся к уравнению гидростатического равновесия в
форме

dP

dMr
= − GMr

4π r4
.
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Дифференцируя его по времени и домножая результат на 4π r3, получаем

4π r3 dṖ

dMr
= 4 ṙ

GMr

r2
,

откуда

4π

∫ M

0

r3 dṖ

dMr
dMr = 4

∫ M

0

ṙ
GMr

r2
dMr . (3.6)

Интеграл в левой части преобразуем интегрированием по частям:

4π

∫ M

0

r3 dṖ

dMr
dMr = 4π r3 Ṗ

∣∣∣
M

0
− 3 · 4π

∫ M

0

Ṗ r2 dr

dMr
dMr = − 3

∫ M

0

Ṗ

ρ
dMr .

На последнем шаге при преобразовании подынтегрального выражения в пра-
вой части мы воспользовались тем, что 4π r2ρ dr = dMr. Внеинтегральный
член равен нулю, так как при Mr = 0 имеем r = 0, а при Mr = M независимо
от времени P = 0, а значит и Ṗ = 0. Наконец, так как

EG = −
∫ M

0

GMr dMr

r
,

то

ĖG =
∫ M

0

ṙ
GMr dMr

r2
. (3.7)

С учетом этих фактов (3.6) принимает вид

− 3
∫ M

0

Ṗ

ρ
dMr = 4ĖG,

что по подстановке в (3.5) и дает (3.4).
Подчеркнем, что доказанная формула (3.4) есть прямое следствие того фак-

та, что кельвиновское сжатие происходит медленно, без нарушения гидростати-
ческого равновесия. Заметим также мимоходом, что последняя из написанных
формул в комбинации с (3.4) показывает, что

3
∫

V

Ṗ dV = 4
∫

V

P

ρ
ρ̇ dV .

Проверка выполнения этого соотношения может служить тестом при проведе-
нии численных расчетов моделей звезд на гидростатических стадиях их эво-
люции.

3.2. Энергетические
оценки

Получим численные оценки гравитационной
энергии и теплового (кельвиновского) вре-
мени для звезд разных типов. Если массу,
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радиус и светимость измерять в солнечных
единицах, обозначив, как обычно, M = M/M¯, R = R/R¯ и L = L/L¯, то
выражения (3.1) и (3.3) для EG и tT примут вид

EG = − ω · 3.79 · 1048 M2

R
эрг, (3.8)

tT = ω · 4.86 · 1014 M2

R L
сек = ω · 1.54 · 107 M2

R L
лет. (3.9)

Применим их прежде всего к Солнцу . Значение ω для Солнца в его ны-
нешнем состоянии, рассчитанное по его эволюционной модели, равно ω = 1.62
(см. п. 2.1), что близко к традиционно используемому при порядковых оценках
значению ω = 3/2 (политропа индекса n = 3). В результате находим

Солнце: EG ≈ − 6 · 1048 эрг.

Это число (и уж во всяком случае его порядок) следует помнить. Так как Солн-
це в очень хорошем приближении можно считать нормальной звездой и так как
вращается оно очень медленно, то запасенная в нем тепловая энергия равна,
по теореме вириала, ET = − EG/2 ≈ 3 · 1048 эрг. Кельвиновское время для
Солнца составляет ∼ 25 млн лет, а соответствующая скорость сжатия — около
30 м/год, или ∼ 4 · 10−5 угловой секунды в год, так как при расстоянии в од-
ну астрономическую единицу угловой секунде соответствует линейный размер
725 км.

То, что 1′′ в центре диска Солнца — это 725 км в его фотосфере, каж-
дому астрофизику следует помнить, иначе невозможно иметь правильное
представление о размерах образований, различимых на Солнце.

В полученных оценках, разумеется, важны лишь порядки величин, и по-
этому пользоваться ,,точным" значением ω = 1.62 нужды не было. Еще Гельм-
гольц, считая Солнце однородным (ω = 3/5), дал в общем удовлетворительную
оценку tT .

Из найденной оценки tT следуют два вывода. Первый — это явная недо-
статочность гравитационной энергии как источника свечения Солнца. Одно-
клеточные водоросли существовали на Земле уже по меньшей мере два, а по
последним данным — даже более трех миллиардов лет назад. Как считают
палеоклиматологи, светимость Солнца не могла тогда поэтому отличаться от
современной более чем на (20 ÷ 30)%. Значит, Солнце черпает свою энергию
не только из гравитационного сжатия, но и из другого, гораздо более мощного
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источника. Им служат термоядерные реакции превращения водорода в гелий,
как это знает теперь каждый старшеклассник.

Стоит заметить, что хотя оценка возраста Земли (∼ 4.6 · 109 лет) осно-
вана, конечно, на данных ядерной физики (периоды полураспада), недоста-
точность кельвиновской шкалы чувствовалась еще в XIX веке, когда возраст
Земли оценивался чисто геологическими средствами: по скорости накопления
соли в океане (это исторически первый метод определения возраста Земли,
предложенный еще в начале XVIII века Э. Галлеем, тем самым, о комете кото-
рого — первой в истории астрономии периодической комете — все слышали),
по времени, необходимому для образования осадочных пород, и т. п. Любопыт-
ная историческая деталь: Кельвин и ряд его современников считали малость
tT сильным аргументом против дарвиновской теории биологической эволюции!

Второй вывод из того, что tT = 25 млн лет, состоит в утверждении, что
Солнце, как и звезды вообще, обладает значительной тепловой инерцией. Если
бы термоядерные источники работали не с постоянной мощностью, а испыты-
вали временны́е вариации с характерными временами, малыми по сравнению
с tT , то это не сказалось бы на оптическом излучении Солнца, которое остава-
лось бы постоянным, хотя, конечно, и проявилось бы полностью в вариациях
его нейтринного излучения, которое выходит из недр наружу непосредственно,
за секунды. Эту простую мысль лет сорок–пятьдесят назад пытались исполь-
зовать для объяснения обнаруженного в опыте Дэвиса дефицита потока сол-
нечных электронных нейтрино высоких энергий (подробнее см. Гл. VI, п. 2.3).

Для получения оценок гравитационной энергии и кельвиновского времени
звезд главной последовательности зависимости масса – радиус и масса – све-
тимость достаточно взять в простейшем виде R = Mr , L = M`, а изменением
ω с массой пренебречь. Для нижней части ГП (M <∼ 1) берем r = 1, ` = 4, и
тогда EG ∝ M, tT ∝ M−3. Поэтому для звезд самых малых масс (M ∼ 0.1)
кельвиновское время оказывается очень большим — порядка космологическо-
го (1010 лет). Для звезд с массой, превышающей солнечную, можно принять
r = 3/4, , ` = 3.25, что дает EG ∝ M1.25, tT ∝ M−2. Кельвиновское сжатие
массивных звезд происходит, таким образом, очень быстро. Далее, поскольку
запасы ядерной энергии звезды EN , очевидно, пропорциональны ее массе, от-
ношение EN/EG для звезд ГП оказывается очень слабо зависящим от массы.
Оно изменяется вдоль всей ГП всего раза в 2 ÷ 3. Существенно, что это от-
ношение велико — достигает нескольких сотен. Поэтому, если ввести третье
характерное время звезды — ядерное, положив (индекс N — от Nuclear)

tN =
EN

L
,

то для всех звезд ГП tT ¿ tN . С другой стороны, с еще гораздо бо́льшим за-
пасом выполняется неравенство tG ¿ tT . Поэтому три характерных времени
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звезды — динамическое tG, тепловое tT и ядерное tN — для всех обычных звезд
соотносятся между собой так:

tG ¿ tT ¿ tN .

Это важный результат. Если изменения в звезде происходят на характер-
ном времени tG или еще быстрее, то механического равновесия нет. Вместо
гидростатики звезды нужно рассматривать ее гидродинамику, что неизмеримо
сложнее. К счастью, обычно все же приходится иметь дело с гидростатикой. А
тогда любые изменения в звезде происходят на характерных временах не менее
кельвиновского, играющего роль постоянной времени этой сложной нелиней-
ной системы. Все перестройки в звезде происходят при этом квазистационарно,
без нарушения ее механического равновесия. Наконец, возможно такое поло-
жение, когда структура звезды изменяется совсем медленно, на характерном
времени tN . Тогда говорят, что звезда находится в тепловом равновесии. Смысл
этого термина в данном случае состоит в том, что вырабатываемая звездой
энергия не тратится ни на нагрев, ни на перемещение вещества, а целиком
выходит наружу. Выделение ядерной энергии и потери энергии на излучение
звезды практически точно сбалансированы. Фактически такое положение бы-
вает в жизни звезды всего один раз — когда она находится на ГП.

От нормальных звезд перейдем к белым карликам. Так как для типичного
белого карлика R ' 10−2 , M<∼1, то |EG| ' 1049÷ 1051 эрг. Детальные расчеты
по классической модели Чандрасекара (см. Гл. X) дают |EG| = 1 · 1049, 8 · 1049

и 6 · 1050 эрг при M = 0.25; 0.5 и 1.0 соответственно (для µe = 2, то есть при
отсутствии водорода в недрах белого карлика). При малых массах (M<∼ 0.3)
имеем |EG| ∝ M7/3, при бо́льших массах |EG| растет с M еще быстрее. В рам-
ках этой модели белый карлик предельной массы M♦ = 1.46 имеет нулевой
радиус, а потому для него |EG| = ∞. На самом деле, когда масса близка к
предельной, следует принимать во внимание эффекты, не учитываемые моде-
лью Чандрасекара, в первую очередь — обратные β-распады, то есть начало
нейтронизации, а также неидеальность вырожденного электронного газа и от-
клонения поля тяготения от ньютонова. С учетом этих эффектов предельная
масса снижается до M♦ ≈ 1.2 ÷ 1.4. Гравитационная энергия ньютоновского
белого карлика предельной массы (состоящего из 12C) конечна и составляет
EG = − 4.3 · 1051 эрг. При этом средняя гравитационная энергия связи на еди-
ницу массы равна 1.5 · 1018 эрг/г, или 1.6 Мэв/нуклон.

Если бы белые карлики могли сжиматься как нормальные звезды, то из-за
низких светимостей (L ' 10−2÷ 10−3) их кельвиновское время было бы огром-
ным, ∼ 1011 ÷ 1012 лет. Однако такое сжатие невозможно. Давление сильно
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вырожденного электронного газа, дающего у белых карликов основной вклад
в полное давление, почти не зависит от температуры. Поэтому высвечивание
тепловой энергии максвелловского газа ионов, вклад которого в давление мал,
ведет к охлаждению белого карлика, практически не сопровождающемуся его
сжатием (подробнее см. Гл. X). И все же оценка кельвиновского времени для
белых карликов не лишена смысла. Она позволяет сделать вывод, что если бы
белый карлик достаточно быстро вращался, то энергии вращения, составляю-
щей даже малую долю |EG|, было бы достаточно для обеспечения его свечения
в течение длительного времени. Чтобы эта возможность осуществлялась, необ-
ходим, впрочем, какой-то механизм отвода углового момента.

Свечение белых карликов, во всяком случае подавляющего их большин-
ства, происходит не за счет энергии вращения, а за счет запасенной в них
тепловой энергии — по-видимому, они просто медленно остывают. Однако для
одиночных нейтронных звезд положение иное. Считается, что они светятся
именно за счет вращательной энергии. Ньютоновская гравитационная энергия
(∼ GM2/R) нейтронной звезды с массой M ' 1 и радиусом R ' 10 км (чему
соответствует средняя плотность ∼ 5 · 1014 г/см3) составляет ∼ 3 · 1053 эрг, что
лишь на порядок меньше ее энергии покоя Mc2 = 2 · 1054 эрг. Кинетическая
энергия вращения ERot = Iω2/2, где I — момент инерции, ω — угловая скорость
вращения, для сферически-симметричной звезды равна ERot = (ω2/2) iMR2,
где i — безразмерный множитель, определяемый ходом плотности вдоль ради-
уса. Перейдя от угловой скорости ω к периоду P = 2π/ω, будем иметь

ERot = 2π2i
MR2

P 2
.

Значения i уменьшаются с ростом концентрации вещества к центру. Для
однородного шара i = 0.4, при линейном падении плотности от центра к по-
верхности, когда ρc/ρ = 4, имеем i = 0.27, политропе индекса n = 3 отве-
чают ρc/ρ = 54 и i = 0.075. В качестве типичного значения можно взять
i = 0.1. Тогда для пульсара с M = M¯, R = 10 км и очень коротким перио-
дом P = 0.03 с (как у пульсара в Крабе) вращательная энергия оказывается
равной ERot = 4 ·1048 эрг. Это на четыре порядка меньше гравитационной энер-
гии такого объекта. Поэтому предположение о сферической симметрии вполне
оправдано. При светимости пульсара L порядка 1035 эрг/с, опять-таки как у
пульсара в Крабе, этого запаса ротационной энергии хватит более чем на мил-
лион лет (при постоянной светимости; на самом деле с возрастом светимости
одиночных пульсаров убывают). При этом по закону сохранения энергии пе-
риод должен увеличиваться со скоростью, определяемой условием L = − ĖRot,
откуда

Ṗ /P = L/(2ERot) ,
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что для рассматриваемого примера дает Ṗ /P = 1 · 10−14. Согласно наблюде-
ниям, для пульсара в Крабе Ṗ /P = 1.4 · 10−14, в прекрасном согласии с нашей
оценкой.

Вопросов о механизме торможения, сопровождающегося уменьшением уг-
лового момента, и о механизме излучения пульсаров мы сейчас не касаемся.
Упомянем лишь, что определяющая роль здесь, несомненно, принадлежит ре-
кордно сильным магнитным полям пульсаров, достигающим, как считается,
1013 ÷ 1014 Гс.
3.3. Гравитационное
сжатие и ядерная
эволюция звезды

Возвращаемся к рассмотрению обычных звезд.
Чуть–чуть повторимся. Согласно теореме ви-
риала, для нормальной не вращающейся звез-
ды сумма ее гравитационной потенциальной и

удвоенной тепловой энергии равна нулю: EG + 2ET = 0. Поэтому полная энер-
гия E = EG + ET оказывается равной E = − ET . Если звезда лишена внут-
ренних источников энергии, то ее светимость покрывается за счет уменьшения
полной энергии, и поэтому L = − Ė, а тогда L = ĖT . Так как светимость
положительна, то ĖT > 0. Это означает, что полная тепловая энергия состав-
ляющего звезду газа со временем растет, так что звезда нагревается. На первый
взгляд этот вывод кажется невероятным: теряя энергию на излучение, звезда
не охлаждается, а нагревается! Чтобы она остыла, необходимо подвести энер-
гию. Иначе говоря, звезда из обычного невырожденного газа, рассматриваемая
как целое, — это система с отрицательной теплоемкостью.

Как понять такое парадоксальное свойство? Когда звезда лишена внутрен-
них источников энергии, она сжимается. Если это сжатие происходит медленно,
без нарушения механического равновесия, то выделяющейся гравитационной
энергии хватает не только на покрытие, так сказать, ,,внешних обязательств" —
на излучение, но и на обеспечение ,,внутреннего рынка" — на нагрев. Осво-
бождающаяся гравитационная энергия делится ровно пополам. Одна половина
безвозвратно теряется на излучение, вторая остается в звезде и нагревает ее.

Все только что сказанное уже было разъяснено ранее (см. с. 87 — 88), но мы
решили повториться, чтобы эти важные вещи оказались твердо усвоенными.
Теперь поясним это же еще и следующим полуколичественным рассмотрени-
ем. При сжатии звезды сила тяжести возрастает. Однако этот рост в точно-
сти компенсируется ростом давления P ∝ρ T , обусловленным как увеличением
плотности, так и нагревом газа. В результате механическое равновесие при
медленном сжатии не нарушается. Следует подчеркнуть, что одного только
роста плотности из-за сжатия недостаточно для компенсации возрастающей
силы тяжести. Это видно из того, что ρ∼M/R3, g ∼M/R2, и поэтому, что-
бы удовлетворить условию механического равновесия d(ρ T )/dr ∝ gρ, должно
быть (T ·M/R3)/R∼(M/R2)(M/R3), или T ·M/R4∼M2/R5, откуда T ∼ M/R.
Итак, при (гомологическом) кельвиновском сжатии температура должна рас-
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ти как R−1 (подробнее см. разд. III.2). Вместе с тем становится понятным,
что любая перестройка тепловой структуры звезды, происходящая без нару-
шения механического равновесия, должна занимать время порядка tT (отсюда
и термин ,,тепловое время звезды").

Нагрев звезды при ее медленном квазистационарном сжатии — факт фун-
даментальной важности для понимания истории жизни любой звезды. После
в деталях еще не ясной стадии быстрого динамического сжатия — коллап-
са первичного облака — образуются механически равновесные, но внутри еще
сравнительно холодные протозвезды, на которые довольно долго, видимо, про-
должается выпадение вещества из внешних частей коллапсирующего облака.
Как уже говорилось (см. с. 46), эти протозвезды с необходимостью должны
быть нагреты настолько, чтобы главные их составляющие — водород и гелий —
в большей части массы протозвезды были ионизованы. В противном случае
механическое равновесие невозможно. Однако температура в недрах этих про-
тозвезд еще недостаточна для того, чтобы шли термоядерные реакции, и они
могут черпать энергию только из одного доступного им источника — гравита-
ции. Начинается их медленное квазистационарное сжатие — и одновременно
нагрев. Эта так называемая стадия кельвиновского сжатия продолжается до
тех пор, пока температура близ центра не достигнет (5 ÷ 10) · 106 K и тем са-
мым не будут созданы условия для начала термоядерного горения водорода.
Сжатие сначала замедляется, а затем и вовсе прекращается. Детство звезды
окончено, она стала взрослой — вступила на ГП и начала свой трудовой путь —
выработку ядерной энергии и синтез элементов.

По прошествии некоторого времени водород в центральных частях выгора-
ет, превращаясь в гелий, и термоядерные реакции здесь прекращаются. Опять
начинается сжатие (Рис. II.3.2). Оно вызывает дальнейший разогрев и позво-
ляет звезде в конце концов вступить в следующую стадию ее ядерной жизни.
Начинается горение гелия с образованием углерода и кислорода. Для горения
гелия требуются более высокие температуры, поскольку приходится преодо-
левать более высокий кулоновский барьер. Хотя уже на этой, а тем более на
последующих стадиях ядерной эволюции детальная картина довольно сложна,
принципиально все происходит так же. По исчерпании близ центра очередного
топлива ядерные реакции здесь гаснут, и дальнейшее развитие происходит по
стандартной схеме: сжатие ⇒ нагрев ⇒ начало горения близ центра наиболее
легких и потому обладающих наименьшим зарядом из имеющихся там ядер,
синтезированных на предшествующей стадии. Так продолжается до тех пор,
пока не случится одно из двух. Первая возможность — при очередном сжатии в
центральных частях звезды наступает вырождение электронного газа. Это су-
щественно меняет физическую ситуацию, и весь дальнейший ход событий ока-
зывается иным. Здесь имеются различные варианты, описывать которые мы
сейчас не будем. Вторая возможность — после очередного сжатия и разогрева
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Рис. II.3.2:
Вклад энергии гравитационного сжатия в светимость звезды

на стадии перехода от горения водорода к горению гелия в ядре.
Ордината — отношение светимости за счет сжатия LG к полной
светимости L. Абсцисса — безразмерное время τ ≡ t/tcc, где t —
время от начала горения водорода, tcc — время, требующееся для
полного выгорания водорода в центральной части звезды — в ее
конвективном ядре. Фактически τ — это возраст звезды в долях
времени ее жизни на ГП. Числа у кривых — значения M ≡ M/M¯.
Источник: В.И.Варшавский, Научные информации Астросовета

АН СССР, вып. 4, 65 – 73, 1966.

близ центра происходит синтез 56Fe. Это последняя стадия спокойной ядерной
эволюции. Синтез элементов тяжелее железа требует уже затрат энергии. По-
этому сжатие и нагрев железного ядра должны иметь иные последствия, чем
во всех предыдущих случаях. Оказывается, что неизбежна потеря равновесия
и взрыв звезды. Почему это так, вскоре станет ясно.

Нарисованная картина во многом схематична, но она подчеркивает то, что
сейчас является для нас главным — роль медленного гравитационного сжа-
тия в эволюции звезд. Поистине, это двигатель прогресса в мире звезд. Гра-
витационное сжатие — это как бы идеальный звездный кочегар, каждый раз
умудряющийся аккуратно подправлять звезду так, чтобы угасший было в ее
недрах ядерный огонь занялся с новой силой. Не будет ошибкой сказать и
так: вся жизнь звезды — это процесс медленного гравитационного сжатия, пе-
ремежаемый паузами, когда горит очередное ядерное топливо, но неизменно
возобновляющийся, как только топливо подходит к концу.



4. УПРАЖНЕНИЯ

1◦ Вывести уравнение (1.1) из рассмотрения баланса сил давления и
тяготения, действующих на малый усеченный конус с осью и образующими,
направленными по радиусу (см. рисунок).

К задаче 1◦.

2◦ Получить уравнение гидростатического равновесия сферически-сим-
метричной звезды из рассмотрения сил, которые действуют на малый объем
dV произвольной формы, находящийся на расстоянии r от центра.

3◦ Исходя из закона сохранения энергии, показать, что свободное падение
материальной точки на точечную массу M описывается соотношением

t =

√
R3

2GM
F

( r

R

)
,

где R — начальное расстояние, r — расстояние в момент t и

F (x) =
∫ 1

x

z1/2(1− z)−1/2 dz =
√

x(1− x) + arccos
√

x ,

или в параметрической форме

r = R
1− cos α

2
, t =

(
R3

2GM

)1/2
π − α + sin α

2
,

98



II.4. Упражнения 99

где α — параметр, α ∈ [0, π]. При α = 0 получаем отсюда, в частности, (1.4).
Кривая 1 на рис. II.1.2 построена по этим формулам.

4◦ Построить эскиз графиков хода потенциала и ускорения силы тяжести
в функции r/R для двух сферически-симметричных конфигураций с одинако-
выми массой M и радиусом R — одной с ρ = const и другой с ρ = ρc(1− r/R).
Почему во втором случае сила тяжести максимальна не на поверхности?

5◦ Показать, что если у вращающейся звезды угловая скорость зависит
только от расстояния r1 от оси вращения: ω = ω(r1), то центробежная сила
обладает потенциалом

ϕR = −
∫ r1

0

ω2(r) r dr,

и уравнение механического равновесия можно привести к виду dP/dϕ̃ = − ρ,
где ϕ̃ ≡ ϕ + ϕR — полный потенциал.

6◦ В широко известном справочникe К.Аллена ,,Астрофизические ве-
личины", 3-е изд., М., Мир, 1977, в разд. 75 приводятся, наряду с другими,
следующие параметры Солнца:

Работа, необходимая для рассеяния солнечного вещества на бесконечность (наше
|EG| — В.В.И.) = 6.6 · 1048 эрг.

Полная внутренняя лучистая энергия Солнца (в наших обозначениях ER —
В.В.И.) = 2.8 · 1047 эрг.

Энергия поступательного движения атомов и электронов (наше EK ; термин trans-
lational energy, то есть энергия поступательного движения, в русском издании неверно
переведен как энергия переноса — В.В.И.) = 2.7 · 1048 эрг.

Могут ли все эти три числа быть верными? Кинетическая энергия враще-
ния Солнца мала, ∼1042 эрг.

7◦ Согласно доказанному в п. 2.5, гравитационную энергию звезды мож-
но представить в виде

EG = −
∫

V

(r · ∇ϕ) ρ dV.

Получить следующее тензорное обобщение этой формулы:

EG

ij = −
∫

V

xi
∂ϕ

∂xj
ρ dV,

где EG
ij — тензор гравитационной энергии (см. п. 2.7).





Глава III

ФИЗИЧЕСКИЕ УСЛОВИЯ
ВНУТРИ ЗВЕЗД

Why the stars are as they are.

S.Chandrasekhar





Эпиграф к этой главе — это название одной из статей Чандрасекара (во-
просительного знака в конце нет — это не вопрос, а утверждение). Действи-
тельно, почему звезды такие, какие они есть? Вот вопрос, ответ на который,
хотя и далеко не полный, вы найдете в этой главе. Точнее говоря, ее цель —
дать представление о физических условиях, господствующих в недрах звезд, в
первую очередь — нормальных. Будут получены оценки давлений и темпера-
тур, непосредственно вытекающие из того наблюдательного факта, что звезды
находятся в состоянии механического равновесия. Далее будет установлено,
для каких звезд должно учитываться давление излучения и к каким послед-
ствиям это приводит. Будет дана оценка верхнего предела масс звезд. Затем
обсуждается важный вопрос о вырождении электронного газа в звездах. Из
простых соображений получены предельные случаи выражений для давления
в таком газе и на этой основе рассмотрено, как происходит медленное сжатие
облаков газа разной массы, превращающихся (или не превращающихся) в звез-
ду. Получена оценка нижнего предела масс звезд ГП. Изучено механическое
равновесие белых карликов малых масс и найдено, что с ростом массы их ра-
диусы уменьшаются. В конце главы объясняется, почему существует верхний
предел масс белых карликов и этот верхний предел находится.

Без решения полной системы уравнений, описывающих структуру звезды,
то есть без расчета ее модели, найти точные значения физических величин
в ее недрах, разумеется, невозможно. Поэтому в этой главе мы вынуждены
ограничиться получением простейших порядковых оценок. Впрочем, в астро-
физике такие оценки часто играют ключевую роль. Будут приведены также
кое-какие данные, полученные из расчетов моделей, однако их придется пока
принимать на веру. Эти данные позволят, в частности, составить правильное
представление о точности простейших оценок.

1. ДАВЛЕНИЯ В ЗВЕЗДАХ

1.1. Почему звезды
газовые

Средняя плотность Солнца составляет
1.4 г/см3, плотность же в его центре, ко-
нечно, гораздо выше — согласно расчетам

солнечной модели ∼ 150 г/см3. И тем не менее вещество в недрах Солнца, как
и почти всех звезд ГП и многих других звезд, – это идеальный газ. Почему?
Ответ, который обычно слышишь, да даже и читаешь в некоторых книгах,
таков: из-за высокой температуры звездных недр атомы там практически
полностью ионизованы. Кажется очевидным, что температуры, скажем,
центра Солнца (∼ 15 млн кельвинов) более чем достаточно, чтобы атомы там
были практически полностью ионизованы. Однако это не так, дело вовсе не в

103



104 Гл. III. Физические условия внутри звезд

температуре. Убедимся в этом.
Будем для простоты считать, что вещество в центре Солнца — это чистый

водород. Тогда, если мы имеем дело с термической ионизацией, то концентра-
ция свободных электронов Ne, равная ей концентрация протонов Np и концен-
трация нейтральных атомов N1 связаны между собой формулой Саха (которую
мы считаем известной читателю)

Ne
Np

N1

=
2g+

g1

(2πmekT )3/2

h3
exp

(− χ/(kT )
)
. (1.1)

Для водорода имеем g+ = 1 (протоны), g1 = 2 (неионизованные атомы), энер-
гия ионизации χ = 13.56 эВ, так что χ/(kT ) = (13.56 · 11 605)/T = 157 400/T . В
итоге в числах формула Саха в нашем случае принимает вид

Ne
x

1− x
= 2.415 · 1015 T 3/2 exp (−157 400/T ) см−3, (1.2)

где x = Np/(Np + N1) — доля ионов в полной концентрации водорода (ато-
мы+ионы), (1−x) — доля нейтральных атомов. Величина x известна как сте-
пень ионизации.

Если вас не интересуют подробности расчета, можете пропустить все до начала абзаца
сразу за формулой (1.8).

Принимая для центра Солнца ρ = 150 г/см3, T = 15 · 106 К, находим, что

Ne
x

1− x
= 1.403 · 1026 · exp (−0.0105) = 1.388 · 1026 см−3. (1.3)

С другой стороны, число частиц в единице объема равно

Ne + Np + N1 =
ρ

µmu
, (1.4)

что при ρ = 150 г/см3 дает

Np
(1 + x)

x
=

0.9033 · 1026

µ
см−3. (1.5)

Из (1.3) и (1.5) находим (напоминаем, что Np = Ne)

x2

1− x2
= 1.537 µ. (1.6)

Масса 1 см3 составляет (в атомных единицах массы; различием в массах
протона mp, нейтрального атома водорода mH и атомной единицы массы mu
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пренебрегаем)

Np + N1 = Np

(
1 +

N1

Np

)
= Np

(
1 +

1− x

x

)
=

Np

x
. (1.7)

Масса же, приходящаяся на одну частицу, выраженная в атомных единицах
массы, то есть молекулярный вес µ, равен поэтому

µ =
Np + N1

Ne + Np + N1

=
Np

x

(
Np

(1 + x)
x

)−1

=
1

1 + x
. (1.8)

Наконец, вводя это µ в (1.6), приходим к уравнению для определения доли
ионизованных атомов

x2

1− x
= 1.537, (1.9)

откуда находим x = 0.690.
Этот результат явно абсурден. Ведь не может же больше 30% атомов

водорода с их энергией ионизации всего в каких-то жалких 13.6 эВ оста-
ваться неионизованными, когда тепловые энергии частиц газа составляют
порядка полутора кэВ, а планковских фотонов и того почти вдвое больше[
2.7kT/

(
(3/2)kT

)∼1.8]. Формула Саха явно не работает. В чем же дело? От-
вет: дело в высокой плотности. Действительно, легко подсчитать, что средняя
плотность вещества в атоме водорода mp/

(
(4π/3)r3

1

)
, где r1 = 0.529·10−8 см —

радиус первой боровской орбиты и mp — масса протона (mp = 1.672 · 10−24 г),
составляет ∼ 2.70 г/см3, то есть порядка единицы. При такой плотности веще-
ства атомы водорода, говоря на классическом языке, должны были бы начать
соприкасаться. Если же плотность на два порядка выше, как в центре Солн-
ца, то сохраниться там нейтральными атомы водорода не могут — нет места.
Электроны оказываются оторванными от ядер. Это так называемая ионизация
давлением.

Из-за высокой плотности вещества атомы (по крайней мере водорода и ге-
лия) должны быть практически полностью ионизованными не только в центре
Солнца, но и в большей части его массы. Действительно, если принять, что
Солнце представляет собой политропу индекса n = 3 (это неплохое прибли-
жение, вполне достаточное для получения порядковых оценок; подробнее см.
Гл. IV, разд. 4, с. 224), то оказывается, что в более чем 90% его массы плот-
ность превышает 3 г/см3, а потому нейтральных атомов водорода там быть
не может. В дальнейшие подробности входить сейчас не будем. Скажем лишь,
что в недрах не только Солнца, но и всех вообще звезд атомы должны быть
ионизованы.

Ионизация давлением есть предельный случай снижения потенциала иони-
зации при росте плотности. Суть дела можно понять совсем просто. Радиус n-
ой боровской орбиты равен rn = r1n

2. Среднее расстояние между двумя такими
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атомами в газе не может быть меньше 2rn, в противном случае электронные
облака атомов будут перекрываться, так что электроны уже не будут принад-
лежать конкретным атомам, то есть окажутся свободными. Если плотность
равна ρ и газ — это чистый неионизованный водород, то концентрация атомов
в нем NH ∼ ρ/mu, а среднее расстояние между атомами∼ (

3/(4πNH)
)1/3. Поэто-

му, чтобы электрон, находящийся на уровне n, оставался связанным, должно
выполняться следующее условие:

n2 <∼
1

2r1

( 3
4πNH

)1/3

=
1

2r1

(3mu

4πρ

)1/3

= 0.694 ρ−1/3. (1.10)

Здесь ρ выражено в г/см3.
С ростом плотности число дискретных уровней убывает. Так, при ρ ∼

0.33 г/см3 у атома водорода сохраняется лишь один дискретный уровень, а
при более высоких плотностях протон уже не способен удерживать около себя
электрон — атом оказывается ионизованным. Хотя это и называется ионизаци-
ей давлением, на самом деле причиной ионизации служит высокая плотность.

Этот процесс можно описывать и иначе — не как сокращение числа реали-
зующихся дискретных уровней, а как уменьшение энергии ионизации из основ-
ного состояния с ростом плотности. Энергия связи n-го уровня атома водорода
равна En = E1/n2 = 13.56/n2 эВ, так что если это последний реализующийся
уровень, то энергия ионизации из основного состояния снижается на En и ока-
зывается равна E1 (1 − 1/n2), или согласно (1.10), 13.56 (1 − 1.44 ρ1/3) эВ, где
ρ по-прежнему в г/см3. Когда (1 − 1.44 ρ1/3) обращается в 0, что происходит
при ρ ∼ 1/3 г/см3, наступает ионизация. Следует иметь в виду, что это не бо-
лее чем порядковая оценка, но нам большего и не нужно. Строгой же теории
ионизации давлением нет.

Уместно заметить следующее. При ρ∼10−7 г/см3 (атмосфера Солнца) мы
имеем nmax∼ 12, и соответственно этому в спектре Солнца видно с деся-
ток бальмеровских линий (переходы n→ 2). В атмосферах белых карли-
ков плотности гораздо выше, и поэтому в их спектрах наблюдается всего
несколько линий бальмеровской серии. Таким образом, число присутству-
ющих в спектре звезды бальмеровских линий — это надежный тест плот-
ности в их атмосферах. Правда, nmax, даваемое приведенной только что
формулой, это лишь грубая оценка, так как помимо описываемого ею сни-
жения ионизационного потенциала существенным оказывается также пе-
рекрытие расположенных близко друг к другу верхних уровней за счет эф-
фекта Штарка. Наконец, трудно удержаться, чтобы не упомянуть о том,
что в межзвездной среде атомы испускают (наблюдающееся!) излучение
в радиолиниях, возникающих при переходах между близкими уровнями с
n порядка 1000. Размеры этих атомов поражают: ∼ r1 ·106 см ≈ 0.05 мм —
хоть рассматривай их в лупу!
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Ионизация позволяет газу оставаться идеальным вплоть до колоссальных
плотностей. Вместо атомов с их характерным размером ∼ 10−8 см и средней
плотностью в занимаемом атомом объеме ∼ 100 г/см3 мы имеем теперь дело
с голыми ядрами размером ∼ 10−13 см, то есть на пять порядков меньшими.
Поскольку ядерные силы короткодействующие, существенные отклонения от
идеальности из-за взаимодействия ядер должны наступать лишь когда они
плотно упакованы, по-простому говоря — почти касаются друг друга. При этом
плотности оказываются на 5×3 = 15 порядков выше, чем при плотной упаковке
атомов (как это имеет место в жидкостях и твердых телах вокруг нас). Таково
вещество нейтронных звезд, средние плотности которых того же порядка, что и
у атомных ядер (и даже выше). Нейтронный газ в этих сверхплотных объектах
далек от идеального.

То, что газ внутри звезд — это смесь голых ядер и свободных электронов,
еще не гарантирует, что этот газ можно считать идеальным. В больших объе-
мах газ, конечно, электронейтрален, на малых же масштабах это не так. По-
ложительно заряженные ядра притягивают к себе отрицательно заряженные
электроны и отталкивают другие ядра. В результате этого кулоновского вза-
имодействия вокруг ядер возникают облака отрицательного заряда. Понятно,
что энергия такой поляризации ионизованного газа — плазмы — отрицатель-
на. Газ можно считать идеальным, если объемная плотность этой кулоновской
энергии мала по сравнению с плотностью энергии теплового движения частиц.
Связанные с этим вопросы подробно обсуждаются в разд. XI.2, с. 501. Сейчас
же мы просто сообщим, что во всех звездах, кроме нейтронных (и уж совсем
остывших белых карликов, см. чуть ниже) с высокой точностью (<∼1% для
звезд ГП, кроме самых поздних) газ можно считать идеальным.

В звездах, кроме нейтронных, ядерная, или точнее ионная компонента га-
за (ионная — это точнее, чем ядерная, потому что атомы тяжелых элементов
ионизованы в недрах звезд все же не полностью) представляет собой почти
идеальный газ. Давление этой ионной компоненты газа Pi создается тепло-
вым движением частиц, так что Pi = NikT . Электронная же составляющая
газа, хотя и остается почти идеальным газом, но при высоких плотностях,
ρ >∼ (1÷2) (T/250 000)3/2, уже не удовлетворяет простейшему уравнению состо-
яния Pe = NekT . Давление из-за наступающего вырождения начинает расти
с плотностью быстрее, чем просто пропорционально ρ (подробнее см. п. 4.1,
с. 141).

Вещество в недрах звезд находится в поле планковского излучения с темпе-
ратурой, равной локальной температуре вещества (так называемое локальное
термодинамическое равновесие — локальное потому, что температура меняет-
ся вдоль радиуса). Излучение в недрах звезд можно с высочайшей точностью
считать планковским, потому что длины свободных пробегов фотонов малы
по сравнению с расстоянием, на котором температура меняется хоть сколько-
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нибудь заметно.
Пас в сторону. Отметим, что в теории звездных атмосфер термин локаль-
ное термодинамическое равновесие (ЛТР) используется в ином смысле:
говорят, что газ находится в ЛТР, если распределение скоростей частиц
максвелловское, населенности уровней больцмановские, а ионизация дает-
ся формулой Саха (все три — с одной и той же температурой, меняющейся
от точки к точке). На интенсивность излучения никаких ограничений не
накладывается, она может сколь угодно сильно отличаться от планков-
ской.

Газ частиц из-за присутствия фотонов не перестает быть идеальным, но
уравнение состояния смеси из частиц и фотонов меняется, так как фотоны
дают вклад в давление. Если фотонов много, простейшее уравнение состояния
P = NkT уже не работает. Таково положение в массивных звездах главной
последовательности. Роль давления излучения обсуждается в разд. 3 и в пп.
3.2, 3.3 Гл. IV (см. также Гл. XI, п. 1.3, с. 495).

На другом конце главной последовательности, у звезд совсем небольших
масс, скажем, меньше 0.3 M¯, кулоновские взаимодействия частиц становятся
существенными, и здесь газ уже нельзя считать идеальным. Наконец, в ней-
тронных звездах, где плотности порядка ядерной (и выше), нейтронный газ
вырожден, но не является идеальным. Белые карлики лишены ядерных ис-
точников энергии и просто медленно остывают, высвечивая тепловую энергию
своего ионного газа. В конце концов белый карлик остывает настолько, что
ионы выстраиваются в кристаллическую решетку — его недра затвердевают.
Правда, ждать этого приходится (или может быть правильнее сказать придет-
ся) долго — порядка возраста Вселенной, а то и больше.

1.2. Оценки
давления в центре

звезды

Будем считать известными массу звезды M
и ее радиус R. Тогда из условия гидростати-
ческого равновесия удается, и очень просто,
оценить давление в ее центре Pc (индекс c —
от center). Если не делать никаких дополни-

тельных предположений, получающаяся оценка довольно груба — но зато она
строгая.

Почленно поделив друг на друга уравнения механического равновесия и
сохранения вещества

dP

dr
= − ρ

GMr

r2
,

dMr

dr
= 4π r2 ρ ,

получим альтернативную форму условия механического равновесия

dP

dMr
= − GMr

4π r4
.
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Из нее и будем сейчас исходить. Интегрируя это равенство по всей звезде и
учитывая, что на поверхности P должно обращаться в нуль, для давления в
центре находим

Pc =
1
4π

∫ M

0

GMr dMr

r4
. (1.11)

Если в интеграле перейти к безразмерным переменным q = Mr/M и x = r/R,
то получим

Pc = pc
GM2

4π R4
, (1.12)

где

pc =
∫ 1

0

q dq

x4
.

Величину pc можно рассматривать как безразмерное давление в центре звезды.
Так как x ≡ r/R 6 1, то pc >

∫ 1

0
q dq = 1/2, и окончательно

Pc > GM2

8πR4
. (1.13)

Это и есть та строгая, но, к сожалению, обычно все же довольно грубая оценка
давления в центре звезды, которая следует из одного только условия механиче-
ского равновесия, без каких-либо иных ограничивающих предположений. Эта
оценка применима к любой равновесной сферически-симметричной гравитиру-
ющей массе, в частности, к Солнцу, Земле, белым карликам и даже к шаровым
звездным скоплениям (при соответствующем понимании давления).

Сделаем, далее, естественное дополнительное предположение — примем,
что плотность не возрастает наружу. Уже этого оказывается достаточно, чтобы
несколько улучшить оценку Pc. Именно, можно показать, что в таком случае

Pc > 3
8π

GM2

R4
, (1.14)

то есть pc > 3/2, причем знак равенства соответствует звезде из несжимаемой
жидкости (ρ = const).

Действительно, обозначим среднюю плотность вещества в сфере радиуса
r через ρr и выразим r−4 под интегралом в (1.11) через ρr и Mr. Дело тогда
сведется по существу к оценке интеграла

∫ M

0

ρ 4/3
r M−1/3

r dMr .
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Если плотность не возрастает наружу, то ρr > ρ, где ρ ≡ ρR — средняя
плотность звезды. Поэтому написанный интеграл должен быть не меньше
ρ 4/3

∫ M

0
M
−1/3
r dMr, или (3/2)M2/3ρ 4/3. Выразив в получающемся результате

ρ через M и R, мы придем к (1.14).
Для давления в центре можно дать и оценку сверху, которая на первый

взгляд кажется не очень интересной, так как в нее входит центральная плот-
ность ρc, обычно заранее неизвестная. Несколькими страницами ниже (п. 1.5)
мы убедимся, однако, что эта оценка тем не менее полезна. Если считать, что
ρc > ρr (это будет так, если наибольшая плотность достигается в центре звез-
ды), то, рассуждая как и при получении (1.14), найдем, что

Pc 6 3
8π

GM2

R4
c

, (1.14′)

где Rc — радиус, который был бы у звезды, если бы ее плотность была посто-
янна и равна ρc, так что (4π/3)R3

c ρc = M .
Оценки (1.14) и (1.14′) можно переписать в виде следующего двойного нера-

венства:
c0 GM2/3 ρ 4/3 6 Pc 6 c0 GM2/3ρ4/3

c , (1.15)

где

c0 =
(π

6

)1/3

= 0.8060.

Для его справедливости достаточно, чтобы ρc > ρr > ρ, то есть оно имеет место
при монотонно убывающем ρ(r).

Смысл этих неравенств состоит в следующем (рис. III.1.1). Пусть имеется
некая равновесная конфигурация массы M с произвольным распределением
плотности. Рассмотрим два однородных шара той же массы — один с плотно-
стью, равной средней плотности конфигурации (а потому — с тем же радиу-
сом, что и у нее), и другой, меньшего размера (с радиусом Rc), плотность в
котором равна центральной плотности конфигурации. Обозначим давления в
центрах этих однородных шаров соответственно через P min

c и P max
c . Согласно

(1.15), если в рассматриваемой равновесной конфигурации ρc > ρr > ρ, то
P max

c > Pc > P min
c .

1.3. Физическое
обсуждение

a) Равенство в (1.13) достигается в случае,
когда вся масса сосредоточена на поверхно-
сти сферы радиуса r = R, то есть находит-
ся на максимально возможном удалении от

центра. В (1.14) равенство имеет место при ρ = const. При наложенном здесь
дополнительном условии, что ρr > ρ, то есть если плотность не возрастает
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Рис. III.1.1:

К оценке давления в центре звезды.

Давление в центре равновесной конфигурации при весьма об-
щем предположении о распределении плотности в ней ρr > ρ,
выполняющемся, если ρ(r) монотонно убывает, удовлетворяет
двойному неравенству P min

c 6 Pc 6 P max
c , где P min

c и P max
c —

давления в центрах однородных шаров той же массы с плотностями
ρ и ρc, соответственно.
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наружу, случай ρ = const также представляет собой такое распределение ве-
щества, при котором оно наибольшим допустимым образом удалено от центра.
Эти два примера иллюстрируют полезное общее правило, согласно которому
в сферически-симметричной равновесной конфигурации любой перенос массы
с периферии к центру ведет к росту центрального давления. В самом деле,
пусть r(Mr) — радиус сферы, в которой заключена масса Mr. Ясно, что при
любом переносе вещества к центру значения r(Mr) могут разве лишь умень-
шиться, а потому величина 1/r4(Mr) — разве лишь возрасти. Согласно (1.11),
это должно приводить к росту Pc.

Физический смысл этого результата становится ясным из следующего рас-
суждения. Перенесем массу δM из тонкой оболочки, находящейся на рассто-
янии r1 от центра, в оболочку, лежащую на меньшем расстоянии r0. (Чтобы
при этом не нарушилось механическое равновесие, надо одновременно соответ-
ствующим образом изменить распределение температуры.) Такое перераспре-
деление массы вызывает два эффекта. Рассмотрим сначала вещество, лежащее
между r0 и r1. Первоначально оно не испытывало гравитационного воздействия
массы δM (так как эта масса была сферически-симметрично распределена сна-
ружи), а затем стало его ощущать. В итоге вес этого вещества возрос, и оно
начало сильнее давить на нижележащие слои. Соответствующее приращение
давления в центре есть, очевидно,

δP ′c =
∫ r1

r0

δg ρ dr ,

где δg = GδM/r2 — добавочное ускорение, создаваемое в оболочке между r0 и
r1 массой δM в ее новом положении. Поэтому

δP ′c =
G

4π
δM

∫ M1

M0

dMr

r4
,

где M0 и M1 — массы, заключенные в сферах с радиусами r0 и r1 соответствен-
но.

Второй эффект от перемещения массы δM состоит в том, что изменяется
вклад в центральное давление, даваемый само́й этой массой. В первоначальном
положении он составлял

(
GM1/(4πr4

1 )
)

δM , в новом же стал
(
GM0/(4πr4

0 )
)

δM .
Результирующее изменение давления за счет этого эффекта

δP ′′c =
G

4π
δM

(
M0

r4
0

− M1

r4
1

)
.

Оно может быть как положительным, так и отрицательным. Примеры: а) Мо-
дель Роша. Здесь M0 = M1, и δP ′′c > 0; б) Полая оболочка: M1 6= 0, M0 = 0.
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Тогда δP ′′c < 0. Однако суммарное приращение давления в центре за счет
обоих эффектов при любом распределении вещества вдоль радиуса будет по-
ложительным. Действительно, поскольку при r0 < r1

∫ M1

M0

dMr

r4
> 1

r4
1

∫ M1

M0

dMr = (M1 −M0)/r4
1 ,

то

δPc = δP ′c + δP ′′c >
(

G

4π

)
δM M0

(
1
r4
0

− 1
r4
1

)
> 0 .

Иначе говоря, добавочное давление в центре от увеличения веса вышележащих
слоев всегда более чем компенсирует возможное уменьшение вклада в Pc, дава-
емого самим веществом, перемещаемым ближе к центру. В итоге любой перенос
вещества с периферии внутрь увеличивает давление в центре конфигурации.

Дайте физическое истолкование неравенства (1.14) в духе приведенного
только что рассмотрения. Поймите также, как путем перераспределения
массы вдоль радиуса из модели с ρ = const можно строить конфигура-
ции с немонотонным распределением плотности, для которых неравенство
(1.14′) тем не менее выполнено.

b) Чем бо́льшая доля вещества сосредоточена близ центра, тем больше
должно быть Pc (при фиксированных M и R). Сам по себе сколь угодно силь-
ный рост плотности к центру еще не гарантирует неограниченного роста цен-
трального давления. Если, увеличивая концентрацию материи к центру, од-
новременно уменьшать долю массы, в пределах которой происходит резкое
нарастание плотности, можно добиться того, что Pc будет при этом оставаться
конечным.

Рассмотрим, например, конфигурации с

ρ = ρc

[
1−

( r

R

)a ]
,

где a — параметр, 0 6 a < ∞. Для них

ρc

ρ
= 1 +

3
a

,

так что при a → 0 концентрация материи к центру неограниченно возрастает.
Безразмерное центральное давление pc, как можно показать, равно в данном
случае

pc =
3
2

(3 + a)(4 + a)
(1 + a)(2 + a)

.
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Поэтому pc → 9 при a → 0, так что давление в центре остается конечным.
Укажем еще, что безразмерная гравитационная энергия ω равна здесь

ω =
3
5

(3 + a)(11 + 2a)
(5 + a)(5 + 2a)

.

При a = 0 она также конечна: ω = 99/125. Отметим значения pc = 5 и
ω = 26/35 = 0.74 при a = 1, то есть при линейном падении плотности от
центра. Причина того, почему при a → 0 несмотря на неограниченный рост
плотности близ центра (в долях средней) центральное давление и гравитаци-
онная энергия остаются конечными, — быстрое падение при a → 0 доли массы,
сосредоточенной в ,,центральной конденсации". Впрочем, рассмотренная ситу-
ация мало реалистична, и в звездных моделях иметь с нею дело не приходится.
Сильный (формально — неограниченный) рост плотности к центру конфигу-
рации практически всегда сопровождается сильным (неограниченным) ростом
давления и абсолютной величины гравитационной энергии (пример — полит-
ропы; см. разд. IV.2).

Задание: проверить приведенные выше выражения для ρc/ρ, pc и ω. К
сожалению, это требует довольно длинных вычислений. Показать, что
в предположении применимости простейшего уравнения состояния P =

(R∗/µ) ρ T семейство моделей с a → 0 и фиксированными M и R имеет
Tc → 0.

1.4.
Астрономическое

обсуждение

а) Начнем с вопроса о том, насколько без-
размерное центральное давление чувстви-
тельно к структуре звезды. Значение pc =
1/2 соответствует модели в виде пустотело-
го ,,мячика", вся масса которого сосредото-

чена в его тонкой наружной оболочке (почему?). Для этой модели безразмер-
ная потенциальная энергия ω = 1/2 (см. п. II.2.1). Для звезды с ρ = const,
как говорилось выше, pc = 3/2, тогда как ω = 0.6. Это заставляет предпо-
лагать, что безразмерное центральное давление pc гораздо чувствительнее к
распределению плотности, чем безразмерная потенциальная энергия ω. Это
действительно так, что непосредственно вытекает, например, из любопытного
универсального неравенства pc > 8ω4 (см. Упр. 7◦, с. 164). Поскольку представ-
ляется более или менее очевидным, что плотность должна сильно возрастать к
центру звезды, следует ожидать, что pc будет заметно больше 3/2, а для звезд
с особенно сильной концентрацией материи к центру — даже гораздо больше
этой величины.

Точное значение pc можно получить только из расчета модели звезды. Для
общей ориентировки приведем результат для простейших так называемых по-
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литропных моделей, у которых P ∝ ρ1+1/n (см. Гл. IV). При 3/2 6 n 6 3.5 —
именно эти значения n представляют интерес в первую очередь — можно при-
ближенно полагать pc ≈ 2000/(5−n)4 (подробнее см. п. IV.2.3). Хотя эта оцен-
ка pc гораздо ближе к тому, что дают детальные численные расчеты моделей
звезд ГП, она, в отличие от (1.12) и (1.13), не является ни универсальной,
ни строгой.

(
Заметим мимоходом, что так как для политроп ω = 3/(5 − n),

то для них из универсального неравенства pc > 8ω4 следует строгая оценка
pc > 648/ (5− n)4

)
.

Строение звезд ГП, кроме самых холодных, не очень далеко от политропной
модели с n = 3, значение pc для которой, полученное численным расчетом, есть
pc = 1.4 · 102 (см. п. IV.2.3). Поэтому давления в центрах звезд ГП (кроме ма-
ломассивных) на два порядка превосходят те, которые даются правой частью
(1.14). Звезды ГП малых масс (M <∼ 0.5 M¯) близки по строению к политропе
с n = 3/2, а для нее pc = 9.7. Оценка (1.14) в этом случае занижает давление
в центре на порядок. Расчеты моделей компактных звезд — белых карликов и
нейтронных звезд — приводят к Pc, которые отличаются от (3/8π) GM2/R4 в
несколько десятков раз.

б) Среди теоретиков широко распространен формульный снобизм —
формулу-де достаточно вывести, все остальное читатель обязан увидеть сам.
К сожалению, такой стиль стал проникать и в учебники. Есть много способов
борьбы с этим злом. Один из них — следовать совету Р.Фейнмана: ,,Нет ничего
некрасивого в том, что в формулы подставляются числа".

Подстановка в (1.12) численных значений дает

Pc = 8.95 · 1014 pc
M2

R4

дин
см2

, (1.16)

где M и R — масса и радиус в солнечных единицах.
Для звезд ГП в разумном приближении можно считать, что R ∝ Mr, где

r = (1/2 ÷ 1). Для нижней части ГП такая аппроксимация с r = 1 является
практически точной, она превосходно согласуется как с наблюдениями, так и с
расчетами моделей с M<∼ 1. Для верхней части ГП лучшую точность обеспечи-
вает аппроксимация R∝M2/3

(
а для самой верхней ее части — даже R∝M1/2

)
.

В приближении R∝Mr для звезд ГП из (1.16) имеем Pc ≈ 1015 pc M2−4r. С
учетом сказанного выше о значениях pc и r отсюда следует, что центральные
давления в звездах ГП составляют

Звезды ГП : Pc ' 1016 ÷ 2 · 1017 дин
см2

.
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Рис. III.1.2:

Центральные давления в химически однородных звездах
разных масс (X = 0.70, Y = 0.27, Z = 0.03).

Рис. А — абсолютные значения давления Pc, рис. Б — соответству-
ющие безразмерные структурные множители pc. Объяснение вида

кривых см. в тексте.

По земным меркам эти давления огромны: самые высокие давления, до-
стигнутые пока в эксперименте, составляют несколько единиц 106 атм (1 атм≈
106 дин/см2) . И все же давления ∼ 1011 атм в звездах ГП ничтожны по срав-
нению с давлением в центре белого карлика с M ' 1 и R ' 10−2, для которого
Pc близко к 1019 атм, а тем более нейтронной звезды (M ' 1, R ' 15 км '
2 · 10−5 R¯). Для нее Pc ' 1029 ÷ 1030 атм.

в) Рассмотрим данные о давлениях в центрах звезд ГП более подробно.
Для этого нам придется использовать результаты расчетов моделей звезд, о
деталях которых мы получим возможность рассказать лишь гораздо позже.
Пока же их придется принять на веру.

Рис. III.1.2 А дает зависимость Pc от M для звезд ГП населения I соглас-
но данным подробных расчетов. На рис. III.1.2 Б приведены соответствующие
значения безразмерного давления в центре pc в функции массы. Модели раз-
ных авторов слегка различаются по химическому составу, по деталям в трак-
товке физических процессов, происходящих в звездах (по-английски кратко
говорят — по их input physics), наконец, по методам численного решения ос-
новной системы уравнений, описывающих модель. Поэтому положение звезд
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ГП на плоскости (M, Pc) известно лишь приближенно. Приведенные кривые
основаны на расчетах сетки моделей химически однородных звезд с массами
от 0.15 до 125 M¯ и химическим составом X = 0.70, Y = 0.27, Z = 0.03, ко-
торые много лет назад были выполнены в Астрономическом институте Санкт-
Петербургского университета В.Б.Ильиным.

На первый взгляд немонотонный характер зависимости Pc от M может пока-
заться неожиданным. Физическая причина этого состоит в заметном различии
в степени концентрации вещества к центру у звезд разных масс.

У звезд с M<∼ 0.5 степень концентрации вещества к центру невелика и лишь
очень слабо зависит от M. Поэтому здесь pc остается почти постоянным, а Pc

убывает примерно пропорционально M−2. С ростом массы от ∼0.5 до ∼1.5 M¯
концентрация вещества к центру заметно возрастает. Следствием этого явля-
ется рост pc, который происходит настолько быстро, что убывание Pc сменяет-
ся возрастанием. При дальнейшем росте M концентрация вещества постепен-
но становится меньше. В результате значения pc начинают убывать, а кривая
Pc = Pc(M) снова круто заворачивает вниз.

Для тех, кто знаком в общих чертах со строением звезд ГП разных масс,
дадим более подробное объяснение вида кривой рис. III.1.2 Б. Начнем с
объяснения убывания pc в области больших масс. Это связано с переходом
от выделения энергии за счет протон–протонных цепочек к углеродно–
азотному циклу, что сопровождается появлением у звезды конвективного
ядра. Доля массы звезды, входящая в конвективное ядро, растет с M.
Поскольку концентрация вещества к центру в конвективном ядре мала
(она соответствует политропе с n = 3/2, находящейся под давлением вы-
шележащего вещества лучистой оболочки), это должно сказываться на
общем распределении вещества, уменьшая его среднюю концентрацию к
центру, а тем самым и pc. Объясним теперь качественно восходящую ветвь
кривой (область M<∼ 1). Звезды самых малых масс являются полностью
конвективными, и для них pc должно быть невелико — как для политро-
пы с n = 3/2, то есть pc ' 10. С ростом массы звезды у нее появляется
лучистое ядро (примерно при M = 0.4), для которого характерна более
сильная концентрация вещества к центру. Рост лучистого ядра с увеличе-
нием массы и служит причиной роста pc при M от ∼ 0.4 до 1.5÷ 2.

На рис. III.1.3 мы приводим для справок сведения о плотностях и концен-
трации вещества к центру у химически однородных звезд населения I разных
масс (расчеты — те же, что для рис. III.1.2). Рис. А дает плотность в центре,
рис. Б — отношение центральной плотности к средней для звезд разных масс.
Последняя величина часто рассматривается как количественная мера степени
концентрации вещества к центру. Физическое истолкование общего вида кри-
вой на рис. III.1.3Б то же, что и для рис. III.1.2Б.
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Рис. III.1.3:
Плотности в химически однородных звездах разных масс

(X = 0.70, Y = 0.27, Z = 0.03).
Рис. А — центральная плотность, рис. Б — отношение централь-
ной плотности к средней. Последнюю величину часто принимают
за количественную меру степени концентрации вещества к центру

звезды.

Итак,

Звезды ГП : ρc ' 2 ·102÷2 ·100 г/см3.

Сколь ни любопытны эти числа, ключевую роль в физике звезд играют,
однако, не они, то есть не абсолютные значения плотности, а то, в каком со-
отношении находятся в звезде плотность и температура. Этим определяется,
является ли газ вырожденным и можно ли его считать идеальным. Эти вопро-
сы обсуждаются в п. 4.3, с. 156, и более подробно в Гл. X.

г) Скажем теперь несколько слов о центральных давлениях в звездах, не
лежащих на ГП. Начнем с белых карликов. Распределение вещества в них, как
и у химически однородных звезд ГП, определяется (при заданном химическом
составе) единственным параметром — массой. При этом степень концентра-
ции вещества, а потому и безразмерное давление pc монотонно растут с M . В
предельном случае малых масс (примерно при M<∼ 0.3) имеем pc ' 10. В про-
тивоположном случае, когда масса приближается к предельно допустимой для
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белого карлика (около 1.4 M¯ — так называемый чандрасекаровский предел,
см. разд. 4 и более подробно в Гл. X), безразмерное давление pc → 139. Как
видим, для белых карликов значения pc того же порядка, что и для звезд ГП.

С красными гигантами положение существенно иное, так как концентрация
вещества к центру у них чрезвычайно сильна. Качественно строение красных
гигантов не слишком больших масс таково: огромная по размерам звезда низ-
кой и не особенно быстро возрастающей к центру плотности имеет небольшое
очень плотное ядро, близкое по своим характеристикам к белому карлику —
как бы его зародыш, вызревающий в недрах гиганта. Поэтому простейшие
оценки Pc, вытекающие из условия механического равновесия, оказываются
здесь столь грубыми, что реального интереса не представляют.

1.5.
Альтернативный

подход

Полученное выше точное выражение (1.12)
для давления в центре звезды является пря-
мым следствием уравнения механического
равновесия и справедливо всегда, независимо
от того, чем создается давление. Однако, как

мы видели, это выражение обладает тем недостатком, что входящий в него
безразмерный структурный множитель pc чувствителен к ходу плотности в
звезде. Когда концентрация вещества к центру велика, pc не является числом
порядка единицы. Оказывается, что существует альтернативное представление
для давления в центре звезды, в котором безразмерный коэффициент гораздо
менее чувствителен к распределению вещества вдоль радиуса и практически
всегда по порядку не отличается от 1. Оно дает Pc как функцию M и ρc. Как мы
вскоре убедимся, это выражение оказывается чрезвычайно информативным и
позволяет многое понять в физике звезд.

Форма этого представления подсказывается видом правой части неравен-
ства (1.15). Очевидно, что Pc можно представить как

Pc = c1 GM2/3ρ4/3
c , (1.17)

где c1 — безразмерный структурный множитель. Разумеется, это выражение
можно написать и просто из соображений размерности. Весь вопрос в том,
насколько c1 чувствительно к распределению плотности.

На первый взгляд может показаться, что представление Pc в форме (1.17)
едва ли полезно, так как содержит плотность в центре ρc, которую можно
найти лишь путем расчета модели звезды. Это впечатление обманчиво. Если
речь идет о понимании физики, а не о получении точных чисел, то формула
(1.17) является одной из самых полезных. Огромным достоинством представ-
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ления центрального давления в виде (1.17) является малая чувствительность
структурного множителя c1 к ходу плотности в звезде. Действительно, правое
неравенство в (1.15) показывает, что если плотность монотонно убывает нару-
жу, то c1 6 c0 = (π/6)1/3 = 0.806, причем знак равенства соответствует звезде
из несжимаемого вещества, так что ρ(r) = ρc. Для модели с линейным паде-
нием плотности ρ = ρc(1− r/R) имеем ρc/ρ = 4, тогда как значение c1 состав-
ляет примерно половину максимально возможного: c1 = 0.423. Для моделей с
P ∝ ρ1+1/n, подробно изучаемых в следующей главе (политропы индекса n),
при возрастании n от 0 (несжимаемое вещество) до n = 5 (модель с ρc/ρ = ∞)
значение c1 убывает всего в 3 раза (см. п. IV.2.4). Политропы индексов n = 3/2
и n = 3 представляют особый интерес. Для них ρc/ρ равны, соответственно,
6 и 54, а значения c1 составляют 0.4780 и 0.3639. Последнее число, как мы
убедимся в дальнейшем, особенно важно.

Значение c1 = 0.3639, отвечающее политропе индекса n = 3, не может быть
получено аналитически и было найдено численно (см. разд. IV.2). Его можно
рассматривать в качестве характерного значения c1 для всех моделей с силь-
ной концентрацией вещества к центру. В дальнейшем вместо этого численно
точного значения мы иногда будем пользоваться следующей аппроксимацией:

c1 ≈
( π

65

)1/3

= 0.3643, n = 3. (1.18)

Какого-либо физического смысла она не имеет и получена простой подгонкой.
Точность, которую эта аппроксимация обеспечивает для политропы n = 3,
достаточна для любых астрофизических приложений.

Для политропы индекса n = 3/2 значение c1 = 0.4780 можно аппроксими-
ровать сходным образом:

c1 ≈
( π

29

)1/3

= 0.4767, n = 3/2. (1.19)

Как уже упоминалось, слабая чувствительность структурного множителя
c1 к ходу плотности в звезде делает формулу (1.17) чрезвычайно полезным
инструментом для понимания ряда важных вопросов физики звезд. В самом
деле, поскольку уравнение состояния вещества P = P (ρ, T ) известно, то эта
формула позволяет проследить, как должна изменяться температура в цен-
тре звезды заданной массы с ростом ρc, вызванным, например, ее сжатием.
Таким путем удается без решения дифференциальных уравнений строения и
эволюции сжимающейся самогравитирующей газовой массы оценить ту наи-
большую температуру, которая может в ней развиться в ходе сжатия. Тем
самым получается оценка наименьшей возможной массы звезды с термоядер-
ным источником энергии. Обсуждение этого важного вопроса см. в разд. 4.
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Если же соотношение между ρc и Tc таково, что уравнение состояния баро-
тропно, то есть давление не зависит от температуры, то формула (1.17) дает
возможность по массе получить хорошие оценки центральной плотности. Из
нее также немедленно следует существование верхнего предела масс у белых
карликов. Именно таким способом он и был впервые найден. Это также кратко
обсуждается в разд. 4 (и гораздо более подробно – в Гл. X).



2. ТЕМПЕРАТУРЫ В НЕДРАХ НОРМАЛЬНЫХ ЗВЕЗД

2.1. Оценки средних
температур

нормальных звезд

При обсуждении теоремы вириала говори-
лось, что она позволяет оценить средние
температуры в нормальных звездах, то есть
в звездах из идеального невырожденного га-
за с пренебрежимо малым давлением излу-

чения. Правомерно ли, однако, считать, что звезды состоят из такого газа?
Ведь давления в них, как было только что установлено, поистине колоссаль-
ны, а их средние плотности ρ, если иметь в виду звезды ГП, не так уж сильно
отличаются от плотностей обычных жидкостей и твердых тел на Земле. Дей-
ствительно, поскольку для Солнца ρ = 1.4 г/см3, мы имеем ρ = 1.4 M/R3 .
Отсюда легко заключить, что ρ монотонно возрастает вдоль ГП от ∼ 10−1

г/см3 для звезд ранних подклассов О до ∼ 102 г/см3 для поздних M-звезд.
Однако несмотря на то, что эти плотности велики, или скорее именно потому
что они велики, ответ на поставленный вопрос оказывается положительным: в
звездах ГП (кроме наименее массивных) газ можно считать идеальным и к
тому же невырожденным. Объяснение того, почему это так, уже было дано
ранее ( см. п. 1.1, с. 104). Главная причина, напомним, это ионизация атомов.

Итак, рассмотрим звезду с пренебрежимо малым давлением излучения, со-
стоящую из идеального невырожденного газа, то есть нормальную звезду, со-
гласно нашей терминологии. Исходим из следующего соотношения, выражаю-
щего теорему вириала (см. разд. II.2):

3
∫

V

P dV = − EG .

Учитывая, что для нормальной звезды P dV = (P/ρ) dMr = (R∗/µ) T dMr и
считая, что звезда химически однородна (µ = const), можем переписать это в
виде

3
R∗
µ

∫ M

0

T dMr = ω
GM2

R
.

Обозначим через T среднюю по массе температуру газа:

T =
1
M

∫ M

0

T dMr .

122
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Из последнего соотношения находим тогда

T =
ω

3
µ

R∗
GM

R
. (2.1)

Температуру, даваемую этой формулой, по понятной причине принято назы-
вать вириальной. Заметим, что для Солнца, приняв ω = 3/2 и µ = 0.6, из
последней формулы имеем

T¯ = 7 · 106 К.

В п. 2.1 Гл. II было показано, что если плотность не возрастает наружу, то
ω > 3/5, и поэтому

T > 1
5

µ

R∗
GM

R
. (2.2)

За время жизни звезды на ГП термоядерные реакции успевают заметно
изменить химический состав газа в ее центральной части. В такой звезде с
частично или полностью выгоревшим ядром средний молекулярный вес µ за-
висит от расстояния от центра r. Выгорание легких элементов — сначала, на
стадии ГП, водорода, а затем также и гелия, — ведет к тому, что µ возрастает.
Легко убедиться, что в полностью ионизованном газе

µ =

(
2X +

3
4

Y +
1
2

Z

)−1

, (2.3)

где X, Y и Z — весовые доли соответственно водорода, гелия и тяжелых эле-
ментов (X +Y +Z = 1). Действительно, согласно определению молекулярного
веса, число частиц в единице объема равно ρ/(µmu). Из них полностью иони-
зованный водород поставляет 2Xρ/mu частиц, дважды ионизованный гелий —
по 3 частицы (два электрона+альфа–частица) на 4 атомных единицы массы,
то есть на массу каждой альфа–частицы, итого в единице объема (3/4)Y ρ/mu

частиц. Наконец, тяжелые элементы — на международном астрономическом
жаргоне металлы — представлены главным образом кислородом, углеродом,
азотом и неоном. Все остальные атомы имеют низкую распространенность,
или, как говорят на ужасном русском астрономическом жаргоне — низкое
обилие (по-моему, это ничем не лучше, чем, скажем, тощий толстяк). Это
позволяет при расчете молекулярного веса ими пренебречь. Для перечислен-
ных же выше тяжелых атомов при их полной ионизации средняя масса (в
единицах mu), приходящаяся на одну частицу, составляет около 2, а имен-
но 16/9=1.78 (кислород), 12/7=1.71 (углерод), 14/8=1.75 (азот), 20/11=1.82
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(неон). Если не требуется высокая точность, то, учитывая малость Z (на фазе
горения водорода обычно Z <∼0.02) вклад тяжелых элементов в полную концен-
трацию частиц можно принимать равным (1/2)Zρ/mu. Суммируя найденные
только что вклады в полную концентрацию частиц, даваемые ионизованными
водородом, гелием и тяжелыми элементами, мы сразу же приходим к (2.3). За-
метим, что, учитывая малость Z, для получения грубой оценки µ в (2.3) можно
полагать Z=0, что дает

µ ≈ 4
3 + 5X

. (2.4)

В чисто водородной плазме Y = Z = 0, и поэтому µ = 1/2, тогда как там, где
водород и гелий выгорели (X = Y = 0), имеем µ = 2. Поэтому следует ожидать,
что с приближением к центру звезды µ будет увеличиваться. Ролью самых на-
ружных слоев, где ионизация еще не полная и µ возрастает к границе, в дан-
ном случае можно пренебречь. Учитывая сказанное, откажемся от предполо-
жения о химической однородности звезды (µ = const), заменив его физически
оправданным допущением, что µ > µs, где µs — молекулярный вес полностью
ионизованного газа с химическим составом, имеющимся в поверхностных слоях
звезды (s — от Surface). Так как в этом случае (R∗/µ) T dMr 6 (R∗/µs)T dMr,
то оценка (2.1) останется в силе, если в ней заменить µ на µs.

2.2.
Обсуждение

а) Подставляя в (2.1) численные значения
постоянных, находим, что для химически од-
нородной звезды

T = 7.64 · 106 ωµ
M

R
К , (2.5a)

или

kT = 659 ωµ
M

R
эВ , (2.5b)

где, как всегда, M = M/M¯ и R = R/R¯. Оценка (2.2) принимает вид T > 4.6 ·
106 µs M/R кельвинов, или kT > 400 µs M/R эВ. Напомним, что она является
универсальной, единственное ограничение — выполнение неравенства ρr > ρ
(верного, если ρ ′(r) 6 0). Таким образом, бо́льшая часть вещества в звездах
ГП должна иметь температуру по крайней мере в несколько мегакельвинов.
Соответствующие средние тепловые энергии частиц составляют не менее сотен
электрон-вольт. Они значительно больше энергии ионизации водорода (13.6 эВ)
и двукратной ионизации гелия (13.6 · 22 = 54 эВ) и достаточны для отрыва
большей части электронов от атомов тяжелых элементов, так что газ в недрах
звезд действительно можно считать полностью ионизованным (когда речь идет
об уравнении состояния).
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Следует помнить, что неравенство (2.2) дает лишь нижнюю оценку средней
температуры вещества нормальной звезды. Действительные же значения T
должны быть выше, так как ω > 3/5. Характерные значения температуры в
недрах звезд ГП, согласно детальным расчетам их моделей, порядка (1 ÷ 3) ·
107 К. Соответствующие тепловые энергии частиц ∼(1÷ 3) кэВ.

Итак, чтобы находиться в механическом равновесии, нормальные звезды с
неизбежностью должны быть очень сильно нагреты — иначе газовое давление
в их недрах не могло бы противостоять весу вышележащих слоев. В этом суть
наших оценок температуры.

б) Если говорить о существе дела, а не о деталях, то понять полученный
результат можно так. Гравитационная энергия связи звезды порядка GM2/R,
ее тепловая энергия ∼ N k T , где N = M/(µmu) — полное число частиц в
звезде, mu — атомная единица массы и T — характерная температура звездных
недр. Очевидно, что эти энергии должны быть одного порядка, в противном
случае механическое равновесие было бы невозможно. Итак,

(
M/(µ mu)

)
k T ∼

GM2/R, или

T ∼ µ

R∗
GM

R
,

в согласии с найденным ранее более аккуратным способом.
Если последнее выражение переписать в виде

kT ∼ (µmu)
GM

R
,

то становится ясно, что полученный результат можно сформулировать также
так: средняя тепловая энергия частицы в недрах нормальной звезды того же
порядка, что и ее гравитационная энергия связи на поверхности звезды.

в) Из соображений размерности можно утверждать, что центральная тем-
пература звезды Tc должна зависеть от параметров таким же образом, как и
T , то есть

Tc = tc
µ

R∗
GM

R
, (2.6)

где tc — близкий к единице численный коэффициент. (Можно показать, что
для нормальных звезд tc > 0.32, см. Упр. 6◦, с. 163). Следует подчеркнуть
кажущийся на первый взгляд неожиданным факт: у нормальных звезд цен-
тральная температура Tc превышает среднюю (по массе) температуру их недр
T всего раза в два — три.

На рис. III.2.1А приведены для справок значения центральных температур
химически однородных звезд, полученные из расчетов их моделей (В.Б.Ильин,
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Рис. III.2.1:

Центральные температуры химически однородных звезд
(X = 0.70, Y = 0.27, Z = 0.03).

Рис. А — температуры Tc в млн К, рис. Б — значения безразмерного
параметра tc.

Астрономический институт СПбГУ). Соответствующие значения tc показаны
на рис. III.2.1Б. Итак,

Звезды ГП : Tc ' 6 · 106 ÷ 4 · 107 К.

Используя данные, приведенные на рис. III.2.1 и II.2.2, постройте график
Tc/T в функции массы для химически однородных звезд с M 6 10. При
бо́льших M начинает заметно сказываться давление излучения и форму-
ла (2.1) становится неприменима. Сопоставьте значения T , даваемые де-
тальными расчетами моделей, с оценкой (2.1). Почему простейшая оценка
температуры в недрах звезд оказывается гораздо точнее оценки давления,
полученной из сходных соображений?
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В заключение этого пункта приведем еще выражение для центральной тем-
пературы невырожденной звезды через ее массу и центральную плотность.
Формула (1.17) (с. 119) в комбинации с тем, что Pc = (R∗/µ)ρcTc, немедленно
дает

Tc = c1

µ

R∗ GM2/3ρ1/3
c . (2.7)

Как говорилось в п. 1.5, структурный множитель c1 сравнительно мало чув-
ствителен к ходу плотности в звезде.

Применим эту формулу для оценки температуры в центре Солнца. В соот-
ветствии с рецептом, рекомендованным в п. 1.5, примем c1 = 0.364. Приняв,
далее, ρc = 150 г/см3, как это дает современная модель Солнца, и взяв µ = 0.61,
что соответствует химическому составу фотосферы, согласно (2.6) будем иметь
Tc = 15 · 106 К, в прекрасном согласии с тем, что дает детальная модель Солн-
ца (Tc = 15.6 · 106 K). Впрочем, в центре современного Солнца значительная
часть водорода уже выгорела, так что значение µ там должно быть несколько
больше (µ = 0.82). Поэтому на самом деле полного согласия нет. По-видимому,
дело в том, что химически неоднородное современное Солнце все же заметно
отличается от политропы с n = 3, которой соответствует принятое нами выше
значение c1.

Последнее замечание. Хотя температуры в недрах звезд по земным меркам
колоссальны, радиальные градиенты температур в них, наоборот, невелики.
Так, для Солнца Tc/R = (15 · 106)/(7 · 1010) ∼ 2 · 10−4 К/см, то есть всего
∼2 кельвина на 100 метров (см. с. 201). Это на несколько порядков величи-
ны меньше длин свободных пробегов фотонов. Поэтому поле излучения всюду
внутри звезд, кроме самых наружных их слоев — звездных атмосфер — явля-
ется равновесным (планковским), с локальным значением температуры.

2.3.
Астрономические

следствия

а) В разд. II.2 указывалось, что безразмер-
ная потенциальная энергия ω не очень чув-
ствительна к структуре звезды и для звезд
ГП есть число, близкое к единице. Поэто-
му согласно (2.1) структурная чувствитель-

ность характерной температуры вещества в недрах звезд также должна быть
не очень сильной. Поскольку химический состав звезд ГП примерно один и тот
же, то можно принять, что µ не зависит от M , и тогда средняя температура T
оказывается пропорциональной M/R. С другой стороны, согласно наблюдени-
ям, у звезд ГП с M 6 1 радиусы примерно пропорциональны массам, для звезд
же с M > 1 имеем R ∝Mr, причем r = (0.5÷0.8). Поэтому из (2.1) следует, что
средние температуры вещества в недрах звезд ГП должны медленно убывать
с уменьшением массы, отличаясь на верхнем и нижнем концах ГП меньше чем
на порядок (как и их центральные температуры, см. рис. III.2.1А). Как видим,
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детальные расчеты моделей находятся в полном согласии с этим полуколиче-
ственным заключением.

Светимости звезд ГП различаются очень сильно, гораздо сильнее, чем их
массы

(
соответственно в ∼1011 ÷ 1012 и в ∼103 раз

)
. В сочетании с тем, что T

убывает вдоль ГП медленно, это заставляет сделать вывод об очень сильной
зависимости мощности энерговыделения в звездах от температуры.

Представление о том, насколько сильна эта зависимость, можно составить
из следующей грубой оценки. Примем, что в пределах всей ГП L ∝ M4 и
R∝M3/4. Эти зависимости правильно воспроизводят диапазон изменения све-
тимостей и радиусов звезд ГП. Тогда для среднего по массе темпа энерговы-
деления ε получаем ε = L/M∝M3. Но T ∝M/R∝M1/4, так что ε∝T 12. Разу-
меется, показатель степени здесь ни в коем случае нельзя рассматривать как
сколько-нибудь точный. Однако общий вывод о чрезвычайно сильной зависи-
мости темпа энерговыделения в звездах от температуры безусловно верен. Он
был сделан еще до создания теории термоядерных реакций в звездах. Это так
называемое астрономическое требование к источнику энергии звезд . Теория
термоядерных реакций объясняет сильную зависимость ε от T . Оказывается,
что в тех звездах ГП, в которых синтез гелия обеспечивает CN–цикл (M>∼1.5),
в области энерговыделения мы имеем приближенно ε ∝ T 18, тогда как если
гелий синтезируется в pp–цепочках (M<∼1.5), то ε∝T 4.

б) Применим теперь (2.1) к красным гигантам (КГ). Массы большинства
КГ — порядка массы Солнца, а светимости велики. Только что было установле-
но, что мощность энерговыделения в звездах сильно зависит от температуры.
Учитывая это, заключаем, что характерное значение T у КГ должно быть во
всяком случае не ниже, чем у звезд ГП.

С другой стороны, радиусы КГ порядка 102 R¯. Поэтому согласно (2.1) тем-
пература в их недрах была бы на два порядка ниже, чем в звездах ГП, если бы
распределение вещества вдоль радиуса (оно учитывается множителем ω) было
близко к ,,нормальному" для звезд ГП (ω ∼ 1). Следовательно, для получения
T > 107 К, что необходимо, чтобы объяснить наблюдаемые высокие светимости
КГ, требуется такое распределение вещества в недрах звезды, которое облада-
ет исключительно сильной концентрацией к центру, настолько сильной, что
ω>∼102. Итак, строение КГ должно радикально отличаться от строения звезд
ГП. Заметная доля их массы должна быть сосредоточена в очень небольшом
плотном центральном ядре — том самом зародыше белого карлика, о котором
уже мимоходом упоминалось в п. 1.4.

На самом деле вопрос тоньше. К ядрам КГ небольших масс простейшее
уравнение состояния P = (R∗/µ) ρ T неприменимо, так как электронный газ в
них вырожден. Поэтому оценкой T , даваемой (2.1), в этом случае нужно поль-
зоваться с осторожностью. Однако вывод о наличии у КГ небольших плотных
ядер все же верен.
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3.1. Оценка
давления излучения
в центре звезды

Оценивая температуру в недрах звезд, мы
пренебрегали давлением излучения. Когда и
в какой мере это оправдано? Попробуем со-
ставить об этом представление.

Газовое давление в невырожденной звезде равно Pg = (R∗/µ) ρ T , давление
излучения Pr = (a/3)T 4, где a — постоянная плотности излучения. Поэтому
Pr/Pg ∝ µT 3/ρ. С другой стороны, как было показано выше, характерная тем-
пература звездных недр T ∝ µM/R, откуда T 3∝ µ3 M3/R3∝ ρµ3 M2, так что
T 3/ρ ∝ µ3 M2. Поэтому Pr/Pg∝ (µ2M)2, и в звездах достаточно большой мас-
сы давление излучения должно становиться существенным. Это не более чем
полукачественные соображения, но они выражают самую суть дела. Можно
думать, что отношение Pr/Pg, например, в центре звезды, будет определяться
единственным параметром — µ2M , хотя ожидать простой пропорциональности
Pr/Pg и (µ2M)2, конечно, не приходится.

Переходим к более аккуратному рассмотрению. Пусть β — доля газового
давления в полном давлении P , так что

β P =
R∗
µ

ρT , (1− β)P =
a

3
T 4.

Исключая из этих соотношений T , находим связь между P, ρ и β:

P =

[(R∗
µ

)4 3
a

1− β

β4

]1/3

ρ4/3 . (3.1)

Запишем соотношение (3.1) для центра звезды (индекс c). Перейдя в нем от Pc

и ρc к безразмерному давлению pc ≡
(
GM2/(4πR4)

)−1
Pc и безразмерной плот-

ности σc ≡
(
M/(4πR3)

)−1
ρc и разрешив результат относительно (1 − βc)/β4

c ,
получим

1− βc

β4
c

= bc
π

18
aG3

R∗4 (µ2
cM)2 , (3.2)

где bc — безразмерный структурный множитель:

bc = 24
p3

c

σ4
c

. (3.3)

129
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Если в соотношении (3.2) вместо a и R∗ подставить их выражения через
мировые постоянные

a =
π2k4

15c3~3
, R∗=

k

mu
,

то его можно представить в следующей поучительной форме:

1− βc

β4
c

= bc
π3

270
(µ2

cM/M?)2, (3.4)

где M? — комбинация мировых постоянных, имеющая размерность массы:

M? =
(

c~
Gm

4/3
u

)3/2

= 1.880 M¯ = 3.74 · 1033 г. (3.5)

Масса M? играет фундаментальную роль во всей теории звезд (см., в частно-
сти, пп. 3.4, 3.6, 4.2 и X.3.5).

Далее, весьма существенно, что хотя pc и σc зависят от вида модели сильно
(а p3

c и σ4
c , разумеется, еще сильнее), структурная чувствительность отноше-

ния p3
c/σ4

c , определяющего значение bc, оказывается сравнительно слабой. Так,
при ρ = const имеем bc = 1, распределению плотности ρ(r) = ρc[1− (r/R)2] от-
вечает bc = 0.40, при линейном падении плотности вдоль радиуса bc = 0.14
и т. д. Для моделей, у которых P (r) = Kρ(r)4/3, где K = const (политропы
индекса n = 3, см. следующую главу), центральное давление почти в сто, а
центральная плотность — более чем в 50 раз превышают значения этих ве-
личин у однородного шара той же массы и радиуса. Значение же bc для этого
случая отличается от bc для однородного шара примерно в 10 раз: bc = 0.09207.

Приведенное только что значение bc = 0.09207 соответствует так называ-
емой стандартной модели Эддингтона, сыгравшей на заре развития тео-
рии строения звезд огромную роль. Забегая вперед (а для кое-кого из
читателей, вероятно, просто напоминая некогда известное им), укажем,
что стандартная модель — это политропа индекса n = 3, построенная из
невырожденного газа с учетом давления излучения; см. п. IV.3.3.
Ознакомившись со следующей главой, вернитесь к этому месту и с помо-
щью результатов п. IV.2.3 установите, что для политропы произвольного
индекса n

bc = 24/[(n + 1)3µ2
1 ] ,

где µ1 — параметр, обсуждаемый в п. IV.2.2. Это можно записать также
в виде

bc = (4/3)(n + 1)−2ν−2
1 ,

где ν1 — приводимый в Табл. IV.2.2 (с. 187) поправочный множитель
(очень близкий к единице).
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Сравнительно слабая чувствительность структурного множителя bc к рас-
пределению вещества вдоль радиуса имеет важное следствие: наложив самые
минимальные ограничения на модель, мы получим осмысленную оценку вкла-
да давления излучения в центре звезды.

Обозначим, как и в п. III.1.2, через ρr среднюю плотность вещества в шаре
радиуса r. Если ρc > ρr, в частности, если плотность максимальна в центре
звезды, то наибольшее возможное значение bc равно 1, причем оно соответ-
ствует звезде с ρ = const. Это следует из (3.1) и правого неравенства (1.15).
Поэтому при заданном µ2

c M (и ρc > ρr) наименьшее значение (1−βc)/β4
c будет

у модели с ρ = const. Так как (1−β)/β4 убывает с ростом β, то для этой модели
βc будет наименьшим из возможных. Обозначив его β∗, так что βc = β∗ при
bc = 1, или

1− β∗

β∗4
=

π3

270
(
µ2

cM/M?

)2
, (3.6)

будем иметь поэтому
1− βc 6 1− β∗. (3.7)

Неравенство (3.7) иногда называют β∗-теоремой Чандрасекара. Это и есть та
строгая оценка βc, о которой только что говорилось.

Заметим, что из (3.6) следует, что

µ2
c M∗ = 5.462

√
1− β∗

β∗2
, (3.8)

где, как всегда, M∗ — это масса в массах Солнца.

3.2.
Обсуждение

а) Соотношение (3.7) позволяет, зная одну
только массу звезды (точнее, µ2

c M) найти ту
максимально возможную долю 1−β∗, кото-
рую давление излучения близ центра звезды

может составлять в полном давлении, какова бы ни была структура звезды
(если только ρc > ρr и газ в ней не вырожден). Зависимость 1 − β∗ от µ2

cM
показана на рис. III.3.1 (верхняя кривая). Из рисунка видно, что для звезд
малых масс (M<∼ 1) роль давления излучения заведомо пренебрежимо мала,
для звезд не слишком больших масс (1<∼M<∼10) она должна быть еще невели-
ка, и лишь в недрах весьма редко встречающихся в природе массивных звезд
(M>∼10) давление излучения может быть существенным.

Было бы, однако, неверно думать, что для звезд как совокупности объектов
давление излучения — лишь второстепенный фактор. Судя по всему, именно
оно ответственно в первую очередь за то, что в мире не существует звезд очень
больших масс. См. п.п. 3.4 и 3.5.
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Рис. III.3.1:

Доля давления излучения в полном давлении в центре звезды 1− βc для
звезд разных масс.

Верхняя кривая — оценка 1 − βc сверху для звезд произвольной
структуры, нижняя кривая — политропа индекса n = 3

(стандартная модель Эддингтона).

Следует помнить, что β∗-теорема позволяет оценить относительную роль
давления излучения лишь в центре звезды. Правда, расчеты звездных моделей
показывают, что доля давления излучения меняется в недрах невырожденной
звезды с удалением от ее центра не очень сильно (для массивных звезд ГП —
раза в два). Однако в наружных слоях звезды роль давления излучения мо-
жет быть значительно больше. По-видимому, именно световым давлением ре-
гулируется выброс вещества из звезд на продвинутых стадиях их эволюции —
процесс, который несомненно играет важную роль в жизни большинства звезд.

б) До сих пор речь шла о зависимости доли давления излучения в полном
давлении от массы звезды. Теперь обратим внимание на роль химического
состава, входящего через посредство µc. Значения µc в самых крайних случаях
различаются в четыре раза, изменяясь от µc = 1/2 для чистого водорода до
µc ' 2 для газа из голых ядер атомов тяжелых элементов и оторванных от
них электронов. Однако пренебрегать отличием µc от единицы нельзя. (Если
атомы тяжелых элементов ионизованы не полностью, скажем не разрушены
их K-оболочки, то µc может быть заметно больше 2).

Для химически однородных, то есть молодых звезд I типа населения µc '
0.6 (это µ соответствует полностью ионизованному газу с химическим составом,
который имеют наружные слои Солнца). Поэтому при оценке роли давления
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излучения в звездах ГП по рис. III.3.1 входной параметр µ2
cM есть ∼ 0.4M.

В историческом плане любопытно отметить, что в период становления тео-
рии строения звезд — во времена Эддингтона, Милна и Джинса — полагали,
что недра звезд состоят из тяжелых элементов (µc ' 2). Поэтому µ2

cM прини-
малось равным 4M , вместо правильного для звезд ГП значения 0.4M . В итоге
роль давления излучения в те далекие времена значительно преувеличивалась.

в) Неравенство Чандрасекара (3.7) позволило сделать важный вывод о
незначительной роли давления излучения в маломассивных звездах ГП. Од-
нако оценки вклада давления излучения в звездах больших масс, даваемые
β∗-теоремой, оказываются заметно завышенными.

Для невырожденной звезды с произвольным распределением вещества
вдоль радиуса значение 1−βc должно находиться из уравнения (3.2). В числах
оно имеет вид

1− βc

β4
c

= 0.0324 bc

(
µ2

cM
)2

. (3.9)

На рис. III.3.1 нижняя кривая дает зависимость 1−βc от µ2
cM, найденную отсю-

да при значении структурного множителя bc = 0.092, то есть для стандартной
модели Эддингтона.

Обратим внимание на то, что кривые 1−βc в функции µ2
cM располагаются

тем правее и ниже, чем меньше значение структурного множителя bc. Значения
же bc, как было показано, убывают с ростом степени концентрации вещества
к центру. Поэтому следует ожидать, что если имеются две звезды с равными
значениями µ2

cM, то вклад давления излучения в центральных областях будет
меньше у той из них, которая обладает более сильной концентрацией вещества
к центру.

3.3. Температуры в
звездах при учете

давления излучения

Учет давления излучения приводит к изме-
нению вида зависимости центральной тем-
пературы звезды от параметров. Согласно
п. 2.2, для нормальных звезд (давление чи-
сто газовое) имеем Tc∝µM/R. В противопо-

ложном случае преобладающей роли давления излучения (звезды предельно
больших масс) Pc = aT 4

c /3. Но Pc = pc

(
GM2/(4πR4)

)
, где pc — безразмерный

структурный множитель. Поэтому в рассматриваемом предельном случае мы
имели бы

Tc = p1/4
c

(
3G

4πa

)1/4 √
M

R
. (3.10)

Таким образом, здесь Tc∝
√

M/R. Зависимости от µ нет (почему?). Хотя такой
крайний случай в природе, видимо, не осуществляется из-за неустойчивостей,
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полученный результат Tc ∝
√

M/R показывает, в каком направлении должно
происходить изменение классического соотношения Tc∝µM/R.

Для верхней части ГП R ∝Mr, где r ' 0.5. Поэтому пока давление из-
лучения еще не играет заметной роли, центральная температура хотя и не
очень быстро, но все же растет с массой (при r = 0.5 — как

√
M , поскольку

Tc ∝M1−r). Однако когда начинает существенно сказываться давление излу-
чения, скорость роста Tc с M должна несколько замедляться. В пределе особо
больших масс согласно (3.10) было бы Tc ∝ M (1−2r)/2, так что при r = 0.5
зависимость Tc от M должна была бы исчезнуть вовсе.

3.4. Верхний предел
масс звезд

Учет нового фактора — давления излуче-
ния — естественным образом вводит в тео-
рию звезд характерную массу — ту, при ко-
торой главенствующая роль в сдерживании

гравитации переходит от газового давления к световому. Чтобы оценить эту
массу, можно поступить по-разному. Например, можно приравнять правые ча-
сти выражений для центральной температуры, отвечающих предельным слу-
чаям пренебрежимо малых светового и газового давлений соответственно, то
есть

(
см. п. 2.2, формула (2.6), и п. 3.3, формула (3.10)

)

Tc = tc
µ

R∗
GM

R
и Tc = p1/4

c

(
3G

4πa

)1/4 √
M

R
.

Результат дает характерную массу

M0 =
(

3pc

4πt4c

R∗4
aG3

)1/2

µ−2 ,

что можно записать также в виде

M0 =
C0

µ2
M? ,

где M? дается (3.5), а C0 — вобравший в себя все числовые коэффициенты
структурный множитель:

C0 =
3
√

5
2π3/2

p
1/2
c

t2c
.

Если в звезде P ∝ ρ4/3, то C0 = 9.73. Это значение C0 отвечает стандартной
модели Эддингтона, для которой доля давления излучения в полном давлении
не зависит от расстояния от центра звезды, см. п. п. IV.3.3 и IV.3.4. Чувстви-
тельность коэффициента C0 к ходу плотности в звезде сравнительно слабая.
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Можно показать, что для политропы индекса n

C0 =
9

π

√
5

2π
(n + 1) ν1 = 2.556 (n + 1) ν1,

где ν1 — поправочный множитель, отличающийся от 1 при n ∈ [0, 5] не
более чем на 15% (см. Табл. IV.2.2, с. 187). При изменении n от 1.5 до 3.5
значение C0 возрастает менее чем вдвое, от C0 ' 6.5 до ' 10.9.

Для получения оценки M0 вполне можно принять C0 = 10. Тогда находим,
что M0 ' 18M¯µ−2, так что при µ = 0.6 имеем M0 ' 50M¯. При M порядка
M0 давление излучения должно быть уже существенным фактором, при M,
заметно меньших M0, его роль мала. Поскольку звезд с массами, бо́льшими
2.5 M0,, во Вселенной нет, можно предполагать, что именно давление излучения
и определяет верхний предел звездных масс.

Значение M0 — не более чем порядковая оценка. Чтобы подчеркнуть это,
найдем ту массу, при которой давление излучения Pr в центре звезды стано-
вится равным газовому давлению Pg, исходя из точного соотношения (3.4).
Обозначим ее M ′

0. Ясно, что M0 и M ′
0 должны быть одного порядка. Различие

между ними — мера той точности, которой разумно требовать от подобных оце-
нок. Полагая в (3.4) βc = 1/2 и беря bc = 0.092 (что соответствует P ∝ ρ4/3),
находим, что M ′

0 = 27.5 M?/µ2, или M ′
0 = 51 M¯/µ2, так что при µ ' 0.6 имеем

M ′
0 ' 140M¯. Согласно наблюдениям, наиболее массивные звезды имеют мас-

сы около 120M¯. Таким образом, из сопоставления с только что полученной
оценкой M ′

0 следует, что звезд, в недрах которых давление излучения преобла-
дало бы над газовым, в природе, по-видимому, не существует.

3.5.
Эддингтоновский
предел светимости

Оценка верхнего предела масс нормальных
звезд, данная в п. 3.4, может показаться ма-
ло убедительной. В самом деле, было лишь
показано, что из того факта, что в природе
нет звезд с массами больше (100 ÷ 120)M¯,

следует, что давление излучения в недрах звезд не должно превосходить газо-
вого. Вопрос же о том, почему это так, остался открытым. Сейчас мы покажем,
в чем суть дела: верхний предел масс звезд определяется тем, что направлен-
ная наружу сила светового давления во внешних слоях звезды уравновешивает
направленную внутрь силу тяжести, и атмосфера зависает на световом давле-
нии.

Сила светового давления в атмосфере звезды, направленная наружу, опре-
деляется следующей известной формулой:

dPr

dr
= − 1

c

∫ ∞

0

ανHν dν, (3.11)

где αν — объемный коэффициент поглощения и Hν — монохроматический по-
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ток. Множитель 1/c перед интегралом учитывает тот факт, что каждый фо-
тон несет импульс hν/c в направлении своего полета. При поглощении фотона
(множитель αν под интегралом) нормальная компонента импульса (hν/c) cos θ
передается веществу. Суммируя импульсы, передаваемые фотонами, летящи-
ми во всех направлениях (отсюда множитель Hν) и интегрируя результат по
всем частотам, приходим к (3.11). Заметим, что формула (3.11) остается в си-
ле и тогда, когда αν определяется не истинным поглощением, а рассеянием,
если только импульс отдачи при рассеянии равен нулю, как это имеет место
при изотропном и — что будет существенно для нас — также и при рэлеевском
рассеянии.

Условие зависания атмосферы на световом давлении имеет, очевидно, вид

dPr

dr
= − ρ g, (3.12)

где g — ускорение силы тяжести: g = GM/r2. Атмосфера не обязательно тон-
кая, поэтому здесь стоит r2, а не R2; масса же атмосферы пренебрежимо мала,
так что Mr = M . Комбинируя (3.11) и (3.12), получаем

1
c

∫ ∞

0

ανHν dν = ρ
GM

r2
. (3.13)

У горячих массивных звезд непрозрачность их наружных практически пол-
ностью ионизованных слоев создается рассеянием на свободных электронах.
Поэтому

αν = σ0Ne, (3.14)

где σ0 — томсоновское сечение электронного рассеяния:

σ0 =
8π

3

(
e2

mec2

)2

= 6.65 · 10−25 см2 (3.15)

и Ne — электронная концентрация. Тот факт, что σ0

(
а значит и αν в (3.13)

)
не

зависит от частоты, имеет колоссальные последствия для разбираемой задачи.
Левая часть в (3.13) принимает вид

1
c

σ0Ne

∫ ∞

0

Hν dν =
σ0Ne

c

L

4πr2
, (3.16)

где L, как всегда, полная светимость звезды (так как источников и стоков
энергии в наружных слоях звезды нет, то Lr = L). Отсюда видно, что сила
светового давления на газ, непрозрачность которого создается электронным
рассеянием, не зависит от спектрального состава излучения звезды и одно-
значно определяется ее полной светимостью.
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Что касается силы тяжести ρ g, то мы имеем ρ = muµeNe, где µe — сред-
няя масса (в атомных единицах массы mu), приходящаяся на один свободный
электрон: µe = 2/(1 + X) (см. с. 142). Поэтому

ρ g = muµeNe
GM

r2
. (3.17)

Приравнивая правые части (3.16) и (3.17), получаем

σ0

c

L

4π
= muµe GM.

Определяемая этим равенством светимость называется эддингтоновской, или
эддингтоновским пределом светимости. Ее стандартное обозначение — LE:

LE = 4π
cmuG

σ0

µeM. (3.18)

Как видим, масса звезды (а также содержание в ней водорода, входящее
через средний электронный молекулярный вес µe) однозначно определяет ее
максимально возможную светимость. Поскольку зависимости от r потока из-
лучения и силы притяжения одинаковы (∝r−2), если сила давления излучения
сравнялась с силой тяжести на поверхности звезды, то это будет верно и на
любом удалении от нее. В этом смысле выражаемый формулой (3.18) результат
очень ,,устойчив" — он не чувствителен ни к распределению энергии в спек-
тре звезды, ни к тому, на каком удалении от звезды сила давления излучения
сравнялась с силой тяжести. Заметим также, что хотя давление излучения
действует практически только на электроны (световое давление на протоны
в (mp/me)2 = 18362 раз меньше), а сила тяжести — практически только на
тяжелые частицы — протоны и другие ядра, эти две противоположно направ-
ленные силы оказываются сбалансированными, так как электроны и протоны
в ионизованном газе очень жестко связаны электростатическими силами.

В числах последняя формула имеет вид

LE = 1.25 · 1038 µeM эрг/c , (3.19)

где, как всегда, M = M/M¯. При X = 0.70 (Солнце, звезды населения I) имеем
µe = 1.176 и поэтому LE ≈ 1.5 ·1038 M эрг/c. Таким образом, светимость Солн-
ца на пять порядков ниже эддингтоновской, так что роль светового давления
для него пренебрежимо мала.
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Обозначив через LE эддингтоновскую светимость, выраженную в светимо-
стях Солнца: LE = LE/L¯, вместо (3.19) для звезд населения I будем иметь

LE = 3.84 · 104 M . (3.20)

Для массивных звезд верхней части главной последовательности имеем L =
M3. Поскольку светимость звезд растет с массой быстрее, чем эддингтонов-
ская светимость (соответственно ∝M3 и ∝M), будет существовать предель-
ная масса, при которой светимость звезды станет равна эддингтоновской. Это
и определяет верхний предел Mmax возможных масс звезд. Согласно сказан-
ному, имеем M3

max = 3.84 · 104 Mmax, откуда окончательно

Mmax ≈ 200 M¯. (3.21)

Число 200 в этой формуле следует рассматривать лишь как оценку, поскольку
наряду с томсоновским рассеянием заметную роль могут играть также тор-
мозное поглощение, фотоионизация, световое давление в линиях тяжелых эле-
ментов и др., что увеличивает непрозрачность и снижает значение верхнего
предела возможных масс звезд. Не входя в обсуждение, лишь упомянем, что
при M >∼ 120÷ 150 у звезд главной последовательности возникает пульсацион-
ная неустойчивость, что наряду с давлением излучения и ограничивает сверху
их возможные массы.

Понятие эддингтоновской светимости играет важную роль также в тео-
рии аккреции. Ясно, что энерговыделение за счет сферически-симметричной
аккреции на звезду заданной массы не может превосходить эддингтоновско-
го предела. В противном случае давление излучения на аккрецируемое веще-
ство превосходило бы силу притяжения, и аккреция сменилась бы истечени-
ем вещества. Формула (3.18) позволяет получить оценку (правда, лишь по-
рядковую) масс компактных компонент, в частности, черных дыр в двойных
рентгеновских источниках. Тот факт, что светимости рентгеновских двойных,
в энергетике которых аккреция играет определяющую роль, не превосходят
∼ (1038 ÷ 1039) эрг/с, позволяет сделать вывод, что массы звездных черных
дыр не превосходят по порядку 10M¯.

Еще одно замечание, касающееся формулы (3.18), имеет исторический ха-
рактер. Вскоре после открытия квазаров в начале 1960-х годов было показано,
что в этих объектах колоссальная энергия, на 2 – 3 порядка превосходящая
светимость нормальных галактик, излучается из области размером в несколь-
ко световых дней, а то и меньше. В качестве механизма такого колоссального
энерговыделения сразу же была указана аккреция на сверхмассивные черные
дыры. По формуле (3.18), зная светимость квазара, можно было оценить мас-
су его сверхмассивной центральной черной дыры — вплоть до 3 · 109M¯. Эти
оценки выдержали проверку временем.
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3.6. Массы звезд и
мировые

постоянные

Изучение относительной роли газового дав-
ления и давления излучения в звездах поз-
волило выявить существование важной для
теории звезд комбинации фундаментальных

постоянных с размерностью массы:

M? =
(

c~
Gm

4/3
u

)3/2

= 1.8798 M¯ = 3.7390 ·1033 г. (3.22)

Звезда с массой, равной M?, содержит N? ∼ 2 · 1057 барионов. Массу M? ино-
гда называют эддингтоновской. Однако Эддингтон — пионер в изучении роли
давления излучения в звездах — не заметил, или точнее не отметил явно суще-
ствования комбинации мировых постоянных с размерностью массы, имеющей
порядок массы Солнца. Это было ,,a surprising omission”, как написал Чандрас-
екар в своем предисловии к переизданию (1988 года — уже не первому!) книги
Эддингтона ,,The Internal Constitution of the Stars”.

Заметим еще, что в литературе иногда приводится несколько иное зна-
чение M?, именно M? = 1.851M¯. Оно получается, если в определении M?

вместо атомной единицы массы mu = 1.66054 · 10−24 г взята масса атома
водорода mH = 1.67353 · 10−24 г.

Массы невырожденных звезд отличаются от M? в ту или другую сторону
не более чем в несколько десятков раз. Характерная масса M? естественным
образом появляется также в теории белых карликов и нейтронных звезд (см.
п. 3.5 Гл. X, с. 446), несмотря на то, что физика этих объектов существенно
иная. Так, у белых карликов основной вклад в давление дает сильно вырож-
денный электронный газ, роль же ионов и фотонов в создании давления у них,
в отличие от звезд ГП, пренебрежимо мала. Как будет показано в следую-
щем разделе, массы белых карликов не могут превосходить так называемой
чандрасекаровской предельной массы 3.1 M?/µ2

e, где µe — электронный моле-
кулярный вес, то есть масса, приходящаяся на один свободный электрон. Для
полностью ионизованного газа, лишенного водорода, µe очень близко к 2, так
что предельная масса оказывается равной 0.77 M?, или 1.46 M¯. Отсюда сле-
дует, что звезды ГП с бо́льшими массами в ходе своей эволюции к белым кар-
ликам либо должны сбрасывать часть вещества, либо же вовсе не могут в них
превращаться. Какая из этих возможностей реализуется, зависит от началь-
ной массы звезды. Наконец, масса M? естественным образом появляется при
рассмотрении рождения звезды путем сжатия газового шара. Как будет пока-
зано в следующем разделе, ею определяется минимальная масса звезд главной
последовательности (см. п. 4.2, с. 149).
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Таким образом, величина M? определяет характерные значения масс лю-
бых звезд. С точки зрения теоретика, именно эту фундаментальную массу было
бы естественно использовать в качестве единицы измерения масс звезд, а вовсе
не массу Солнца — этой ,,случайно" оказавшейся рядом с нами и ничем больше
особенно не примечательной звезды.

Выражение для M? можно переписать в форме

M? = muN? = mu α
−3/2
G , (3.23)

где N? — полное число нуклонов в звезде с массой M? и

αG =
Gm2

u

~c
= 5.8209 · 10−39. (3.24)

Постоянная αG есть энергия гравитационного взаимодействия двух нуклонов
Gm2

u/r0, разнесенных на расстояние r0, равное комптоновской длине волны
нуклона ~/(muc) и выраженная в энергиях покоя нуклона muc2. Роль безраз-
мерной постоянной αG в теории звезд подобна роли постоянной тонкой струк-
туры α = e2/(~c) = 1/137 в теории атома. Малость αG отражает крайнюю
слабость гравитационного взаимодействия и фактически служит причиной то-
го, что звезды имеют столь большие массы.

Эпиграф к этой главе— why the stars are as they are (почему звезды такие,
какие они есть). Теперь мы более или менее ответили на это ,,почему", во вся-
ком случае в отношении звезд главной последовательности. Этот ответ очень
прост: потому что массы звезд такие, какие они есть — очень большие. Это
приводит к тому, что вес вышележащих слоев создает в недрах звезд огромное
давление и высокие — по земным меркам — плотности. Атомы оказываются
ионизованы и поэтому — в конечном счете, как видим, просто из-за большой
массы звезд — их недра состоят из ионизованного газа. Чтобы сдержать вес вы-
шележащих слоев, этот газ должен иметь очень высокую температуру. Так как
газ непрозрачен, имеющееся при его высокой температуре излучение заперто и
потому является равновесным — планковским. Массы звезд ограничены свер-
ху тем, что это излучение начинает сдувать их наружные слои. Нам осталось
понять, почему массы звезд все же такие большие — больше примерно одной
десятой массы Солнца. Ответ на него вы найдете в следующем разделе. Там
же выяснится, почему массы белых карликов, в отличие от звезд ГП, не могут
превосходить примерно полутора масс Солнца.



4. ВЫРОЖДЕНИЕ ЭЛЕКТРОННОГО ГАЗА И ЕГО СЛЕДСТВИЯ

4.1. Вырожденный
газ

Если сжимать ионизованный газ, поддержи-
вая его температуру постоянной, то в конце
концов будет достигнута плотность, при ко-
торой простейшее уравнение состояния P =

NkT перестает работать. Начинают проявляться квантовые эффекты, конкрет-
но, сказывается действие универсального закона микромира — запрета Паули.
Он распространяется на частицы с полуцелым спином — фермионы. Самые
легкие из имеющихся в газе фермионов — это электроны (спин s = 1/2). На их
распределение по импульсам и влияет в первую очередь запрет Паули. При-
менительно к электронам запрет Паули состоит в том, что в ячейке фазового
пространства координат и импульсов объемом h3 не может одновременно на-
ходиться более двух электронов (двух, а не одного, потому что электроны с
двумя различными возможными для них ориентациями спина не являются
тождественными).

Существенные изменения в поведении газа наступают тогда, когда среднее
расстояние между электронами становится порядка их де-бройлевской длины
волны λ = h/p. При этом волновые функции электронов начинают перекры-
ваться — тут и проявляется запрет Паули. Для импульса при нерелятивистских
тепловых скоростях электронов (v ¿ c) имеем p = mev ∼ (mekT )1/2. Поэтому
условие того, что квантовые эффекты несущественны, записывается так:

Ne λ3 ∼ Ne
h3

(me kT )3/2
¿ 1, (4.1)

где Ne — концентрация свободных электронов. Это условие справедливо при
kT ¿ mec

2, или T ¿ 6 · 109 К, так как только тогда в невырожденном газе
v ¿ c.

Для всех других фермионов критерий наступления вырождения имеет тот
же вид, что и для электронов, с заменой me на массу соответствующего фер-
миона. Но по сравнению с массой электрона массы всех имеющихся в звездах
фермионов — протонов и ядер с нечетным числом нуклонов — очень велики.
Поэтому ионный газ в звездах всегда остается невырожденным. Исключение —
нейтронные звезды, где из-за их колоссальных плотностей (1014 ÷ 1015 г/см3)
нейтронный газ оказывается вырожденным.

В квантовой статистике величину неклассичности нерелятивистского элек-
тронного газа характеризуют значением так называемого параметра вырож-
дения

D =
Ne

N0

, (4.2)

141
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где

N0 =
2 (2π me kT )3/2

h3
= 4.829 · 1015 T 3/2. (4.3)

Он отличается от величины, стоящей в левой части неравенства (4.1), лишь на
числовой множитель. Если D ¿ 1, квантовые эффекты пренебрежимо малы,
и электронный газ является классическим: распределение по скоростям макс-
велловское, а давление электронного газа Pe дается обычной формулой (для
упрощения записи до конца этого пункта индекс e у Pe будет опускаться)

P = Ne kT. (4.4)

Ее можно записать также так:

P =
ρ

µemu
kT, (4.5)

где µe — масса (в атомных единицах массы), приходящаяся на один свободный
электрон.

В последнее время вместо десятилетиями используемого астрофизиками µe все чаще
можно встретить использование обратной ей величины

Ye ≡ 1

µe
.

Очевидно, что Ye есть число электронов, приходящихся на один нуклон. Чтобы запу-
гать читателя, далекого от физики частиц, величину Ye иногда называют лептонным
параметром.

Легко видеть, что для полностью ионизованного газа

µe =
2

1 + X
, (4.6)

где X — весовая доля водорода в газе. В самом деле, пусть X, Y и Z — весовые
доли соответственно водорода, гелия и тяжелых элементов (X + Y + Z = 1).
Если водород полностью ионизован, то в 1 см3 он поставит ρX/mu свободных
электронов — по одному на каждый протон. Ионизованный гелий даст по два
электрона на каждую альфа-частицу: 2

(
ρY/(4mu)

)
, или

(
ρY/(2mu)

)
. Наконец,

число ядер тяжелых элементов в единице объема будет равно ρZ/(Amu), и
каждое из них поставит в газ A/2 электронов, поскольку можно считать, что
в ядрах тяжелых элементов число протонов равно числу нейтронов. Итого в
1 см3 всего окажется (ρ/mu) (X + Y/2 + Z/2) свободных электронов, или

Ne =
ρ

mu

(1 + X)
2

.
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Масса, приходящаяся на один свободный электрон, равна, таким образом,
ρ/Ne = 2 mu/(1+X), так что, действительно, величина µe ≡ 2/(1+X) есть чис-
ло атомных единиц массы, приходящихся на один свободный электрон или, что
то же самое, электронный молекулярный вес. Когда концентрация электронов
Ne становится порядка критического значения N0, скорость роста давления с
увеличением плотности возрастает. Говорят, что в газе началось вырождение.
Сжать такой газ тем труднее, чем он сильнее вырожден, то есть чем больше
параметр вырождения. На качественном уровне это главное проявление вы-
рождения. Давление в вырожденном газе больше, чем было бы в классическом
газе той же температуры и плотности. В предельном случае D À 1 газ на-
зывается сильно вырожденным. Его давление почти не зависит от температу-
ры (вероятно, отсюда и термин ,,вырожденный"). Давление вырожденный газ
оказывает и при T = 0. Оно создается не тепловыми движениями электронов,
а тем, что электроны, занимая нижние энергетические состояния, обладают
ненулевой энергией, которую отнять от них невозможно, так как перейти в еще
более низкие энергетические состояния не дает запрет Паули — эти состояния
уже заняты. С ростом плотности электроны вынуждены поэтому занимать все
более высокие энергетические состояния. Вследствие этого средние импульсы
электронов с ростом электронной концентрации становятся больше, и давление
должно расти не пропорционально электронной концентрации, а быстрее.

От качественной картины перейдем к количественному описанию. Рассмот-
рим предельный случай D = ∞, чему соответствует T = 0. Это так называемый
полностью вырожденный газ. Сразу же заметим, что условие T = 0 не сле-
дует понимать буквально. Чем выше плотность, тем выше та температура, до
которой давление электронного газа остается почти таким же, как при T = 0.
Так, при плотности ∼ 106 г/см3 даже если температура ∼ 107 К (как в белых
карликах), давление электронного газа практически такое же, как при T = 0.
Подробнее об этом — чуть позже.

Для полностью вырожденного газа, как легко получить из соображений
размерности, должно быть P ∝ ρ5/3. Действительно, давление в любом идеаль-
ном газе, как в обычном невырожденном, так и в вырожденном с произвольной
степенью вырождения, — это скорость передачи импульса помещенной в газ
единичной площадке. В идеальном газе давление изотропно, и потому ориента-
ция площадки произвольна. Поскольку вырождение — это квантовое явление,
одним из определяющих размерных параметров задачи должна служить посто-
янная Планка }. Мы обсуждаем давление, создаваемое электронами. Поэтому
еще одна размерная определяющая величина — это масса электрона me. На-
конец, темп передачи импульса площадке существенно зависит от имеющейся
в газе концентрации электронов Ne. Обозначая, как обычно, через [Q] размер-
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ность произвольной величины Q, мы можем поэтому написать

[P ] =
[
}α m β

e Nγ
e

]
(4.7)

и подобрать показатели α, β и γ так, чтобы степени, в которых грамм, санти-
метр и секунда входят слева и справа, совпадали. Это дает

P = C1

}2

me
N5/3

e .

Следует ожидать, что безразмерный коэффициент C1 — число порядка едини-
цы. Вводя, далее, средний молекулярный вес в расчете на один электрон µe,
определяемый так, что

Ne =
ρ

µemu
, (4.8)

получаем выражение для давления в виде

P = C1

}2

mem
5/3
u

(
ρ

µe

)5/3

. (4.9)

Точная формула, даваемая квантовой статистикой, имеет в точности такой же
вид, и единственное уточнение, которое появляется, — это значение коэффи-
циента C1. Он действительно оказывается числом порядка единицы, именно,

C1 =
1
5

(
3π2

)2/3
= 1.914. (4.10)

Вводя это C1 в (4.9), окончательно получаем строгое выражение для давления
в нерелятивистском (НР) полностью вырожденном электронном газе:

НР : P = K1

(
ρ

µe

)5/3

, ρ0 ¿ ρ ¿ ρ1, (4.11)

где

K1 =
1
20

(
3
π

)2/3
h2

mem
5/3
u

= 1.004 · 1013 дин · см−2(г ·см−3)−5/3. (4.12)

Область применимости уравнения состояния (4.11) ограничена как снизу,
так и сверху. При малых плотностях мы имеем классический невырожденный
газ. Эффекты вырождения начинают проявляться, когда параметр вырожде-
ния D становится порядка единицы. Критическая плотность ρ0, которой соот-
ветствует D = 1, равна

ρ0 = µemuN0 = µemu
2 (2π me kT )3/2

h3
, (4.13)
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или в числах

ρ0 = 0.80 · 10−8 µe T 3/2 = µe

(
T

250 000

)3/2

г· см−3. (4.13 ′)

Для оценки порядка величины ρ0 — а ведь только порядок величины нам и ну-
жен — можно поступить и иначе. Следует приравнять выражения для давления
в классическом и в полностью вырожденном газе. Обозначим получающуюся
таким путем оценку критической плотности через ρ0

′, так что

ρ0
′

µemu
kT = K1

(
ρ0
′

µe

)5/3

.

Легко убедиться, что

ρ0
′ =

5
3

√
10
π

ρ0 ≈ 3 ρ0,

и поэтому в важнейшем для теории белых карликов случае, когда в газе нет
водорода (X = 0),

ρ0
′ =

(
T

75 000

)3/2

при µe = 2. (4.14)

Согласно этому критерию, при T ∼107 К газ становится вырожденным при ρ∼
103 г/см3, а при ρÀ103 г/см3 вырождение сильное. Значит, при ρÀ103 г/см3

давление электронного газа будет даваться формулой (4.11). Несмотря на то,
что ионная компонента газа имеет температуру T = 107 K, давление электрон-
ного газа не зависит от температуры и потому можно принять, что для него
T = 0, так что электронный газ можно считать холодным.

Верхнюю границу области применимости формулы (4.11) мы получим чуть
позже.

Как уже говорилось, быстрый рост давления в вырожденном газе (P ∝ρ5/3)
объясняется тем, что при росте плотности в нем должны появляться элек-
троны со все большими импульсами, поскольку нижние квантовые состояния
заняты, и электронам приходится занимать все более высокие состояния. В
конце концов в газе должны будут появиться электроны со скоростями, близ-
кими к скорости света — релятивистские. Так как дальнейший рост скорости
невозможен, появляется качественно новая ситуация. Рост давления должен
замедлиться. Когда плотность настолько велика, что бо́льшая часть электро-
нов имеет скорости, близкие к скорости света, говорят, что электронный газ
стал ультрарелятивистским (УР). Уравнение состояния для этого предель-
ного случая также можно получить из анализа размерностей. Ясно, что среди
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определяющих размерных параметров теперь должна фигурировать скорость
света, и (4.7) следует заменить на

[P ] =
[
}α1 c β1 Nγ1

e

]
. (4.15)

Значения показателей α1, β1 и γ1 находятся таким же образом, как и в нере-
лятивистском случае, что дает

P = C2

c }
m

4/3
u

(
ρ

µe

)4/3

. (4.16)

Коэффициент C2 из соображений размерности получить, конечно, нельзя.
Строгое рассмотрение в рамках квантовой статистики дает

C2 =
1
4

(
3π2

)1/3
= 0.773. (4.17)

Таким образом, мы имеем следующее точное выражение для давления полно-
стью вырожденного ультрарелятивистского электронного газа:

УР : P = K2

(
ρ

µe

)4/3

, ρ1 ¿ ρ ¿ ρ2. (4.18)

Здесь

K2 =
1
8

(
3
π

)1/3
c h

m
4/3
u

= 1.243 · 1015 ≈ 1015 дин · см−2(г·см−3)−4/3. (4.19)

Применимость этой формулы со стороны высоких плотностей ограничива-
ется началом процесса нейтронизации. Когда достигается плотность ρ ∼ ρ2,
появляются электроны настолько высокой энергии, что они способны начать
превращать протоны ядер в нейтроны (так называемый обратный β-распад).
Конкретное значение плотности, при котором это начинает происходить, опре-
деляется химическим (точнее, ядерным) составом вещества. Так, для углерода
12C имеем ρ2 = 3.9 ·1010 г/см3, для кислорода 16O порог начала нейтронизации
ρ2 = 1.9 · 1010 г/см3 и т. д. Подробнее см. Гл. IX, п. 2.3, с. 409.

Формулы (4.11) и (4.18) играют чрезвычайно важную роль в физике звезд.
Первая из них применима при (ρ/µe)¿ ρ1∼ 106 г/см3, вторая — в противопо-
ложном случае. Этот критерий немедленно получается приравниванием выра-
жений для P для НР и УР пределов (проверьте!). Характерная плотность
ρ1 играет важную роль в теории вырожденных звезд. Строгое рассмотрение
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в рамках квантовой статистики показывает, что критическую плотность ρ1,
при которой происходит переход от нерелятивистского режима к ультрареля-
тивистскому, следует вводить несколько иначе, именно, как ту плотность, при
которой наибольшие импульсы у имеющихся в полностью вырожденном газе
электронов становятся равны mec. При этом оказывается, что

ρ1 =
8π

3
mu

(mec

h

)3

= 9.739 · 105 ≈ 106 г/см3
. (4.20)

Заметим, что ρ1 можно записать также и так:

ρ1 =
8π

3
mu

λ3
C

, (4.21)

где λC = h/(mec) — комптоновская длина волны электрона. Таким образом,
ρ1 — это плотность, при которой на объем порядка λ3

C (точнее, ∼ 0.1 λ3
C) при-

ходится одна протонная масса.
Как и следовало ожидать, приближенный способ введения критической

плотности ρ1, который использовали мы, — приравнивание давлений, дава-
емых формулами (4.11) и (4.18), — привел к результату, очень близкому к
(4.20). Отличие от (4.20) — лишь на числовой множитель, близкий к 2 (точнее,
равный (5/4)3 = 1.95 — можете проверить).

Уравнение состояния полностью вырожденного электронного газа с произ-
вольной степенью релятивизации, справедливое при любых достаточно боль-
ших плотностях, а не только при ρ/µe¿106 г/см3 или ρ/µeÀ106 г/см3, лежа-
щее в основе общей теории механического равновесия белых карликов, см. в
Гл. X.

Что касается уравнения состояния P = P (ρ, T ) частично вырожденного
электронного газа (плотности ρ ∼ ρ0), то оно также важно для физики звезд.
К сожалению, однако, это уравнение или, точнее, задающие его параметриче-
ские уравнения имеют громоздкий вид. Поэтому аккуратное обсуждение этого
вопроса мы сочли возможным сейчас опустить. Пока же укажем, что для нере-
лятивистской области (ρ ¿ ρ1) в ряде случаев можно использовать простую
интерполяционную формулу для давления электронного газа

P ≈ ρ

µemu
kT + K1

(
ρ

µe

)5/3

. (4.22)

Не претендуя на точность, эта формула оказывается очень полезной при
обсуждении качественных эффектов, вызываемых наступлением вырождения
при росте плотности. При низких электронных концентрациях, Ne ¿ N0, когда
вырождения нет, эта формула дает классический результат (4.5), тогда как
при NeÀN0 второе слагаемое сильно превосходит первое, и (4.22) переходит в
(4.11). Пример использования аппроксимации (4.22) см. в следующем пункте.
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Рис. III.4.1:

Эскиз графика зависимости давления электронного газа от плотности.
Изменения наклона кривой при переходе от одной области к другой

намеренно преувеличены.

Наш краткий экскурс в статистическую физику подошел к концу. Резюми-
руем результаты. На рис. III.4.1 представлен эскиз графика зависимости давле-
ния электронного газа от плотности (точнее, от ρ/µe). При низких плотностях,
пока Ne¿N0, газ не вырожден, и P ∝ρT

(
формула (4.5)

)
. По достижении плот-

ности порядка ρ0∼103 T
3/2
7 г/см3, где T7 ≡ T/107, начинает сказываться вы-

рождение, и рост давления становится более быстрым. В переходной области,
при ρ∼ρ0, уравнение состояния имеет сложный вид. Мы будем в этой области
использовать интерполяционную формулу (4.22). При ρÀρ0 электронный газ
сильно вырожден, и давление его не зависит от температуры. Формально ее
можно считать равной нулю (хотя кинетическая температура невырожденного
ионного газа может при этом быть и высокой). Пока плотность остается ма-
ла по сравнению с ρ1 ∼ 106 г/см3, давление пропорционально ρ5/3 (формулы
(4.11) и (4.12), нерелятивистский вырожденный газ). По достижении плотно-
сти ρ∼ρ1 газ становится частично релятивистским, и скорость роста давления
с увеличением плотности несколько уменьшается. Наконец, при плотностях
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ρÀ106 г/см3 давление растет пропорционально ρ4/3
(
формулы (4.18) и (4.19

)
,

ультрарелятивистский газ). Как мы вскоре увидим, невинное на первый взгляд
уменьшение показателя степени у ρ с 5/3 до 4/3 имеет колоссальные послед-
ствия для физики звезд. Область плотностей, при которых начинаются про-
цессы нейтронизации, ρ∼ρ2, где ρ2∼(2÷ 4) · 1010 г/см3, мы пока обсуждать не
будем. С ней приходится иметь дело фактически лишь в двух случаях — при
рассмотрении физики вспышек сверхновых и в теории нейтронных звезд. Ни
то, ни другое не служит предметом обсуждения в этой части нашего руковод-
ства.

4.2. Минимальная
масса звезд ГП

Мы уже не раз упоминали о том, что вы-
рождение играет важнейшую роль в физике
белых карликов и нейтронных звезд — этих

финальных стадий звездной эволюции. Оказывается, что его роль не менее
важна и при рождении звезд. Мы сейчас покажем, что фактически именно вы-
рождение электронного газа кладет нижний предел возможным массам звезд
главной последовательности.

Сжимающаяся протозвезда, еще не достигшая ГП, имеет в своем распо-
ряжении единственный источник энергии — гравитационный. Сначала про-
исходит коллапс и выделяющаяся энергия расходуется главным образом на
диссоциацию молекул H2 и ионизацию атомарного водорода. Когда эти про-
цессы завершены, устанавливается гидростатическое равновесие и начинается
медленное кельвиновское сжатие. На этом этапе звезда состоит из идеального
газа и, согласно теореме вириала, выделяющаяся при сжатии гравитационная
энергия делится пополам — одна половина расходуется на излучение, другая
запасается в звезде в форме тепловой энергии газа. Поэтому по мере сжатия
температура должна возрастать. Как было показано в п. 2.2 (с. 127), темпера-
тура в центре Tc растет пропорционально ρ

1/3
c , а именно

Tc = c1

µ

R∗ GM2/3ρ1/3
c . (4.23)

Если сжатие происходит гомологически, коэффициент c1 остается постоянным.
Его можно принять равным c1 = 0.48, так как сжимающийся газовый шар ока-
зывается полностью конвективным и представляет собой политропу индекса
n = 3/2

(
так что P (r)∝ρ(r)5/3

)
.

Разогрев газа, описываемый формулой (4.23), не будет продолжаться беско-
нечно. В зависимости от того, какова масса протозвезды M , произойдет одно
из двух. Если масса достаточно велика, в конце концов будут достигнуты тем-
пературы, достаточные для начала термоядерного горения водорода, и сжатие
прекратится. Температура и плотность стабилизируются. Протозвезда превра-
тилась в химически однородную звезду ГП. Дальнейшая эволюция происходит
уже на ядерной шкале времени. Однако возможен и другой вариант развития
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событий. При меньших массах еще до достижения термоядерных температур
может наступить частичное вырождение электронного газа. Давление же вы-
рожденного газа, как говорилось в предыдущем пункте, больше, чем у максвел-
ловского газа той же плотности и температуры, так что газ делается ,,жестче",
сжимаемость его уменьшается. В итоге сжатие должно будет замедлиться, а
затем и вовсе прекратиться — ,,звезда", а точнее, несостоявшаяся звезда за-
висает на давлении вырожденного электронного газа. При этом температура,
достигнув максимума, начинает убывать. Такой объект — его можно назвать
псевдозвездой — внешне ничем не отличается от обычной звезды. Однако в
недрах его не происходили и никогда не будут происходить термоядерные ре-
акции превращения водорода в гелий, а потому, по определению, это не звезда.
В зависимости от массы, это либо рождающийся бурый карлик, либо будущая
газовая планета.

От слов — к делу. Приступим к количественному анализу процесса кель-
виновского сжатия протозвезды небольшой массы. Не будучи вполне строгим,
этот анализ тем не менее позволит выявить суть дела. В основу рассмотрения
положим предположение, что в центре конфигурации ионная компонента газа
не вырождена, тогда как электронный газ, напротив, на достаточно продви-
нутых этапах сжатия становится заметно вырожденным. Кроме того, будем
считать газ идеальным, то есть пренебрежем кулоновскими взаимодействиями
частиц. Тогда в центре протозвезды давление ионной компоненты газа (ин-
декс i) удовлетворяет классическому уравнению состояния

Pi =
R∗
µi

ρT, (4.24)

где µi — ионный молекулярный вес. Для давления же частично вырожденно-
го электронного газа примем приближенное уравнение состояния, о котором
говорилось в конце предыдущего пункта:

Pe =
R∗
µe

ρT + K1

(
ρ

µe

)5/3

. (4.25)

Оно верно описывает асимптотики — невырожденный электронный газ при
низких плотностях (преобладает первое слагаемое) и сильно вырожденный —
при высоких (второе слагаемое много больше первого). В области промежуточ-
ных плотностей эта простая интерполяционная формула приближенно учиты-
вает частичное вырождение. Принимая во внимание, что N = ρ/(µmu), Ni =
ρ/(µi mu), Ne = ρ/(µe mu) и N = Ni + Ne, заключаем, что

1
µ

=
1
µi

+
1
µe

.
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Поэтому для полного давления P = Pi + Pe в центре конфигурации (индекс c)
будем иметь

Pc =
kTc

µ mu
ρc + K1

(
ρc

µe

)5/3

. (4.26)

С другой стороны, поскольку система считается гидростатически равновесной,
то, как мы знаем

(
формула (1.17), с. 119

)
,

Pc = c1 GM2/3ρ4/3
c . (4.27)

Комбинируя эти две формулы, получаем простое соотношение, связываю-
щее важнейшие параметры газа в центре конфигурации заданной массы — его
температуру и плотность:

kTc = µmu c1 GM2/3 ρ1/3
c − µmu K1µ

−5/3
e ρ2/3

c . (4.28)

Итак, в произвольной гидростатически равновесной конфигурации заданной
массы M и химического состава (он определяет значения µ и µe) плотность в
центре однозначно определяет температуру.

В формуле (4.28) заключена очень важная информация. У двух членов в
правой части (4.28) зависимость от ρc разная. Пока плотность мала, первое сла-
гаемое значительно больше второго, и последним можно пренебречь. На этом
этапе сжатие звезды, ведущее к росту ρc, сопровождается сравнительно быст-
рым увеличением Tc

(
пропорциональным ρ

1/3
c , см. формулу (4.23)

)
. Однако по

мере роста плотности положение постепенно меняется. Из-за более сильной за-
висимости второго слагаемого от ρc его вклад увеличивается. В результате рост
Tc замедляется, температура достигает максимума, а затем начинает убывать
(рис. III.4.2). Самое главное для нас сейчас — найти ту наибольшую темпера-
туру, которой может достичь газ в центре сжимающегося самогравитирующего
газового шара заданной массы и выяснить, чему равна та минимальная масса,
при которой эта температура достаточна, чтобы начались протон–протонные
реакции горения водорода.

Обозначим максимальную развивающуюся в ходе сжатия температуру че-
рез T∗, а плотность, при которой она достигается, — через ρ∗. Переписав для
удобства (4.28) в виде

kTc = A1 ρ1/3
c −A2 ρ2/3

c (4.29)

и приравняв производную к нулю, найдем, что

kT∗ =
A2

1

4A2
, ρ∗ =

(
A1

2A2

)3

. (4.30)
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Рис. III.4.2:

Изменение температуры при гомологическом сжатии политропы индекса
n = 3/2. Химический состав: X = 0.70, Y = 0.27, Z = 0.03. Числа у кривых —

значения M ≡ M/M¯.
При расчете использована аппроксимация уравнения

состояния (4.26).

Подставив сюда для A1 и A2 их явные выражения из (4.28), а для K1 — из
(4.12), после некоторой перегруппировки сомножителей получаем окончатель-
но

kT∗ = κT µµ5/3
e

(
M

M?

)4/3

mec
2, (4.31)

где M? — обсуждавшаяся нами в п. 3.6, с. 139, характерная масса:

M? =
(

} c

Gm
4/3
u

)3/2

= 1.8797 M¯

и κT — числовой коэффициент, определяемый ходом плотности:

κT =
5

4π2

(π

3

)2/3

c2
1 = 0.1306 c2

1 . (4.32)
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В частности, для политроп имеем

κT = 2.984 · 10−2 при n = 3/2; κT = 1.729 · 10−2 при n = 3. (4.33)

Представление максимальной температуры, развивающейся в сжимающем-
ся самогравитирующем газовом шаре, в форме (4.31) весьма поучительно в тео-
ретическом плане. Эта формула ясно демонстрирует ту принципиально важ-
ную роль, которую играет в жизни звезд фундаментальная масса M?. Однако
с чисто астрономической точки зрения гораздо важнее не структура формулы,
а реальные числа, которые она дает. Для политропы с n = 3/2 формула (4.31)
в числах принимает вид (M = M/M¯):

T∗ = 7.63 · 107 µµ5/3
e M4/3. (4.34)

Если температура T∗ достаточна для того, чтобы начавшиеся термоядер-
ные реакции покрывали потери на излучение, сжатие прекращается. Прото-
звезда превратилась в звезду главной последовательности. При малых массах
термоядерные температуры не достигаются — звезда не ,,зажглась". Рождает-
ся бурый карлик (или даже газовая планета). Существует небольшой интер-
вал масс, при которых в ходе сжатия термоядерные реакции начинаются, но
мощность их оказывается все же не достаточной для того, чтобы полностью
скомпенсировать потери на излучение. В этом случае сжатие замедляется, но
не прекращается полностью. Температура, пройдя через максимум, начина-
ет падать, и ядерные реакции постепенно затухают. Итог — рождение бурого
карлика.

Итак, при ρ < ρ∗ сжатие ведет к разогреву. Здесь газовый шар обладает
отрицательной теплоемкостью. При ρ>ρ∗ сжатие не способно разогревать газ,
и он охлаждается. На этом этапе теплоемкость сжимающегося газового шара
положительна.

Плотность при той максимальной температуре T = T∗, которая достигается
в ходе сжатия, равна, как мы видели выше

(
см. (4.30)

)
,

ρ∗ =
(

A1

2A2

)3

,

что после подстановки значений A1 и A2 можно привести к виду

ρ∗ = κρ µ5
e

(
M

M?

)2

ρ1, (4.35)

где κρ — численный коэффициент:

κρ =
125

24 π2
c3
1 (4.36)
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и ρ1≈106 г/см3 — характерная плотность, обсуждавшаяся в предыдущем пунк-
те

(
формула (4.20), с. 147

)
. Приведем для справок значения κρ для политроп

индексов n = 3/2 и n = 3:

κρ = 0.0576 при n = 3/2; κρ = 0.0254 при n = 3. (4.37)

Если массу измерять в массах Солнца, то для политропы с n = 3/2 формула
(4.35) дает

ρ∗ = 1.630 · 10−2 µ5
e M2 ρ1 = 1.587 · 104 µ5

e M2. (4.38)

Насколько точны числа, которые дают формулы (4.34) и (4.38)? Это в гораз-
до большей мере определяется той точностью, которую обеспечивает исполь-
зованная нами аппроксимация уравнения состояния, чем принятое значение
структурного множителя c1. Даже если пренебрегать кулоновскими взаимо-
действиями, то есть по-прежнему считать газ идеальным, вместо интерполя-
ционной формулы (4.25) следовало бы использовать точное выражение для
давления частично вырожденного электронного газа. Нетрудно убедиться, что
вблизи максимума кривых Tc = Tc(ρc) вырождение электронного газа не явля-
ется сильным, а потому на результате должна заметно сказываться неточность
применяемого нами уравнения состояния. Действительно, при T = T∗ мы име-
ем

N0 =
2 (2π me kT∗)3/2

h3
=

2
h3

(
2π me

A2
1

4A2

)3/2

,

а электронная концентрация при ρ = ρ∗ равна

Ne =
ρ∗

µemu
=

1
µemu

(
A1

2A2

)3

,

так что параметр вырождения при T = T∗ и ρ = ρ∗ оказывается равен

D∗ =
5
3

√
10
π

(
µe

µ

)3/2

= 2.97
(

µe

µ

)3/2

.

Любопытно, что D∗ не зависит ни от массы объекта, ни от хода плотности
в нем. Последний определяет значение структурного множителя c1, а он из
выражения для D∗ выпал.

Для протозвезды из чистого водорода, таким образом, D∗≈ 6
√

2 ≈ 8.4, так
что предположение о сильном вырождении здесь фактически не выполняет-
ся. Поэтому точность наших результатов определяется тем, насколько хоро-
шо простая интерполяционная формула (4.25) работает в области частичного
вырождения. В итоге к числам, которые дает выражение (4.34), являющее-
ся следствием (4.25), следует относиться с осторожностью. Это не более чем
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оценки, впрочем, как оказывается, не такие уж плохие. Однако самый важный
вывод, к которому мы пришли, — общий вид зависимости Tc от ρc, с макси-
мумом при некотором Tc = T∗, — безусловно должен оставаться верен и при
использовании более реалистичного уравнения состояния.

Помня все эти оговорки, обратимся к числам. Согласно (4.34), при M = 0.1
имеем T∗≈ 1.4 · 106 К, при M = 0.05 максимальная температура не дости-
гает и миллиона кельвинов: T∗≈ 0.7 · 106 К (солнечный химический состав:
µ = 0.61, µe = 1.17). Можно считать, что именно где-то в этом интервале тем-
ператур, скорее у его верхнего предела, термоядерные реакции горения водо-
рода практически прекращаются. Действительно, при T = 1.4 · 106 К скорость
протон–протонной реакции на 6 порядков ниже, чем при T = 15 · 106 К, то
есть в центре Солнца. Поэтому мы приходим к заключению, что природные
водородные термоядерные реакторы с гравитационным удержанием плазмы,
которые мы называем звездами, в начале своей эволюции должны иметь мас-
сы не менее ∼ 0.1 M¯. Детальные расчеты лишь слегка уточняют это заключе-
ние. Оказывается, что при солнечном химическом составе минимальная масса
звезды составляет около 0.08 M¯ (так называемый предел Кумара).

Помимо чисел, формула (4.31) интересна также, так сказать, в идейном
плане. Из нее следует, что минимальные массы звезд ГП по сути дела опре-
деляются той же фундаментальной массой M? = 1.85 M¯, которая, как мы
убедились в предыдущем разделе, определяет и их максимальные массы. Диа-
пазон масс звезд в начале их термоядерной жизни — на ГП — от Mmin∼0.04 M?

до Mmax∼50 M?. Замечательно, что масса M? столь просто выражается через
мировые постоянные, именно, M? = mu α

−3/2
G , где αG — гравитационный ана-

лог постоянной тонкой структуры (см. п. 3.6, с. 140). Можно думать, что масса
M? должна играть ключевую роль во всей физике звезд, и еще до конца этого
раздела мы получим тому подтверждения. С другой стороны, следует иметь
в виду огромное различие в физике процессов, ограничивающих массы звезд
ГП сверху и снизу, хотя в обоих случаях и появляется одна и та же характер-
ная масса M?. Поэтому должно быть очевидно, что в физике звезд с помощью
одних только соображений размерности и разного рода полуколичественных
оценок далеко продвинуться невозможно. Требуется расчет точных значений
числовых множителей при различных ,,естественных" для той или иной задачи
комбинациях физических переменных. В ходе эволюции звезды эти множители
к тому же изменяются со временем. В итоге в проблемах звездной эволюции
порядковые оценки и общие физические соображения играют не более чем под-
собную роль. Бал же правят детальные численные расчеты.

В заключение отметим еще два момента. В проведенном выше анализе мы
пользовались приближенным уравнением состояния. Для наших целей этого
оказалось достаточно. Однако, каково бы ни было уравнение состояния веще-
ства P = P (ρ, T ), для любого равновесного самогравитирующего шара соглас-
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но (4.27) должно строго выполняться соотношение

Pc(ρc, Tc) = c1 GM2/3ρ4/3
c , (4.39)

являющееся прямым следствием механического равновесия. Существенно, что
входящий в это соотношение коэффициент c1 не очень чувствителен к ходу
плотности вдоль радиуса. Последнее делает соотношение (4.39) весьма эффек-
тивным инструментом для анализа не только процесса сжатия протозвезд, но
и ряда других вопросов, связанных со строением и эволюцией звезд. Для аст-
рофизиков эволюционные треки на диаграмме Герцшпрунга – Рессела — это
привычный способ представления хода звездной эволюции. Не менее полезны в
смысле понимания физики звездных недр и эволюционные треки на плоскости
(Tc, ρc), но, к сожалению, они гораздо менее популярны в широком астроно-
мическом сообществе.

Второй момент, который мы хотим подчеркнуть, — это то, что соотношение
(4.39), как и его частный случай (4.28), из которого мы исходили, выполняются
независимо от того, идут ли в газе термоядерные реакции, или нет. Отсюда
вовсе не следует, что энергетика несущественна. Именно она определяет вид
зависимостей Tc и ρc от времени, то есть ход эволюции звезды, но этим мы
сейчас не занимаемся.

4.3. О равновесии
белых карликов

Изменим немного начальные условия сце-
нария, который был описан в предыдущем
пункте. Пусть теперь у нас вместо обособив-
шегося фрагмента сжимающегося межзвезд-

ного облака имеется газовый шар, представляющий собой обнажившиеся недра
проэволюционировавшей звезды, в которых не только водород перегорел в ге-
лий, но и гелий успел превратиться в смесь углерода и кислорода, а наружная
оболочка ,,исчезла" — со звезды дул звездный ветер, она сбросила часть своих
наружных слоев, родив планетарную туманность...

Итак, перед нами опять самогравитирующий гидростатически равновесный
газовый шар без внутренних источников энергии, на этот раз, правда, гораз-
до более горячий. Предположим сначала, что его масса невелика, скажем,
M ' 0.3. События, которые развернутся, по-прежнему описываются форму-
лой (4.28) с соответствующими значениями µ и µe. Для смеси C и O в любой
пропорции µ = µe = 2. Сначала, сжимаясь, шар будет разогреваться, но да-
же в центре не сумеет достичь температуры, при которой загорается углерод
(T ∼ 6 · 108 К).

Что будет происходить дальше? Сжатие будет продолжаться, однако те-
перь оно будет вести не к нагреву, а к охлаждению недр. По мере охлаждения,
сопровождающегося ростом плотности, вырождение электронного газа будет
становиться все более сильным, а его вклад в давление — все бо́льшим. Фак-
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тически равновесие такой сильно вырожденной звезды — белого карлика —
определяется балансом гравитационного давления

(
первый член в правой ча-

сти (4.28)
)
и давления практически полностью вырожденного электронного

газа (второе слагаемое там же). Разность между ними, равная kT , гораздо
меньше каждого из этих членов, и поэтому, когда остывание зашло достаточ-
но далеко, в (4.28) можно положить T = 0, что приводит к такому практически
точному условию равновесия сильно вырожденной звезды малой массы:

K1µ
−5/3
e ρ1/3

c = c1 GM2/3, (4.40)

или
A1 = A2 ρ1/3

c . (4.41)

Сопоставление последней формулы со второй формулой в (4.30) показывает,
что при T = 0

ρc = 8 ρ∗, (4.42)

так что согласно (4.38)

ρc =
[
0.130 (µ2

e M)2
]

µeρ1, (4.43)

или
ρc = 1.27 · 105 µ5

e M2 г/см3
. (4.44)

Целесообразность несколько странной на первый взгляд группировки сомно-
жителей в (4.43) вскоре станет понятной.

Как уже говорилось в п. 4.1, условие T = 0, выполнение которого предпо-
лагается в (4.42) — (4.44), не следует понимать буквально. Процесс остывания
лишенной источников энергии звезды описывается теми частями кривых на
рис. III.4.2, которые лежат справа от максимумов. Видно, что кривые резко
заворачивают вниз и становятся почти вертикальными. Как только мы попали
в эту область, можно с хорошим приближением считать, что звезда ,,зависла"
на давлении полностью вырожденного электронного газа и ее сжатие прак-
тически прекратилось, а понижение температуры обусловлено тем, что она
высвечивает запас тепловой энергии невырожденной (ионной) компоненты га-
за. Охлаждение недр, однако, практически не сказывается на механическом
равновесии, так как его обеспечивает давление сильно вырожденного элек-
тронного газа, значительно превышающее давление ионной компоненты газа.
Поэтому на этом этапе остывания при рассмотрении механического равновесия
в уравнении состояния электронного газа можно полагать T = 0, то есть счи-
тать электронный газ полностью вырожденным. Это предположение лежит в
основе стандартной теории белых карликов.

Убедимся, что результаты, даваемые полученными формулами, согласуют-
ся с реальными параметрами белых карликов. Прежде всего, удостоверимся,
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что при достаточно малых массах белых карликов (скажем, M<∼ 0.3) плотно-
сти в их недрах не достигают критического значения µe ρ1 = 2 · 106 г/см3, при
котором становятся существенными эффекты релятивистского вырождения
и использовавшееся нами уравнение состояния перестает работать. Фактиче-
ски надо убедиться, что коэффициент при µeρ1 в (4.43) — тот самый, который
заключен в этой формуле в квадратные скобки — по порядку меньше единицы.
Поскольку µe = 2/(1+X), где X — весовая доля водорода, а его в недрах белых
карликов нет вовсе (X = 0), то µe = 2. В итоге при M<∼ 0.3 интересующий нас
множитель <∼ 0.19, так что даже в центре конфигурации электронный газ еще
нерелятивистский (хотя при M = 0.3 уже и на пределе).

Итак, во всех белых карликах малых масс, M<∼ 0.3, электронный газ яв-
ляется нерелятивистским и при достаточно низких температурах их недр
(T <∼ 107 К) он сильно вырожден, так что его давление, противостоящее гра-
витации, дается формулой (4.11). Самогравитирующие шары, в которых плот-
ность и давление связаны степенно́й зависимостью P (r)∝ ρ(r)1+1/n — это по-
литропы индекса n (см. разд. IV.1). Таким образом, белые карлики малых масс
представляют собой политропы с n = 3/2, и потому использование нами при
вычислении коэффициентов значения структурного множителя c1 = 0.4780,
отвечающего такой политропе, вполне оправдано.

Уравнение состояния полностью вырожденного нерелятивистского элек-
тронного газа сравнительно жесткое. Так как здесь P ∝ ρ5/3, то даже боль-
шой рост давления вызывает не очень сильное увеличение плотности. В такой
ситуации следует ожидать, что плотность в центре будет не слишком сильно
отличаться от средней. И действительно, как показывается в теории политроп
(см. разд. IV.2), при n = 3/2 имеем ρc/ρ = 6 (точнее, 5.99). Поскольку, с одной
стороны, ρ∝ (M/R3), а с другой, при учете (4.44), ρ∝ ρc∝M2, то оказывает-
ся, что R∝M−1/3. Подсчет коэффициента пропорциональности мы опускаем.
Его можно выполнить, пользуясь соотношением масса – радиус для политроп(
формулы (2.7) — (2.8), с. 187; см. также с. 443

)
. Результат таков:

R = R/R¯ = 4.05 · 10−2µ−5/3
e M−1/3. (4.45)

Таким образом, в полном согласии с тем, что реально наблюдается, радиусы
белых карликов небольших масс оказываются порядка 10−2R¯. Так, при M =
0.3 и, разумеется, µe = 2, так как водорода в недрах белых карликов нет, имеем
R ∼ 0.02 R¯. Главное: согласно (4.45), с ростом массы размеры белых карликов
уменьшаются, R ∝ M−1/3.

Этот результат на первый взгляд кажется неожиданным, противоречащим
повседневному опыту — ведь чем тяжелее камень, тем он больше. Да и пла-
неты земной группы тоже имеют тем больший размер, чем больше их масса.
Почему же у белых карликов ,,все вверх ногами" — чем больше масса, тем
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меньше размер? Дело, разумеется, в уравнении состояния их вещества — оно
хоть и ,,жесткое", но все же не очень: под действием веса вышележащих слоев
вырожденный газ сравнительно легко сжимается.

Отметим еще, что согласно (4.44) с ростом массы центральные плотности
,,легких" белых карликов растут: ρc ∝ M2. Поскольку для политроп ρc/ρ не
зависит от их массы (и для политропы с n = 3/2 равно ∼ 6), то и средние
плотности белых карликов малых масс растут ∝ M2.

Хотя белые карлики малых масс, к которым относится изложенная толь-
ко что теория, широко распространены в качестве компонентов двойных си-
стем, у подавляющего большинства одиночных белых карликов массы близки
к 0.6 M¯, и к ним эта теория неприменима. Действительно, наивная попытка
использовать полученные выше результаты сразу приводит к противоречию.
Согласно формуле (4.44), плотность в центре белого карлика с M = 0.6 M¯
и µe = 2 была бы ρc ' 1.5 · 106 г/см3 ∼ µeρ1 = 2 · 106 г/см3. Таким образом,
это в точности та плотность, при которой электронный газ является частич-
но релятивистским, и поэтому уравнение состояния, которым мы до сих пор
пользовались (P ∝ ρ5/3), здесь не работает. Последовательная теория белых
карликов любых возможных для них масс должна базироваться на точном
уравнении состояния, аккуратно учитывающем переход от нерелятивистского
режима

(
P∝ρ5/3, формула (4.11)

)
к ультрарелятивистскому

(
P ∝ρ4/3, форму-

ла (4.18)
)
. Эта теория излагается в Гл. X.

Очевидно, что по мере релятивизации газа, при плавном переходе от P ∝
ρ5/3 к P ∝ρ4/3, вещество постепенно становится менее жестким, так что сжать
газ становится легче. Это приводит к тому, что, во-первых, скорость уменьше-
ния радиуса с ростом M увеличивается по сравнению с тем, что дает (4.45),
и, во-вторых, степень концентрации материи к центру, за меру которой можно
взять ρc/ρ, возрастает. В итоге в конце концов должны быть достигнуты столь
большие плотности, что электронный газ станет ультрарелятивистским почти
во всем белом карлике. Тогда согласно (4.18) давление и плотность при всех r
будут связаны соотношением

P (r) = K2

(
ρ(r)
µe

)4/3

,

так что такой белый карлик — это политропа с n = 3. В частности, в центре
конфигурации, при r = 0, давление газа равно

Pc = K2

(
ρc

µe

)4/3

.

Оно должно сдерживаться весом вышележащих слоев, создающих, как мы зна-
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ем, гравитационное давление (см. п. 1.5 Гл. III, с. 119)

Pc = c1 GM2/3 ρ4/3
c ,

причем значение c1 здесь следует брать соответствующим политропе n = 3,
именно, c1 = 0.3639. Замечательно, что зависимость от ρc в этих двух выраже-
ниях одинаковая, и при приравнивании их она выпадает. В итоге мы приходим
к соотношению

c1 G
(
µ2

e M
)2/3

= K2. (4.46)

Оно определяет то единственное (при заданном µe) значение массы, при ко-
тором звезда, давление в которой создается ультрарелятивистским вырожден-
ным электронным газом, может находиться в равновесии. Обозначим эту выде-
ленную массу через M♦. Это наибольшая возможная масса белого карлика —
знаменитый предел Чандрасекара (С.Чандрасекар, 1931 г.). Поскольку, как мы
знаем (см. п. 4.1),

K2 =
1
8

(
3
π

)1/3
c h

m
4/3
u

,

формула (4.46) после элементарной выкладки позволяет представить M♦ в
следующем виде:

M♦ = µ1

√
3π

2

(
c~

Gm
4/3
u

)3/2 1
µ2

e

. (4.47)

При получении этого представления M♦ мы воспользовались выражением по-
стоянной c1 через параметр µ1 из теории политроп (см. п. IV.2.4, с. 192). [При-
зываем к осторожности с различными µ. Молекулярные веса µ, µe и µi — это,
образно говоря, родные братья, тогда как µ1 — нечто совсем другое, не более
чем их однофамилец.]

Формула (4.47) в числах дает

M♦ =
5.823
µ2

e

M¯. (4.48)

В частности,
M♦ = 1.456 M¯ при µe = 2. (4.49)

Чандрасекаровская масса — едва ли не самое знаменитое число во всей
теории звезд. Недаром мы выбрали для нее обозначение M♦ — символ ♦ в
TEXе называется diamond (бриллиант). И действительно, M♦ — это подлинная
драгоценность в сокровищнице физики звезд. Дальнейшие сведения о M♦ см.
в п. 3.7 Гл. X (с. 453).
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Как уже говорилось в Гл. I (п. I.2.2), существование чандрасекаровской
предельной массы является фактом фундаментальной важности для всей тео-
рии звезд. Дающая ее формула (4.47) впервые была опубликована в 1931 г.,
после изматывающей борьбы Чандрасекара со своими именитыми старшими
коллегами, не раз высказывавшими свое отрицательное мнение — ,,так не мо-
жет быть потому, что это абсурдно" (радиус конфигурации предельной массы
получался равным нулю, см. Гл. X). Чандрасекару в то время не исполнилось
еще и 21 года. Несколькими месяцами позже Чандрасекара формулу (4.47)
независимо получил Л.Д.Ландау.



5. УПРАЖНЕНИЯ

1◦ Показать, что для звезды, находящейся в гидростатическом равно-
весии, имеем

∫ M

0

GMr dMr

rν
= (4− ν)

∫

V

P r1−ν dV, ν < 4 .

Частными случаями этой формулы являются вириальное соотношение (2.4)
главы II (при ν = 1) и выражение (III.1.1) для Pc, получающееся при ν → 4−0
(проверьте!). Отметьте для себя также случай ν = 0, когда интеграл в левой
части берется. В итоге приходим к заключению, что в ходе гидростатической
эволюции звезды интеграл ∫

V

Pr dV

сохраняет постоянное значение:

32π

∫ R

0

Pr3 dr = GM2.

2◦ Пусть P — среднее (по массе) давление в звезде:

P =
1
M

∫ M

0

P dMr .

Тем же путем, которым в п. III.1.2 были найдены оценки Pc, показать, что для
любой равновесной конфигурации

P > 1
12π

GM2

R4
,

если же плотность не возрастает от центра к периферии, то

P > 3
20π

GM2

R4
.

3◦ Показать, что если плотность не возрастает наружу, то величина

P +
3
8π

GM2
r

r4

162
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не возрастает с r. Исходя из этого, доказать, что в этом случае Pc >
(3/8π) GM2/R4 (Э.Милн, 1929 г.).

4◦ Обозначим

Iσ,ν = G

∫ M

0

Mσ
r dMr

rν
, 3(σ + 1) > ν.

Пользуясь тем же приемом, что и при выводе (1.14) и (1.14′), доказать, что
(С.Чандрасекар, 1936 г.)

3
3σ + 3− ν

GMσ+1

Rν
6 Iσ,ν 6 3

3σ + 3− ν

GMσ+1

Rν
c

,

где (4π/3)R3
cρc = M . При этом левое неравенство справедливо, когда средняя

плотность ρr в сфере радиуса r при всех r не меньше средней плотности звезды
ρ, правое — при ρc > ρr.

Рассмотрев изменение Iσ,ν при переносе малой массы δM из одной оболоч-
ки в другую, понять физический смысл этих неравенств.

5◦ Пользуясь неравенством из предыдущей задачи, показать, что в рав-
новесной конфигурации с ρc > ρr безразмерная гравитационная энергия ω, без-
размерное центральное давление pc и степень концентрации вещества к центру
σc ≡ 3ρc/ρ, где ρ — средняя плотность звезды, удовлетворяют неравенствам

σ4
c > 24 p3

c , σc > 125
9

ω3.

Применив второе из этих неравенств а) к конфигурациям с ρ = ρc[1− (r/R)a]
при a = ∞, 2 и 1 и б) к политропам с n = 0, 1, 3 и n → 5, получить пред-
ставление о точности, с которой оно позволяет оценивать σc по известному ω.
Значения σc для политроп см. в Табл. IV.2.3, с. 189.

6◦ Пусть звезда состоит из идеального газа с µ = const, причем плотность
и температура в ней не возрастают наружу, а давление излучения пренебрежи-
мо мало. Показать, что равновесная конфигурация с наименьшей возможной
центральной температурой, удовлетворяющая этим условиям, должна состо-
ять из изотермического ядра, окруженного оболочкой, в которой ρ = const
(А.Эддингтон, 1925 г.). Можно доказать, что соответствующая безразмерная
центральная температура tc, определяемая выражением Tc = tc (µ/R∗)GM/R,
равна tc = 0.32. Сопоставьте этот результат со значениями tc для конфигура-
ции с ρ = const и для политропы с n = 3 (см. Табл. IV.2.3, с. 189). Сделайте
заключение о структурной чувствительности центральной температуры.
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7◦ Применив неравенство Гёльдера к интегралам, дающим безразмер-
ную потенциальную энергию ω и безразмерное центральное давление pc:

ω =
∫ 1

0

q dq

x
, pc =

∫ 1

0

q dq

x4
,

установить, что для произвольной равновесной конфигурации

pc > 8 ω4.

8◦ Таким же способом, как в предыдущей задаче, показать, что для про-
извольной равновесной конфигурации безразмерный момент инерции i, опре-
деляемый равенством

iMR2 ≡ 2
3

∫

V

ρr2 dV,

связан с ω и pc неравенствами

i > 18
125

1
ω2

, pc > 3
16

1
i2

.

Составить представление о качестве этих оценок, применив их а) к пустоте-
лому ,,мячику" с тяжелыми стенками; б) однородному шару и в) политропе
произвольного индекса n (в последнем случае воспользоваться численными
данными из Табл. IV.2.3, с. 189).

9◦ Пользуясь соотношением (4.34), оценить наименьшую возможную
массу чисто гелиевой звезды, свечение которой поддерживается за счет термо-
ядерных реакций. Температуру, при которой загорается гелий, принять равной
108 К. (Заметим, что детальные расчеты дают ∼ 0.3 M¯.)





Глава IV

ПОЛИТРОПЫ

. . . политропная теория дает хорошие приближения в отсут-
ствие точных численных расчетов. Политропная теория поз-
воляет также понять некоторые качественные особенности
теории звезд. Даже закоренелый релятивист должен знать
основные элементы этой теории.

Я.Б. Зельдович
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К только что приведенным словам Я.Б. Зельдовича можно добавить, что
закоренелый наблюдатель, подобно закоренелому релятивисту, также должен
знать основы теории политроп. Для всех, кто изучает строение и эволюцию
звезд, это своего рода начальная школа.

До сих пор рассматривались такие свойства звезд, которые можно выве-
сти из одного только условия механического равновесия, без каких-либо иных
существенных ограничений. Во всех случаях их удавалось исследовать без ре-
шения уравнения механического равновесия. Теперь мы сделаем следующий
шаг и рассмотрим решения этого уравнения для простейшей модели звезды.
Это позволит получить гораздо более детальные сведения о структуре газовой
массы, находящейся в равновесии в собственном поле тяготения. Правда, за это
придется заплатить дорогую цену — сделать весьма специальное предположе-
ние о связи давления и плотности, которое в реальных звездах в большинстве
случаев не выполняется. И тем не менее по причинам, которые будут указа-
ны ниже, эта так называемая политропная модель представляет значительный
интерес.

1. ОСНОВНЫЕ ЭЛЕМЕНТЫ ТЕОРИИ ПОЛИТРОП

1.1. Что такое
политропа

Политропной моделью звезды, или короче по-
литропой называется звезда, находящаяся в
механическом равновесии и такая, что в каж-
дой ее точке выполняется следующее соотно-

шение между давлением и плотностью:

P = Kρ1+ 1
n ≡ Kργ′,

где K и n — постоянные. Значение n называется индексом политропы, γ′ из-
вестно как показатель политропы. Политропная модель содержит, вообще го-
воря, три свободных параметра — один безразмерный и два размерных. Без-
размерным параметром служит показатель политропы γ′ (или n). В принципе
могут рассматриваться любые γ′>0, однако в дальнейшем, если не оговорено
противное, считается, что ∞>γ′> 6/5, или 06n6 5. Почему мы ограничива-
емся таким промежутком изменения n, вскоре станет ясно. Выбор размерных
параметров в разных случаях разный. Ими могут служить масса и радиус звез-
ды (тогда значение K через них выражается, см. следующий пункт). Однако
иногда бывает удобно поступать иначе, задавая массу и параметр K. Напри-
мер, для белых карликов малой массы, которые, как было показано в конце
предыдущей главы, можно считать политропами, значение K определяется
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однозначно — это есть константа, выражающаяся через мировые постоянные.
Еще один вариант выбора размерных параметров, принимающихся за исход-
ные, — плотность в центре конфигурации ρc и K. Впрочем, вскоре мы узнаем,
что политропы обладают замечательными свойствами подобия, в силу которых
по существу они образуют однопараметрическое семейство моделей, зависящих
лишь от n.

Почему же политропные модели столь важны? Сначала — два менее су-
щественных соображения. Во-первых, политропы были исторически первыми
моделями звезд. Они были изучены еще в XIX в. Лейном (J.H. Lane), Ритте-
ром (A.Ritter), Кельвином (Lord Kelvin), Эмденом (R.Emden) и др. Подробная
историческая справка есть у С.Чандрасекара, ,,Введение в учение о строении
звезд", в библиографических замечаниях к Гл. IV. Во-вторых, политропа — это
единственная сравнительно простая и в то же время довольно гибкая модель,
для которой расчет механического равновесия удается провести независимо от
расчета тепловой структуры звезды. Разумеется, это возможно всегда, когда
давление зависит только от плотности: P = P (ρ) (так называемое баротропное
уравнение состояния).

Таково, например, положение у белых карликов: уравнение состояния пол-
ностью вырожденного электронного газа, давление которого противосто-
ит у них гравитации и обеспечивает их механическое равновесие, имеет
вид P = P (ρ) и, если масса белого карлика не является совсем малой, не
сводится к простой политропной зависимости (см. Гл. X).

Наибольший интерес, однако, представляют простейшие модельные зави-
симости P от ρ. Политропы выделены среди них тем, что они (и только они)
содержат в соотношении, связывающем P и ρ, лишь один размерный свобод-
ный параметр (K).

Впрочем, следует ясно понимать, что на самом деле отделить расчет меха-
нического равновесия звезды от расчета ее тепловой структуры в большинстве
случаев нельзя. На звезду можно смотреть как на машину по переработке
ядерной и гравитационной энергии в электромагнитное излучение и нейтри-
но. В роли регулятора этой машины выступает гравитация. Делая априорное
предположение о существовании в звезде политропной связи между давлением
и плотностью, мы полностью оставляем в стороне всю эту важнейшую энер-
гетическую часть проблемы, так как в теории политроп вопрос о выделении и
переносе энергии в звезде не фигурирует. Поэтому возможности политропной
модели не следует переоценивать.

Однако можно привести ряд веских соображений, по которым политропы
заслуживают внимательного изучения.

1) Существуют звезды, для которых политропная зависимость P =
Kρ 1+1/n является хорошей (почти точной) аппроксимацией практически для
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всей звезды: а) Полностью конвективные невырожденные звезды. Таковы
красные карлики типа M с массами M <∼ (0.3÷ 0.5)M¯. В этом случае n = 3/2.
б) Белые карлики малой массы, без релятивистских эффектов в уравнении
состояния вырожденного электронного газа. Здесь также n = 3/2. в) Белые
карлики с массой, близкой к предельно большой, возможной для них, — это
политропы индекса n = 3. г) Молодые звезды небольших масс, находящиеся
на стадии медленного гравитационного сжатия и эволюционирующие к глав-
ной последовательности по так называемому треку Хаяши. Для них хорошей
аппроксимацией служит политропа с n = 3/2.

2) Более реалистичные (но и более трудные для расчета) модели звезд ГП
с M >∼M¯ по своей структуре не так уж сильно отличаются от политропы
индекса n = 3. Последнее утверждение, вероятно, вам известно. Возможно,
правда, вы слышали его в такой формулировке: звезды ГП по своему строению
близки к стандартной модели Эддингтона. Подробнее об этом — позже.

3) Звезды верхней части ГП должны обладать конвективными ядрами,
строение которых соответствует политропе с n = 3/2 (правда, здесь ею описы-
вается уже не вся звезда, а только ее центральные области).

4) Политропные модели (в том числе с показателем политропы γ′ 6 6/5)
широко используются также в других разделах астрофизики, в частности, в
физике межзвездной среды при исследовании гравитационной неустойчивости
и в звездной динамике в качестве моделей шаровых скоплений.

При изучении строения звезд важно ясно представлять себе, насколько чув-
ствительны к различиям во внутренней структуре звезды с заданными M и R
такие ее основные характеристики как гравитационная энергия связи, давле-
ние и температура в центре и т. п. Политропы позволяют легко научиться
,,чувствовать" это.

Мы рассмотрим политропы довольно подробно как из-за всего того, о чем
сейчас говорилось, так и по чисто педагогическим соображениям: учиться луч-
ше на простых моделях.

1.2. Основные
уравнения.

Соотношения
подобия

Основные уравнения политропной модели —
это уравнение гидростатического равнове-
сия, уравнение изменения массы вдоль ради-
уса и политропное соотношение между плот-
ностью и давлением. Они имеют вид

dP

dr
= − ρ

GMr

r2
,

dMr

dr
= 4πr2ρ , P = Kρ1+ 1

n . (1.1)
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Хотя плотность и возрастает вглубь, естественно считать, что в центре звез-
ды она остается конечной: ρ → ρc при r → 0. Это приводит к требованию,
чтобы dP/dr → 0 при r → 0. Действительно, если ρ → ρc при r → 0, то
Mr ∼ (4π/3)r3ρc при малых r. Вводя это в первое из уравнений (1.1), получа-
ем, что dP/dr = 0 при r = 0. Кроме того, на поверхности звезды, при r = R,
давление P должно обращаться в нуль, а Mr давать полную массу звезды M .
Таким образом, имеем следующую совокупность граничных условий:

dP

dr
= 0 при r = 0; P = 0, Mr = M при r = R. (1.2)

Первое из этих граничных условий задано в центре звезды, два других —
на ее поверхности, так что мы имеем здесь дело с краевой задачей (а не с за-
дачей Коши). Это не есть особенность политроп: краевые условия типа (1.2)
должны выполняться для всех моделей звезд. Далее, система основных диф-
ференциальных уравнений (1.1) есть система второго порядка. Решение ее,
представляющее физический интерес, должно быть подчинено трем краевым
условиям (1.2). Очевидно, что такое решение будет существовать не всегда, а
лишь при некотором дополнительном соотношении между параметрами зада-
чи. Иначе говоря, расчет строения звезды — это краевая задача на собственные
значения.

В конкретном случае политропной модели при заданных M и R решение
будет существовать не для любого K, а лишь для некоторого фиксированного.
Это значит, что для политроп между массой M , радиусом R и политропным
параметром K должна существовать связь.

Что это должно быть так, можно понять и иначе. Зададимся некоторой
плотностью в центре звезды ρc и значением K. Тогда уравнения (1.1) можно
решить, ведя интегрирование от r = 0 наружу до тех пор, пока при каком-то
r = R давление P не обратится в нуль. Соответствующее Mr есть, очевидно,
полная масса звезды M . Таким образом, M и R можно получить, если заданы
ρc и K, то есть M = M(ρc,K), R = R(ρc,K). Исключив ρc из этих двух
соотношений, приходим к связи между M , R и K.

Заметим, что если в (1.1) политропное соотношение P = Kρ1+1/n заме-
нить на некоторую произвольную баротропную зависимость P = P (ρ), то, как
следует из только что сказанного, и в этом случае масса и радиус звезды бу-
дут связаны функциональной зависимостью. Ее конкретный вид определяется,
конечно, тем, какова функция P (ρ). Именно таково положение с белыми и бу-
рыми карликами, газовыми планетами-гигантами и нейтронными звездами. В
частности, для белых карликов P (ρ) — это уравнение состояния полностью
вырожденного электронного газа (вообще говоря, частично релятивистского).
Оказывается, что зависимость M÷R для белых карликов — ее впервые рассчи-
тал Чандрасекар в 1930-е годы — имеет замечательную особенность: с ростом
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массы радиус монотонно убывает и обращается в нуль, когда масса становит-
ся равной M = 1.46M¯ (если в недрах белого карлика нет водорода). Как
уже не раз говорилось, эта критическая масса называется чандрасекаровским
пределом. Это лишь предварительные замечания, подробнее см. Гл. X.

Для политроп функциональную форму зависимости между массой, радиу-
сом и параметром K можно найти из соображений размерности, без решения
задачи (1.1) – (1.2). У нас есть следующие определяющие размерные пара-
метры: прежде всего, масса звезды M и ее радиус R — это очевидно; далее,
гравитационная постоянная G, так как именно гравитация и создает звезду, и,
наконец, K, поскольку эта размерная константа фигурирует в основном полит-
ропном соотношении. В задаче имеется еще один параметр — n. Зависимость
от него весьма существенна, и мы вскоре будем ее подробно обсуждать. Однако
поскольку n безразмерно, среди определяющих размерных параметров задачи
оно не появляется.

Из четырех перечисленных размерных величин можно составить лишь одну
безразмерную комбинацию. Сконструировать ее можно так. Исходя из полит-
ропного соотношения P = Kρ1+1/n и образуя из M и R комбинацию M/R3 с
размерностью плотности, убеждаемся, что величина K

(
M/R3

)1+1/n имеет раз-
мерность давления. С другой стороны, характерное значение гравитационного
давления в недрах звезды есть (ньютонова сила тяготения)/(площадь), то есть(

GM2

R2

)
/R2, или GM2/R4. Отношение этих двух давлений, K(M/R3)1+1/n и

GM2/R4, равное KG−1M1/n−1R1−3/n, есть отвлеченное число. Значения без-
размерных комбинаций определяющих величин могут зависеть лишь от без-
размерных параметров задачи. Поэтому

KG−1M
1−n

n R
n−3

n = c, (1.3)

где c зависит от n. Численные значения c в функции n из соображений раз-
мерности найти, разумеется, нельзя, они должны определяться из решения
основных уравнений. Однако можно ожидать, что c — число порядка едини-
цы. Как показывает следующая таблица, если n не слишком близко к 0 или к
5, это действительно так:

n 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
c 0.637 0.424 0.365 0.351 0.364 0.401 0.477 0.658

О том, как эти числа найдены, будет сказано позже (см. п. 2.2). Двойные вер-
тикальные разделители ограничивают область значений n, характерных для
звездных моделей. В этой области, как видим, c ≈ 0.4.



IV.1. Основы теории политроп 173

Если в качестве определяющих размерных параметров политропы вместо
пары {M,R} использовать {K, ρc}, то соотношение (1.3) заменится на следую-
щее:

KG−1M−2/3ρ
3−n
3n

c = c1. (1.4)

Число c1 — порядка единицы при всех n ∈ [0; 5] (см. Табл. IV.2.4, с. 193).
Значения c1 монотонно убывают от c1 = (π/6)1/3 = 0.806 при n = 0 до c1 =
(π/6)1/3/3 = 0.269 при n = 5. Заметим также, что при n = 3 из (1.3) и (1.4)
следует, что c1 = c = 0.364.

Формула (1.3) дает зависимость масса – радиус для политроп. Она и по
сути дела эквивалентная ей формула (1.4) выражают один из важнейших ре-
зультатов теории политроп. Простота вывода не делает эти формулы триви-
альными. Как мы потом узнаем, вытекающие из них следствия имеют фунда-
ментальное значение для теории строения звезд.

Обратим теперь же внимание на то, что для политропы индекса n = 3 (со-
ответствующий показатель политропы γ′ = 4/3) зависимость от R выпадает из
(1.3), так что при фиксированном K здесь существует единственное значение
массы M , при котором возможно равновесие. Отметим также случай n = 1,
когда из (1.3) выпадает зависимость от M , и потому задание K однозначно
определяет радиус конфигурации. Этот факт — он скорее любопытен, чем ре-
ально важен — означает, что все равновесные самогравитирующие шары из
вещества с уравнением состояния P = Kρ2, независимо от их массы, обладали
бы одним и тем же радиусом.

Использование соображений размерности чрезвычайно полезно и при рас-
чете структуры политроп. Введем безразмерные переменные

x =
r

R
, q =

Mr

M
, p =

(
GM2

4πR4

)−1

P, σ =
(

M

4πR3

)−1

ρ . (1.5)

Переменные x, q, p называют иногда переменными Шварцшильда, по имени
одного из создателей теории звездной эволюции американского астрофизика
М.Шварцшильда, который широко ими пользовался.

Не путайте МартинаШварцшильда с его отцом Карлом Шварцшильдом,
знаменитым немецким астрофизиком начала XX века: радиус (К.) Шварц-
шильда в релятивистской астрофизике, приближение (К.) Шварцшиль-
да – Шустера в теории переноса излучения, показатель (К.) Шварцшиль-
да в фотографической фотометрии и др.

В переменных Шварцшильда уравнения строения политроп (1.1) принима-



174 Гл. IV. Политропы

ют вид
dp

dx
=− qσ

x2
,

dq

dx
= x2σ, p =

c

(4π)
1
n

σ1+ 1
n , (1.6)

где c определено по (1.3) (проверьте!). Краевые условия (1.2) переходят в

p′ = 0 при x = 0; q = 1, p = 0 при x = 1. (1.7)

Как видим, все размерные величины из основных уравнений исчезли. Это
значит, что все политропные шары с одинаковым индексом политропы имеют
подобное строение: отношение плотностей и давлений в двух точках, находя-
щихся на одинаковых относительных (выраженных в долях радиуса) расстоя-
ниях от центра звезды, зависит лишь от n. В частности, профили давления и
плотности, то есть зависимости P/Pc и ρ/ρc от относительного расстояния от
центра звезды x = r/R, для всех политроп с одним и тем же n совпадают. Имея
в виду это свойство политроп, говорят, что они образуют однопараметрическое
семейство гомологических моделей.

Когда задача (1.6) – (1.7) решена, то есть p, q и σ найдены как функции x,
следует вернуться к исходным размерным физическим переменным, что дает,
например, для давления такое выражение:

P (r) =
GM2

4πR4
p
( r

R

)

и аналогично для Mr и ρ. Подчеркнем, что вид функции p (а также функций
q и σ) определяется только значением индекса политропы n, так что для всех
политроп с этим n и любыми M , R и K, удовлетворяющими соотношению (1.3),
эта функция одна и та же.

При расчетах звездных моделей в качестве независимой переменной часто
вместо расстояния от центра r используют массу Mr. Фактически это есть
переход от эйлеровой переменной к лагранжевой. Использование массы Mr в
качестве независимой переменной позволяет, в частности, наглядно предста-
вить, в каких физических условиях — при каких плотностях, температурах
и т. п. — находится бо́льшая часть вещества звезды (это не единственное и
не главное удобство такого использования Mr). Применительно к политропам
переход к массе в качестве независимой переменной тривиален. Будем p, σ и x
рассматривать как функции безразмерной массы q. Разделив первое из урав-
нений (1.6) на второе, ,,перевернув" второе, а третье оставив без изменения,
мы приведем основную систему к виду

dp

dq
=− q

x4
,

dx

dq
=

1
x2σ

, p =
c

(4π)
1
n

σ1+ 1
n , (1.8)
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а краевые условия перепишутся так:

x = 0 при q = 0; p = 0, x = 1 при q = 1. (1.9)

Когда в разд. IV.4 будет обсуждаться строение политроп, ход физических
параметров в звезде от центра к поверхности будет даваться как в функции
относительного расстояния от центра x, так и в функции доли массы q.

1.3. Гравитационный
потенциал
политропы

Входящая в уравнения строения политроп
(1.6) или (1.8) величина c пока нам неиз-
вестна. Она является собственным значени-
ем краевой задачи (1.6) – (1.7). Оказывает-
ся, однако, что эту краевую задачу можно

преобразовать так, что мы получим обычную задачу Коши для дифференци-
ального уравнения второго порядка, исследовать и численно решать которую
гораздо удобнее. Именно так, решая эту задачу Коши, и рассчитывают обыч-
но строение политроп. К сожалению, аналитическое сведе́ние краевой задачи
к задаче Коши, легко осуществимое для политроп, для более реалистичных
моделей звезд сделать уже невозможно.

Для лучшего уяснения физики дела мы предпочтем при указанном только
что сведе́нии к задаче Коши не преобразовывать уравнения (1.6) дальше, а, на-
оборот, вернемся назад к исходному уравнению гидростатического равновесия,
записав его так:

dP

dr
=− gρ.

Ускорение силы тяжести g есть градиент гравитационного потенциала (со зна-
ком минус):

g =− dΦ
dr

.

В звезде и ускорение силы тяжести, и потенциал отрицательны. Наши g и Φ —
это их абсолютные величины. С учетом политропного соотношения P = Kρ1+ 1

n

уравнение гидростатики принимает вид

n + 1
n

Kρ
1
n

dρ

dr
= ρ

dΦ
dr

.

Интегрируя, находим отсюда связь между плотностью и потенциалом в поли-
тропном шаре:

ρ =
(

Φ
(n + 1)K

)n

. (1.10)

Постоянная интегрирования взята равной нулю, что соответствует тому, что
потенциал отсчитывается от поверхности звезды, так что Φ = 0 при r = R.
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Заметим, что из последней формулы следует простая связь между давлением,
плотностью и потенциалом в политропе:

(n + 1) P = ρ Φ. (1.11)

Понятно, что строение самогравитирующей массы должно полностью опре-
деляться пространственным распределением потенциала. В рассматриваемом
случае связь между потенциалом и распределением вещества в звезде совсем
проста и дается формулой (1.10). Расчет структуры политропы сведен тем са-
мым к нахождению потенциала Φ.

Как известно, гравитационный потенциал Φ удовлетворяет уравнению
Пуассона

∆Φ =− 4π Gρ,

где ∆ — оператор Лапласа. В нашем случае (сферическая симметрия плюс
только что найденная связь ρ и Φ) оно принимает вид

1
r2

d

dr

(
r2 dΦ

dr

)
= − 4πG

[(n + 1)K]n
Φn.

Перейдем здесь к безразмерным переменным. Прежде всего, условимся из-
мерять потенциал Φ в долях его значения в центре звезды Φc, положив

Φ = Φc θ,

что согласно (1.10) можно записать и так:

Φ =
(
(n + 1)Kρ

1
n
c

)
θ. (1.12)

Таким образом, θ — это безразмерный потенциал. Далее, введем безразмерное
расстояние от центра ξ, положив

r = r1 ξ,

и выберем r1 так, чтобы вид уравнения для Φ максимально упростился, имен-
но, чтобы из него исчезли все постоянные. Введем для этого два последних
выражения в уравнение Пуассона и возьмем

r1 =
(

n + 1
4π Gρc

K ρ
1
n
c

)1/2

, (1.13)

или, что то же самое,

r1 =
(

Φc

4π Gρc

)1/2

. (1.13′)
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Рис. IV.1.1:
Роберт Эмден (Robert Emden, 1862 – 1940).

Его основная работа — книга ,,Газовые шары" (,,Gaskugeln") — вы-
шла в 1907 г. Ее цитируют до сих пор, впрочем, по-видимому, боль-
ше по традиции, чем по существу.

На титульном листе этой книги можно прочесть, что в момент ее
опубликования Эмден был приват-доцентом физики и метеороло-

гии Мюнхенской высшей технической школы.

Тогда уравнение Пуассона примет такой окончательный вид

1
ξ2

d

dξ

(
ξ2 dθ

dξ

)
= − θn, (1.14)

или
θ′′ +

2
ξ

θ′ = − θn, (1.14 ′)

или, наконец,
1
ξ

d2 (ξθ)
dξ2

= − θn. (1.14 ′′)



178 Гл. IV. Политропы

Уравнение (1.14) известно как уравнение Лейна – Эмдена.
При его выводе предполагалось, что вы помните тот фундаментальный
факт, что потенциал удовлетворяет уравнению Пуассона. Можно, конеч-
но, получить (1.14) и непосредственно из исходных уравнений (1.1), введя
функцию θ с помощью равенства ρ = ρc θn чисто формально, без выясне-
ния ее физического смысла. Можете проделать это в качестве упражне-
ния.

Очевидно, что θ(0) = 1 — это следует из определения функции θ. Далее,
если интересоваться только распределениями плотности, не имеющими сингу-
лярности при r = 0, так что ρ → ρc 6= ∞ при r → 0, то θ ′(0) = 0, поскольку
ускорение силы тяжести g = − dΦ/dr ∝ θ ′(ξ) должно в центре звезды обра-
щаться в нуль. Можно дать и формальный вывод. Для несингулярных распре-
делений плотности dP/dr → 0 при r → 0

(
см. текст сразу за формулой (1.1)

)
.

Так как P ∝ ρ1+ 1
n , то отсюда следует, что (dρ/dr)c = 0, а тогда, согласно

формуле перед (1.10), и (dΦ/dr)c = 0, то есть θ ′(0) = 0. Итак, при несингуляр-
ных распределениях плотности, которые только и представляют физический
интерес, начальные условия к уравнению (1.14) имеют вид:

θ(0) = 1, θ ′(0) = 0. (1.15)

Решения уравнения Лейна-Эмдена при этих начальных условиях известны
как функции Эмдена. Они образуют однопараметрическое семейство (пара-
метр — n). Устроено оно очень просто: все θ монотонно убывают (там, где
θ > 0), причем тем быстрее, чем меньше n.

Докажите, что это так, исходя из вида уравнения (1.14), но не решая его.
Поймите также физический смысл этого.

Расчет функций Эмдена сегодня (но не во времена Эмдена!) не составляет
труда: (1.14) – (1.15) — это задача Коши для дифференциального уравнения
второго порядка, которая легко решается численно по стандартным процеду-
рам, например, методом Рунге – Кутта. Результаты приведены на рис. IV.1.2.

Функции Эмдена, вообще говоря, неэлементарны, за исключением трех из
них:

n 0 1 5
θ(ξ) 1− ξ2/6 sin ξ/ξ

(
1 + ξ2/3

)−1/2

В первых двух случаях интегрирование уравнения Лейна – Эмдена не вызы-
вает затруднений. Случай n = 5 заметно сложнее, и отыскание приведенного
решения (впервые найденного А.Шустером еще в 1883 г.) требует изобрета-
тельности. Впрочем, проверка того, что оно удовлетворяет уравнению и гра-
ничным условиям, не составляет труда.
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Рис. IV.1.2:
Функции Эмдена θ(ξ).

Их физический смысл: 1) θ(ξ) есть гравитационный потенциал, от-
считанный от поверхности политропы и выраженный в долях его
значения в центре звезды. 2) Если политропа состоит из идеального
невырожденного газа с постоянным по глубине средним молекуляр-
ным весом, то при пренебрежении давлением излучения θ(ξ) есть

одновременно температура газа в долях центральной.

Попробуйте найти все три решения самостоятельно. Подробный их вы-
вод есть у Чандрасекара, ,,Введение в учение о строении звезд", Гл. IV,
разд. 4. Почему-то часто оказывается, что у многих из изучавших теорию
политроп со временем в памяти остается только тот в общем второсте-
пенный факт, что для каких-то трех частных случаев уравнение Лейна –
Эмдена решается в явном виде. Надеюсь, с вами будет не так.

Упомянем еще, что при малых ξ функцию Эмдена можно вычислить по ее
разложению в степенной ряд

θ(ξ) = 1 + a1ξ
2 + a2ξ

4 + a3ξ
6 + . . . ,

в котором

a1 = − 1
6

, a2 =
n

120
, a3 = − n(8n− 5)

3 · 7!
, a4 =

n(122n2 − 183n + 70)
9 · 9!

.
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Получите a1 и a2 подстановкой приведенного разложения в уравнение
Лейна – Эмдена (1.14) и начальные условия (1.15). Таким же образом
можно найти a3 и a4, но это требует громоздких скучных выкладок. Дру-
гой способ см. в Упр. 12◦, с. 249.

Когда функция Эмдена найдена, то есть получено распределение гравита-
ционного потенциала, строение политропы тем самым фактически определено.
Так, профиль плотности в звезде, то есть ρ/ρc, дается функцией θn. Это видно,
например, из того, что уравнение Лейна – Эмдена — это уравнение Пуассона,
в левой части которого стоит ∆Φ, а в правой — величина, пропорциональная
плотности, так что θn∝ρ. Далее, для центра звезды θ = 1, а ρ = ρc, и поэтому
ρ = ρc θn. Выражение других физических переменных через функции Эмдена
будет рассмотрено немного позже. Основной целью этого пункта было пока-
зать, что расчет строения политропы можно представить как задачу Коши для
нахождения потенциала, что и сделано.

Заметим, что функция Эмдена имеет указанный выше физический смысл
(потенциал, отсчитанный от поверхности и измеренный в долях его значения
в центре) лишь при 0 6 n 6 5, или при показателях политропы γ′ > 6/5.
Когда γ′ < 6/5 , и масса, и радиус политропной конфигурации бесконечны.
Поэтому потенциал следует отсчитывать от центра, а не от поверхности, так
что функции θ, вводимые равенством ρ = ρc θn ≡ ρc θ1/(γ′−1) , имеют несколько
иной физический смысл, чем функции Эмдена при n 6 5 (см. п. IV.5.1, с. 235).



2. ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОЛИТРОП

2.1. Гравитационная
энергия

Одним из важнейших глобальных парамет-
ров звезды является ее гравитационная энер-
гия связи EG. Для политроп значение EG

удается найти в явном виде.
Будем исходить из представления гравитационной энергии звезды в виде

(см. п. II.2.1, с. 62)

EG =
1
2

∫

V

ρϕ dV.

Поскольку на поверхности звезды потенциал ϕ = − GM/R, а для использо-
вавшегося в теории Эмдена (п. 1.3) потенциала Φ мы считали Φ = 0 при r = R
и принимали, что Φ > 0, то

ϕ = − GM

R
− Φ.

Вводя это ϕ в только что приведенное выражение для EG и переходя в подын-
тегральном выражении от Φ сначала к ρ с помощью (1.10), а потом от ρ к
P = Kρ1+ 1

n , получим
ρ Φ = (n + 1)P,

так что

EG = − GM2

2R
− n + 1

2

∫

V

P dV.

С другой стороны, теорема вириала дает для EG другое выражение через
интеграл от давления по объему

(
см. п. II.2.2, формула (2.4), с. 66

)

EG = − 3
∫

V

P dV,

что позволяет, исключив
∫

V
P dV из предыдущего соотношения, получить

(проверьте!)

EG = − 3
5− n

GM2

R
. (2.1)

Эта замечательная своей простотой формула — редкий для теории полит-
роп случай, когда выражение для важной физической величины не содержит
констант, находимых численно.

181
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Формулу для гравитационной энергии политропы полезно помнить. Доста-
точно запомнить коэффициент ω = 3/(5 − n), множитель же GM2/R ,,сам
собой" конструируется из характерных параметров из соображений размерно-
сти: [энергия] = [сила] × [расстояние] = [GM2/R2]× [R] = [GM2/R]. Напомним,
что в п. II.2.1 мы уже пользовались только что найденным выражением для
EG, приняв его на веру. Не раз будет оно использовано и в дальнейшем.

В числах имеем

EG = − 3.80 · 1048 3
5− n

M2

R
эрг, (2.1 ′)

где M и R — масса и радиус политропы в солнечных единицах.

Обсуждение. а) |EG| есть энергия, выделяющаяся при сжатии массы M
в политропный шар радиуса R. При фиксированных M и R эта энергия тем
больше, чем больше индекс политропы n. Это значит, что степень концентра-
ции материи к центру звезды с ростом n увеличивается. Что это должно быть
так, можно было бы заключить, конечно, уже и прямо из основного политроп-
ного соотношения P = Kρ1+ 1

n (поймите, почему!). В этом смысле обсуждаемая
формула интересна не качественно, а количественно: коэффициент 3/(5 − n)
служит интегральной мерой степени концентрации материи к центру.

б) Из формулы для EG ясно видна выделенность случая n = 5: если M и R
фиксированы, а n → 5, то гравитационная энергия стремится к бесконечности,
то есть степень концентрации вещества к центру при n = 5 бесконечно велика.
Впрочем, этот результат правильнее интерпретировать иначе: если, зафикси-
ровав массу и плотность в центре звезды, устремить n к 5, то радиус звезды
должен стремиться к бесконечности. Именно эта интерпретация соответствует
первоначальной постановке задачи, в которой считается, что ρ остается в цен-
тре звезды конечной. Итак, радиус звезды, построенной как политропа с n = 5,
был бы бесконечен (при конечной массе, см. с. 186 и 194).

2.2. Радиус и масса
политропы и связь

между ними

Простые явные выражения можно найти для
всех основных параметров политроп. Прав-
да, в эти выражения входят некоторые за-
висящие от индекса политропы n числовые
коэффициенты. Но если иметь в виду лишь

несколько наиболее важных, чаще всего используемых величин, то достаточно
определить из уравнения Лейна – Эмдена всего два числа (значения которых,
конечно, зависят от n). Они давным-давно вычислены (что потребовало ре-
шения уравнения Лейна – Эмдена). Мы будем считать эти числа известными.
Это даст возможность рассмотреть общие закономерности строения политроп
до изучения деталей их структуры.
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В эмденовском подходе удобно сначала принять за исходные характеристи-
ки модели центральную плотность ρc и политропный параметр K, а остальные
величины выражать через них. Покажем, как это делается.

Радиус. Обозначим через ξ1 значение эмденовской безразмерной простран-
ственной переменной, при котором r = R:

R = ξ1 r1.

Поскольку θ(ξ) — потенциал, отсчитываемый от его значения на поверхности,
то θ(ξ1) = 0, то есть ξ1 есть (первый) корень функции Эмдена. Можно сказать
и иначе: так как ρ = ρc θn и на поверхности звезды плотность обращается в
нуль, то θ(ξ1) = 0.

Величина ξ1 — один из тех двух числовых параметров, о которых только
что говорилось. Следует иметь в виду, что ξ1 довольно быстро меняется с n и
не при всех n есть число порядка единицы (см. Табл. IV.2.1, с. 184). Укажем
также, что (доказательство см. в Упр. 11◦, с. 249)

(5− n)ξ1 → 32
√

3
π

, n → 5. (2.2)

В итоге оказывается, что произведение (5− n)ξ1 зависит от n слабо.
Можно высказать предположение, что ξ1 в окрестности n = 5 разлагается
в ряд по степеням 5− n:

ξ1 =
32
√

3

π(5− n)

(
1 + a1(5− n) + a2(5− n)2 + . . .

)
.

Было бы интересно установить, так ли это, и — в случае положительного
ответа — найти несколько первых коэффициентов ai. Это дало бы способ
получения ξ1 без численного решения уравнения Лейна – Эмдена. Попро-
буйте заняться этой задачей. Единственное, что удалось сделать мне, —
это получить a1, именно, a1 = 1

2

(− 17
12

+ ln 2
)

= − 0.3618.

Вводя в формулу для радиуса R = ξ1r1 выражение для величины r1, на-
зываемой иногда эмденовской единицей длины, через K и ρc

(
формула (1.13),

с. 176
)
, окончательно находим

R = ξ1

(
n + 1
4π

)1
2

√
K

G
ρ

1−n
2n

c . (2.3)

Обсуждение. а) Для получения оценки радиуса можно при любом n
брать

ξ1 ≈ 13
5− n

.
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Таблица IV.2.1:
Две важнейшие числовые константы, ξ1 и µ1,

связанные с функциями Эмдена

n ξ1 µ1

0.0 2.4495 4.8990
0.1 2.5045 4.6159
0.25 2.5921 4.2579
0.5 2.7527 3.7887
1.0 3.1416 3.1416
1.5 3.6538 2.7141
2.0 4.3529 2.4110
2.5 5.3553 2.1872
3.0 6.8968 2.0182
3.5 9.5358 1.8906
4.0 14.9716 1.7972
4.5 31.836 1.7378
4.75 66.387 1.7243
4.9 171.43 1.7246
→ 5 → 32

√
3

π(5−n) →1.7321

Коэффициент пропорциональности в этом выражении взят таким, чтобы до-
стигалась по возможности хорошая аппроксимация для 1.5 6 n 6 3 и чтобы в
то же время он был легко запоминающимся (13 — чертова дюжина). О точно-
сти этой оценочной формулы можно судить по тому, что при n = 3/2 значение
ξ1 есть 3.65, приведенная же аппроксимация дает 3.71; при n = 3 имеем со-
ответственно 6.90 (точное значение) и 6.50 (приближенное). Кроме того, это
выражение правильно передает функциональную форму зависимости ξ1 от n
при n → 5.

Радиус политропы с фиксированными K и ρc, согласно (2.3), неограниченно
растет при n → 5. Это качественное заключение уже было сделано раньше из
других соображений (см. с. 182), однако теперь появилась и количественная
оценка скорости расходимости. Впрочем, большого интереса для физики звезд
этот результат не представляет, так как политропы с n, мало отличающимися
от 5, далеки от реалистичных моделей звезд.

б) Еще одно заключение из обсуждаемой формулы — выделенность по-
литропы с n = 1. Для нее при заданном K радиус не зависит от центральной
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плотности. Он равен
(
π K/(2G)

)1/2. При n < 1 с увеличением ρc радиус растет,
при n > 1 — убывает.

Масса. Ясно, что

M = 4π

∫ R

0

ρ r2dr.

Переходя здесь к переменным Эмдена θ и ξ, то есть полагая ρ = ρc θn, r = ξ r1,
будем иметь

M = µ1 4πr3
1 ρc , (2.4)

где

µ1 =
∫ ξ1

0

θn(ξ)ξ2dξ. (2.5)

Параметр µ1 — вторая характерная числовая константа, связанная с функцией
Эмдена. Ее значения также даны в Табл. IV.2.1. Они монотонно убывают от
µ1 = 2

√
6 = 4.899 при n = 0 до µ1 = 1.723 при n = 4.82, после чего слегка

возрастают и достигают µ1 =
√

3 = 1.732 при n = 5.
В астрофизической литературе постоянно воспроизводятся значения ξ1 и
µ1 из Табл. 4 книги С.Чандрасекара ,,Введение в учение о строении звезд".
Однако в этой таблице имеются неточности. Так, при n = 4.9 верные зна-
чения ξ1 и µ1 таковы: ξ1 = 171.43, µ1 = 1.7246, тогда как Чандрасекар дает
ξ1 = 169.47, µ1 = 1.7355. В 1981 г. в частной беседе С.Чандрасекар сообщил
автору, что неточности в его таблице при n = 4.9 и n = 0.5 вызваны тем,
что для этих значений индекса политропы он пользовался результатами
численного решения уравнения Лейна – Эмдена, выполнявшегося еще са-
мим Эмденом (!), тогда как для других n использовались более поздние —
и соответственно более точные — численные решения.

Для µ1 можно получить и другие представления. Так, пользуясь интеграль-
ным соотношением из Упр. 1◦ к Гл. III (с. 162), можно показать, что

µ2
1 =

8
n + 1

∫ ξ1

0

θn+1(ξ)ξ3dξ. (2.5′)

Величину µ1 можно записать и в форме, которая не требует вычисления инте-
гралов от функций Эмдена:

µ1 = − ξ2
1 θ ′(ξ1). (2.5′′)

Действительно, если θn(ξ) в представлении µ1 в виде интеграла (2.5) заменить
на левую часть уравнения Лейна – Эмдена (со знаком минус) и выполнить
интегрирование, то мы сразу же придем к этому выражению. Между прочим,
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представление µ1 в форме (2.5′′) позволяет легко, едва ли не в уме, найти
приведенные выше значения µ1 для n = 0 и n = 5. Достаточно вспомнить
соответствующие явные выражения для θ.

Физический смысл полученного для M выражения (2.4) очевиден: масса по-
литропы должна быть порядка произведения характерного объема (4π/3)r3

1 на
характерную плотность ρc. Поправочный коэффициент 3 µ1 превращает оцен-
ку в точное равенство. Если теперь в обсуждаемую формулу подставить из
(1.13) явное представление для эмденовской единицы длины r1, получим такое
окончательное выражение для массы через ρc и K (которые мы пока считаем
за исходные характеристики модели):

M = µ1

(n + 1)3/2

√
4π

(
K

G

)3/2

ρ
3−n
2n

c . (2.6)

Обсуждение. а) Случай n = 5 не является выделенным. Масса звез-
ды, устроенной как политропа индекса 5 с заданной (конечной) центральной
плотностью, была бы конечной. (Почему здесь употреблено сослагательное на-
клонение?)

б) Зафиксируем параметр K, а ρc и M будем считать переменными. При
n < 3 показатель степени у ρc положителен. Поэтому здесь с ростом массы цен-
тральная плотность также растет. При n > 3 картина обратная: чем больше
масса конфигурации, тем меньше ее центральная плотность, а потому, в силу
политропного соотношения P = Kρ1+1/n, и давление в центре, что кажет-
ся физически противоестественным. Это странное поведение есть отражение
неустойчивости таких политроп (подробнее см. п. 2.5).

в) Политропа с n = 3 является выделенной: ее масса не зависит от цен-
тральной плотности и однозначно определяется значением K. Позже мы узна-
ем, что это имеет важные астрофизические следствия.

Замечание. Безразмерные радиус и массу политропы ξ1 и µ1 оказывается
полезным представить в виде

ξ1 =
32
π

(
3
2

)1/4 (n + 1)1/4

5− n
ζ1,

µ1 =
3
√

2
(n + 1)1/2

ν1.

Вводимые этими выражениями величины ζ1 и ν1 изменяются с n очень мало и
близки к единице при всех n ∈ [0; 5] (Табл. IV.2.2). Их можно рассматривать
как удобные для интерполирования поправочные множители. Полагая ζ1 =
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Таблица IV.2.2:
Поправочные множители ζ1 и ν1 как функции

индекса политропы n

n ζ1 ν1 n ζ1 ν1

0.0 1.0864 1.1547 3.0 0.8653 0.9514
0.1 1.0630 1.1411 3.5 0.8712 0.9453
0.25 1.0330 1.1220 4.0 0.8882 0.9472
0.5 0.9930 1.0932 4.5 0.9221 0.9606
1.0 0.9374 1.0472 4.75 0.9508 0.9745
1.5 0.9022 1.0115 4.9 0.9758 0.9874
2.0 0.8802 0.9843 5.0 1.0000 1.0000
2.5 0.8683 0.9645

ν1 = 1, получаем приближенные выражения для ξ1 и µ1, погрешность которых
при всех n ∈ [0; 5] не превышает ∼ 15%.

Соотношение масса – радиус. Как уже говорилось выше (с. 171), ин-
тегрирование уравнения гидростатического равновесия для политропы можно
выполнять следующим образом: выбираем K и ρc и затем ведем интегрирова-
ние от центра наружу до тех пор, пока при каком-то r давление не обратится
в нуль. Это r есть, очевидно, радиус звезды R, а соответствующее Mr — ее
полная масса M . Поэтому можно было сразу же, не решая уравнения механи-
ческого равновесия, утверждать, что должны существовать зависимости вида
R = R(ρc, K) и M = M(ρc, K). Теперь эти зависимости найдены нами в явном
виде. Они даются формулами (2.3) и (2.6).

Исключая из этих выражений для M и R центральную плотность ρc, при-
ходим к соотношению масса – радиус для политроп

KG−1M
1−n

n R
n−3

n = c, (2.7)

в котором

c =
(4π)

1
n

(n + 1)
µ

1−n
n

1 ξ
n−3

n
1 . (2.8)

Оно уже было получено из соображений размерности еще в самом начале об-
суждения свойств политроп (с. 172). Однако найти таким путем значение c
было нельзя, и тогда этот коэффициент остался неизвестным. Теперь мы вос-
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полнили этот пробел. Значения c в таблице на с. 172 (и в Табл. IV.2.2, с. 189)
вычислены по полученному только что явному выражению.

Вплоть до этого места исходными параметрами политропы считались зна-
чения K и ρc (а также, конечно, n). Через них можно выразить не только M
и R, но и все остальные характеристики звезды. Однако обычно гораздо более
естественно, строя модель звезды, задавать ее массу и радиус. Начиная с этого
момента мы так и будем поступать, если не оговорено противное.

Соотношение масса – радиус позволяет найти K по M и R:

K = c GM
n−1

n R
3−n

n . (2.9)

2.3. Другие
физические

характеристики

Центральная плотность и степень кон-
центрации материи к центру. Как цен-
тральная плотность ρc, так и средняя ρ
должны быть пропорциональны M/R3. По-
этому достаточно найти ρc/ρ в функции ин-

декса политропы n. Очевидно, что M = (4π/3)R3 ρ. С другой стороны, как
было показано в п. 2.2, M = 3µ1 (4π/3)r3

1 ρc, где r1 = R/ξ1. Приравнивая эти
два выражения для M , находим

ρc

ρ
=

σc

3
, (2.10)

где

σc =
ξ3
1

µ1

. (2.11)

Степень концентрации материи к центру, за меру которой удобно взять
ρc/ρ, быстро растет с n (Табл. IV.2.3, с. 189). Грубо говоря, этот рост проис-
ходит как (5 − n)−3.

(
Отметим без доказательства любопытное неравенство

σc > 375/(5− n)3
)
. Значения ρc/ρ для n = 1.5 и n = 3, равные 6 и 54, полезно

помнить.
Быстрый рост ρc/ρ с n качественно вполне понятен. Так как P = Kρ1+1/n,

то при малых n показатель степени у ρ большой, так что даже небольшое
увеличение плотности ведет к значительному росту давления. Поэтому при
малых n для компенсации веса вышележащих слоев за счет давления доста-
точно сравнительно небольшого увеличения ρ в центральных частях звезды,
тогда как при бо́льших n для достижения того же эффекта рост плотности к
центру должен быть гораздо сильнее.

Когда обсуждалась зависимость EG от n, вам предлагалось провести это
нехитрое рассуждение самим. Теперь мы все же решили его воспроизве-
сти.
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Если ρc/ρ известно, центральная плотность находится тривиально:

ρc = σc
M

4π R3
. (2.12)

Заметим, что σc есть безразмерная плотность (переменная Шварцшильда, см.
с. 173) в центре политропы.

Давление в центре звезды получается из политропного соотношения Pc =
Kρ

1+ 1
n

c , если в него вместо K и ρc ввести их выражения через M и R. Результат
таков:

Pc = pc
GM2

4π R4
, (2.13)

где pc есть безразмерное давление в центре политропы:

pc =
ξ4
1

(n + 1)µ2
1

. (2.14)

Здесь уместно напомнить, что в п. III.1.2 непосредственно из уравнения
гидростатического равновесия, без его решения, при предположении, что плот-
ность не возрастает наружу, была получена строгая оценка

Pc > 3
2

GM2

4π R4
,

то есть было показано, что для любой находящейся в механическом равновесии
конфигурации с dρ/dr 6 0, независимо от того, какова связь между давлени-
ем и плотностью, pc > 3/2. Эта оценка отличается от значения pc, даваемого
политропной теорией для n = 3, грубо говоря, в 100 раз. Применение к по-
литропам универсального неравенства pc > 8 ω4 из Упр. 7◦ к Гл. III (с. 164)
позволяет утверждать, что для политроп pc > 648/(5 − n)4. Это неравенство
обеспечивает гораздо лучшую, хотя все же не очень хорошую оценку централь-
ного давления. Так, при n = 3 она дает pc = 40.5 вместо правильного значения
pc = 139 (см. Табл. IV.2.3, с. 189). Заметим, что неулучшаемая оценка вида
pc > a/(5−n)4 имеет a = 1875/2, причем равенство достигается при n = 0. При
n = 3 согласно этой оценке pc > 58.6, что по-прежнему далеко от истинного
значения pc = 139.

Значения pc в функции n, найденные по (2.14), даны в Табл. IV.2.3. При
n ∈ [1.5; 3] легко запоминающаяся приближенная формула

pc ≈ 2000
(5− n)4

обеспечивает неплохую точность. Погрешность составляет 10; 4; 20 и 38% со-
ответственно при n = 3.0; 2.5; 2.0 и 1.5.
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Гравитационный потенциал в центре. Потенциал, отсчитываемый от
его значения на поверхности звезды (точнее, абсолютная величина потенциа-
ла), выражается через функцию Эмдена θ(ξ) следующим образом (см. с. 176):

Φ(ξ) =
(
(n + 1)Kρ1/n

c

)
θ(ξ).

Подстановка вместо K и ρc их выражений через M и R преобразует это к виду

Φ(ξ) =
(

ξ1

µ1

)
GM

R
θ(ξ), (2.15)

так что
Φc ≡ Φ(0) = φc

GM

R
, (2.16)

где
φc = ξ1/µ1. (2.17)

Потенциал на поверхности звезды, отсчитанный от его значения на беско-
нечности, равен −GM/R. Поэтому безразмерный множитель φc показывает, во
сколько раз работа по перенесению частицы из центра политропы на ее поверх-
ность больше, чем при удалении ее с поверхности звезды на бесконечность. В
наиболее интересной для звездных моделей области значений индекса политро-
пы 1.5 6 n 6 3.5 эти величины оказываются одного порядка (см. Табл. IV.2.3,
с. 189). При n = 1 имеем φc = 1, так что разность потенциалов у поверхности и
в центре политропы в точности равна потенциалу на поверхности политропно-
го шара. Относительно расходимости φc при n → 5 см. обсуждение формулы
для EG (с. 182).

Момент инерции. Рассматривая различные параметры политроп, мы вся-
кий раз убеждались, что их удается выразить всего через две числовые кон-
станты, ξ1 и µ1, порождаемые функцией Эмдена индекса n (а также, конечно,
через те или иные размерные величины). Возможно, подспудно у читателя
стало складываться ощущение, что любую существенную характеристику по-
литропы можно найти, зная лишь ξ1 и µ1. Это, конечно, не так, и вычисление
момента инерции служит тому примером.

Центральный момент инерции сферически-симметричной конфигурации
есть, как известно,

I =
8π

3

∫ R

0

ρ r4dr.

Введением переменных Эмдена это выражение можно преобразовать к виду
(проделайте это!)

I = iMR2,
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где

i =
2µ2

3µ1ξ2
1

и

µk =
∫ ξ1

0

θn(ξ)ξ2kdξ , k = 1, 2, . . .

Входящая сюда величина µ2 не выражается через µ1 и ξ1. Значения безраз-
мерного момента инерции i приведены в Табл. IV.2.3, с. 189. Они найдены
численным интегрированием.

Для n = 0 и n = 1 легко получить точные значения i, равные 2/5 и
(2/3)

(
1− 6/π2

)
, соответственно. Можно также показать, что при n → 5 значе-

ние i стремится к нулю пропорционально
(
5− n

)2 ln(5− n).

2.4. Альтернативное
описание

До сих пор в качестве исходных размер-
ных параметров, характеризующих поли-
тропу данного индекса n, использовались ее

масса и радиус, что кажется вполне естественным. Однако это не единственная
возможность. В некоторых случаях за определяющие размерные параметры
удобнее брать массу и центральную плотность.

Из (2.6) находим для K следующее выражение через M и ρc:

K = c1 GM2/3 ρ
n−3
3n

c , (2.18)

где

c1 =
(4π)1/3

(n + 1)µ2/3
1

. (2.19)

Имея ρc и K, можно вести интегрирование уравнений строения политропы
(1.1) от центра к поверхности.

Далее, воспользовавшись (2.4) и учтя, что r1 = R/ξ1, выражение для гра-
витационной энергии политропы, полученное в п. 2.1,

EG = − 3
5− n

GM2

R
,

можно привести к виду

EG = − ω1 GM5/3 ρ1/3
c , (2.20)

где

ω1 =
3(4πµ1)1/3

(5− n)ξ1

. (2.21)
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Таблица IV.2.4:
Структурные множители c1 и ω1

n c1 ω1 n c1 ω1

0.0 0.8060 0.9672 3.0 0.3639 0.6390
0.1 0.7624 0.9463 3.5 0.3379 0.6029
0.25 0.7080 0.9181 4.0 0.3146 0.5664
0.5 0.6378 0.8778 4.5 0.2924 0.5268
1.0 0.5419 0.8129 4.75 0.2812 0.5039
1.5 0.4780 0.7608 4.9 0.2740 0.4879
2.0 0.4310 0.7162 5.0 0.2687 0.4748
2.5 0.3942 0.6762

При использовании в качестве определяющих размерных параметров по-
литропы пары величин {M, ρc} структурные множители c1 и ω1 играют роль,
аналогичную той, которую до сих пор у нас играли ξ1 и µ1. Значения величин
c1 и ω1 приведены в Табл. IV.2.4. Обращаем внимание на то, что они изменя-
ются в сравнительно узких пределах и при всех n ∈ [0; 5] являются числами
порядка единицы.

Почему c1 и ω1 убывают с n? Указание: см. п. 1.3.

Заметим, что значения c1, приводимые в книге Я.Б. Зельдовича и
И.Д.Новикова ,,Теория тяготения и эволюция звезд" (Москва: Физматгиз,
1971) в таблице на с. 282, неточны (наше c1 обозначено там H1). Так, лег-
ко получить, что при n = 0, 1 и 5 значения c1 равны (π/6)1/3 = 0.8060,
(2π)−1/3 = 0.5419 и (1/3)(π/6)1/3 = 0.2687, соответственно, тогда как Зель-
дович и Новиков дают 0.817, 0.554 и 0.270. Приведем для справок также
явные выражения для ω1 для тех же трех значений n. При n = 0 имеем
ω1 = (1/5)(36π)1/3, значению n = 1 отвечает ω1 = (3/2)(2π)−1/3, наконец,
ω1 = (1/32)(6π2)2/3 при n = 5.

Выражения для важнейших физических параметров политроп через M и
ρc легко получить из формул предыдущего пункта. Выкладки элементарны, и
мы их опускаем. Приведем результаты.

R =
3

(5− n)ω1

M1/3ρ−1/3
c , (2.22)

ρ = (5− n)3
ω3

1

36π
ρc, (2.23)
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Pc = c1 GM2/3 ρ4/3
c , (2.24)

Φc = (n + 1) c1 GM2/3 ρ1/3
c , (2.25)

Tc = c1

µ

R∗ GM2/3 ρ1/3
c . (2.26)

Последняя формула относится к политропам из невырожденного газа, обсуж-
даемым в следующем разделе.

Отметим любопытное обстоятельство. Из формулы (2.25) следует, что глу-
бина потенциальной ямы, создаваемой политропой с n = 5, конечна и состав-
ляет

Φc = 2
(π

6

)1/3

GM2/3ρ1/3
c = 1.612 GM2/3ρ1/3

c , (2.27)

а ее гравитационная энергия связи равна

|EG| =
(
6π2

)2/3

32
GM5/3ρ1/3

c = 0.4748 GM5/3ρ1/3
c . (2.28)

В звездной динамике политропу индекса n = 5 называют обычно сферой Плам-
мера. Она часто используется в качестве модели сферически-симметричных
звездных систем — шаровых скоплений и галактик.

2.5. Полная энергия
и устойчивость

политроп

Из размерности очевидно, что полная энер-
гия звезды E = − ε (GM2/R), где ε — струк-
турный множитель. Для политроп ε можно
найти в явном виде. Вывод — образец эле-
гантности.

Простейший анализ размерностей привел нас в п. 1.2 к соотношению масса –
радиус (1.3). Из него следует, что R ∝ M

1−n
3−n и, значит, E ∝ GM2/R ∝ M

5−n
3−n .

Поэтому энергии двух равновесных политроп одного и того же индекса n с
массами M и M + dM различаются (при фиксированном K) на

dE =
5− n

3− n

E

M
dM.

Рассмотрим теперь наряду с политропой массы M неравновесную конфигура-
цию, получающуюся из этой политропы добавлением на ее поверхность массы
dM . Пусть dE∗ — разность полных энергий возникшей конфигурации и перво-
начальной политропы. Так как на поверхности P = 0, то внутренняя энергия
добавляемого вещества равна нулю, и dE∗ равно приращению гравитационной
энергии, так что dE∗ = − (GM/R) dM . Далее, известно, что равновесное рас-
пределение вещества выделено среди близких к нему: оно доставляет полной
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энергии конфигурации экстремальное значение (чтобы равновесие было устой-
чивым, этот экстремум должен быть минимумом). В силу этой экстремально-
сти полной энергии ее изменение при добавлении массы dM с точностью до
(dM)2 должно быть безразлично к тому, как добавляемая масса распределена
вдоль радиуса. Поэтому dE = dE∗, то есть 5−n

3−n (E/M) = −GM/R, откуда

E = − 3− n

5− n

GM2

R
, (2.29)

так что ε = (3− n)/(5− n).
Полная энергия есть сумма внутренней EU и гравитационной EG:

E = EU + EG.

Но для политропы (см. п. 2.1)

EG = − 3
5− n

GM2

R
,

и потому

EU =
n

5− n

GM2

R
. (2.30)

Для устойчивости конфигурации необходимо, чтобы ее полная энергия E
была отрицательна. При E = 0 имеем безразличное равновесие, E > 0 отвеча-
ют неустойчивые конфигурации. Согласно (2.29), политропы, построенные из
вещества с уравнением состояния P = Kρ1+1/n (с фиксированным K) устой-
чивы лишь при n < 3. Неустойчивость при n > 3 вызывается тем, что при
сжатии рост давления из-за увеличения плотности вещества не поспевает за
ростом гравитационного давления, и малые радиальные возмущения должны
нарастать. При n = 3 давление и гравитация всегда уравновешены — изменение
силы тяжести из-за произвольного изменения радиуса оказывается в точности
скомпенсированным изменением давления вследствие сжатия или расширения.
Малые возмущения поэтому не возрастают, но и не подавляются, и мы имеем
состояние безразличного равновесия. При n < 3 давление газа растет быстрее
гравитационного давления. Любое малое возмущение порождает восстанавли-
вающую силу, стремящуюся вернуть систему к первоначальному состоянию.
Равновесие устойчиво.

Было бы, однако, ошибкой думать, что любые политропы с n > 3 неустой-
чивы. При выводе (2.29) предполагалось, что политропная константа K фик-
сирована (и при добавлении массы dM не изменяется). Если же это не так,
устойчивыми могут оказаться и политропы с n > 3. Дело в том, что равновес-
ное распределение вещества вдоль радиуса и устойчивость этого распределения
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определяются, вообще говоря, разными физическими параметрами: первое —
показателем политропы, второе — показателем адиабаты. Показатель адиа-
баты определяется лишь локальными свойствами вещества, его способностью
противостоять сжатию, на показателе же политропы сказывается и то, как
упругость газа (из частиц и фотонов) изменяется от точки к точке. В сле-
дующем разделе мы вернемся к этому вопросу и дадим пример устойчивой
политропы с n = 3 (см. п. 3.4).

Если не предполагать равенства показателей политропы и адиабаты, то
(2.29) и (2.30) следует заменить более общими формулами

E = − 3− n′

5− n

GM2

R
, (2.31)

EU =
n′

5− n

GM2

R
, (2.32)

где n′ ≡ (γ−1)−1, n = (γ′−1)−1, а γ и γ′ — показатели адиабаты и политропы,
соответственно (считается, что они постоянны по всей звезде).

Скомбинировав две последние формулы с выражением для гравитационной
энергии политропы, получим представление E и EU через EG и показатель
адиабаты γ:

EU = − 1
3(γ − 1)

EG, (2.33)

E =
3γ − 4

3(γ − 1)
EG. (2.34)

Формула (2.33) известна как формула Риттера.
Из (2.34) видим, что знак E, а тем самым и устойчивость политропы, опре-

деляется на самом деле не индексом политропы, а показателем адиабаты со-
ставляющего ее газа. При γ > 4/3 имеем E < 0, и равновесие устойчиво. При
γ < 4/3 энергия связи конфигурации была бы положительна, и равновесие
было бы невозможно. Наконец, при γ = 4/3 энергия связи E равна нулю, и мы
имеем безразличное равновесие, так что любое малое возмущение не подавля-
ется, и устойчивости нет.

В недрах большинства звезд, в частности в звездах главной последователь-
ности, газ практически полностью ионизован и представляет собой одноатом-
ный идеальный газ, а для него, как известно, γ = 5/3. В массивных звездах
заметный вклад в давление наряду с частицами дает также равновесное излу-
чение, для которого γ = 4/3 (см. с. 495 в п. 1.2 Гл. XII). Поэтому для смеси
ионизованного газа и равновесного излучения показатель адиабаты оказыва-
ется меньше 5/3, но все же больше 4/3, если только давление излучения мно-
гократно не превосходит газовое давление (подробнее см. п. 1.3 Гл. XII, с. 495).
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Если уравнение состояния имеет самый общий вид P = P (ρ, T ), то обобщен-
ный показатель адиабаты Γ1, определяемый как Γ1 ≡

(
∂ ln P/∂ ln ρ

)
S, может

опускаться ниже 4/3. Устойчивость равновесия звезды определяется знаком
величины 3 Γ1 − 4, где Γ1 — среднее по звезде значение Γ1, взвешенное по дав-
лению:

Γ1 =

∫
V

Γ1 P dV∫
V

P dV
. (2.35)

В жизни звезд бывают случаи, когда Γ1 опускается ниже критического зна-
чения 4/3 в заметной части их массы. Это происходит, в частности, на конеч-
ном этапе эволюции массивных звезд из-за фоторасщепления ядер железа в
ядре звезды, при начале процесса нейтронизации вещества, у самых массив-
ных звезд — из-за рождения электрон-позитронных пар (см. разд. 2 Гл. IX,
с. 407). Значение Γ1 оказывается меньше 4/3 также в зонах частичной иониза-
ции водорода, где подводимая к газу энергия расходуется главным образом на
ионизацию атомов и в итоге давление растет медленно. В самом деле, иониза-
ция водорода происходит при подъеме температуры с ∼ 10 000 К до ∼ 20 000 К.
Такой подъем температуры требует затраты энергии всего ∼ 1 эВ/атом. Между
тем ,,скрытая теплота ионизации" составляет 13.6 эВ/атом, что соответствует
в температурной шкале ∼ 158 000 К. Адиабатические показатели оказываются
поэтому близки к 1. Из-за неустойчивости, порождаемой расходами энергии на
ионизацию, в зонах частичной ионизации водорода всегда наступает конвек-
ция. В дальнейшие подробности входить мы не будем.



3. ПОЛИТРОПЫ ИЗ НЕВЫРОЖДЕННОГО ГАЗА

3.1. Нормальные
политропы

В политропной модели расчет механическо-
го равновесия отделен от расчета тепловой
структуры звезды. Если, однако, сделать до-

полнительное предположение, что вещество политропы подчиняется уравне-
нию состояния P = P (ρ, T ), то по известным из расчета механического равно-
весия зависимостям P (r) и ρ(r) мы получаем возможность найти и распределе-
ние температуры T (r) (если только уравнение состояния не является баротроп-
ным). Следует, впрочем, помнить, что, допустив наличие политропной связи
P = Kρ1+1/n и одновременно приняв выполнимость некоторого конкретного
уравнения состояния P = P (ρ, T ), мы фактически делаем весьма специальное
предположение о зависимости процессов выделения и отвода тепла от темпе-
ратуры и плотности.

Имея в виду только что сказанное, предположим, что звезда состоит из иде-
ального невырожденного газа с постоянным по глубине молекулярным весом
µ, так что

P =
R∗
µ

ρ T,

причем µ = const. В звездах газ может быть вырожден, и даже очень сильно
(примеры: белые карлики, ядра красных гигантов малой массы). Кроме того,
если звезда успела сжечь значительную долю своего ядерного топлива и пере-
мешивание вещества в ней несущественно, то ее химический состав, а вместе
с ним и µ, заметно меняются с глубиной. Таким образом, приняв, что звезда
состоит из невырожденного газа с µ = const, мы действительно сделали су-
щественное дополнительное предположение, заметно ограничивающее область
применимости результатов. Фактически они будут прямо относиться только к
звездам, находящимся на главной последовательности или еще не вступившим
на нее. Для начала будем пренебрегать также вкладом светового давления, то
есть будем считать массу звезды не слишком большой. От этого последнего
ограничения мы вскоре откажемся.

Политропу, для которой выполняется простейшее уравнение состояния P =(R∗/µ
)
ρ T с µ = const, будем называть нормальной политропой (прилагатель-

ное ,,нормальная" означает здесь — химически однородная, без вырождения и
светового давления, как и в нашем термине ,,нормальная звезда", см. с. 22).
Можно ли выразить распределение температуры в нормальной политропе че-
рез функцию Эмдена? Да, и очень просто. Как мы знаем (с. 180), ρ = ρc θn.
Поскольку, далее, P = Kρ1+1/n, то P = Pc θn+1. Подставляя эти выражения
для P и ρ через функцию Эмдена в уравнение состояния P = (R∗/µ) ρ T , об-
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наруживаем, что
T = Tc θ, (3.1)

причем

Tc =
µ

R∗
Pc

ρc
.

Таким образом, функция Эмдена есть температура в нормальной политропе,
выраженная в долях центральной. Эта физическая интерпретация функции
Эмдена θ(ξ) по области применимости у́же данной ранее и утверждающей, что
θ(ξ) есть по существу гравитационный потенциал в политропе.

Важный параметр политропы из невырожденного газа — ее центральная
температура. Из соображений размерности легко убедиться (см. п. III.2.2),
что через основные характеристики звезды — массу, радиус и средний молеку-
лярный вес — она должна выражаться так:

Tc = tc
µ

R∗
GM

R
, (3.2)

где tc — безразмерный множитель (зависящий от n). Величина tc представляет
собой частное значение (для центра звезды) еще одной шварцшильдовой пере-
менной (см. с. 173) — безразмерной температуры t, определяемой следующим
образом:

T =
µ

R∗
GM

R
t. (3.3)

Для нормальной политропы

t = tc θ.

Если строение политропы рассчитывается путем решения безразмерных урав-
нений (1.6), а не уравнения Эмдена (1.14), и известно, что политропа состоит
из невырожденного газа с µ = const, то эти уравнения надо дополнить соотно-
шением

p = σ t,

представляющим собой уравнение состояния P = (R∗/µ) ρ T , записанное в без-
размерных переменных.

Применяя последнюю формулу к центру звезды и пользуясь выражениями
(2.14) и (2.11) для pc и σc, находим, что для нормальной политропы

tc =
ξ1

(n + 1)µ1

. (3.4)

В ,,звездном" интервале изменения n, при 1.5 6 n 6 3.5, зависимость tc от n
не очень сильная (см. Табл. IV.2.3, с. 189), так что центральные температуры



200 Гл.IV. Политропы

нормальных звезд — в той мере, в какой их можно считать политропами, —
сравнительно мало чувствительны к структуре звезды.

Результат, выражаемый формулой (3.2), становится более наглядным, если
массу и радиус выразить в солнечных единицах:

Tc = 22.9 · 106 tc µ
M

R
. (3.5)

При tc = 0.8543 (политропа индекса n = 3, см. Табл. IV.2.3) и µ = 0.61, что
соответствует химическому составу солнечной атмосферы (X = 0.74, Y =
0.25, Z = 0.01), центральная температура звезды с M = R = 1 (,,Солнца")
оказывается равной Tc = 12 · 106 K. Заметим, что согласно данным детальных
расчетов, в сегодняшнем Солнце, после ∼ 5 · 109 лет эволюции, температура в
центре составляет 15.6 · 106 K.

Поучительно также переписать (3.2) в другой форме. Учитывая, что R∗ =
k/mu, имеем (для политропы с n = 3)

kTc = 0.8543 µmu

GM

R
, (3.6)

что уточняет оценку, данную ранее (с. 125): kTc ∼ µmu (GM/R). Множитель
tc для политропы с n = 3 не просто порядка единицы, а действительно близок
к единице — отличается от нее всего на каких-то 15%. Между прочим, как
следует из данных Табл. IV.2.3, множитель tc в точности равен единице для
политропы с n ≈ 3.25. Для политропы с n = 3/2

(
полностью конвективные

звезды ГП малой массы: M . (0.4 ÷ 0.5)
)
значение tc отличается от единицы

уже заметно: tc = 0.538.
У нормальных политроп температурные условия в центре не сильно отли-

чаются от тех, в которых находится бо́льшая часть их вещества. В этом легко
убедиться, если привлечь теорему вириала. Для звезды из невырожденного
газа с µ = const вириальное выражение для средней температуры вещества
звезды, как было найдено в п. III.2.1, имеет вид

T =
ω

3
µ

R∗
GM

R
.

Для политропы ω = 3/(5− n), и поэтому

T =
1

5− n

µ

R∗
GM

R
. (3.7)

Здесь T — средняя по массе температура:

T =
1
M

∫ M

0

T dMr.
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Средняя по массе температура связана с температурой в центре политропы
соотношением, получающимся сопоставлением выражений для Tc и T :

Tc =
(5− n)ξ1

(n + 1)µ1

T ≡ τ T . (3.8)

Оно показывает, что T и Tc — величины одного порядка. При n = 0, 1 и 5
имеем соответственно τ = 2

√
6 = 4.8990, 2.000 и 16/(3π) = 1.6977. Значению

n = 3/2 отвечает τ = 1.885, при n = 3 имеем τ = 1.709 (см. Табл. IV.2.3, с. 189).
Таким образом, в наиболее интересной области значений n центральная тем-
пература политропы превосходит среднюю менее чем вдвое. Впрочем, следует
иметь в виду, что мощность выделения энергии при термоядерных реакциях
зависит от температуры очень сильно. Поэтому при обсуждении энергетики
звезд даже сравнительно небольшие различия в температуре оказываются су-
щественными.

Обсудим еще градиент температуры в нормальной политропе. Согласно
(3.1) имеем

dT

dr
= Tc

dθ

dr
= ξ1

dθ

dξ

Tc

R
. (3.9)

В частности, у поверхности политропы (при r = R) имеем, поскольку ξ2
1 θ ′(ξ1) =

−µ1 (см. с. 185),
dT

dr

∣∣∣∣
r=R

= − µ1

ξ1

Tc

R
. (3.10)

Заметим, что в качестве оценки градиента температуры в звездах главной
последовательности вместо (3.9) иной раз просто принимают, что

∣∣∣∣∣
dT

dr

∣∣∣∣∣ ∼
Tc

R
. (3.11)

Для Солнца (Tc = 15.6 · 106 К, R¯ = 6.96 · 1010 см) эта оценка дает |dT/dr| ∼
2·10−4 К/см, то есть порядка 2 градусов на 100 м. Поскольку усредненная вдоль
радиуса длина свободного пробега фотона в недрах Солнца порядка 1 см, на
каждом фиксированном расстоянии от центра там имеется практически полное
термодинамическое равновесие с локальным значением температуры. Чтобы
прийти к этому важному заключению, грубой оценки (3.11) оказалось вполне
достаточно.

Что касается локальных значений градиента температуры, то в большей
части массы химически однородных звезд они отличаются от того, что дает
(3.11), всего раза в два – три. Действительно, возьмем политропу с n = 3. Для
нее ξ1 = 6.90 (см. Табл. IV.2.1, с. 184), а |θ′(ξ)| возрастает от нуля в центре
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политропы и уже при q = Mr/M = 0.02 коэффициент ξ1 |dθ/dξ| перед Tc/R
становится равным единице. Своего максимального значения 1.93 этот коэф-
фициент достигает при q = 0.3 (см. Табл. IV.3.4, с. 213) и затем монотонно
убывает до 0.292 при q = 1, то есть у поверхности. Поэтому согласно (3.9)
градиент температуры (точнее, его абсолютная величина) в политропе с n = 3
совсем близко от центра (по массе) достигает значения Tc/R и во всей осталь-
ной массе отличается от этой величины в ту или другую строну не более чем
втрое.

Воспользовавшись (3.2) и (3.4), находим, что

dT

dr
=

ξ2
1

(n + 1) µ1

dθ

dξ

µ

R∗
GM

R2
(3.12)

и, в частности, при r = R

dT

dr

∣∣∣∣
r=R

= − 1
(n + 1)

µ

R∗
GM

R2
. (3.13)

Этот любопытный, хотя и не особенно существенный результат примечателен
тем, что он является редким в теории политроп примером строгого соотно-
шения, не содержащего констант, требующих для своего нахождения решения
уравнения Эмдена (типа ξ1 и µ1 и т. п.). Формула (3.13) будет использована
нами при выводе соотношения масса – светимость (см. с. 219).

Поскольку ускорение силы тяжести g есть градиент потенциала (со зна-
ком минус), из формулы (IV.2.15) (с. 191) следует, что оно дается следующим
выражением:

g = − ξ2
1

µ1

dθ

dξ

GM

R2
. (3.14)

Сопоставление с формулой (3.12) показывает, что между градиентом темпера-
туры в нормальной политропе и ускорением силы тяжести в ней имеется очень
простая связь:

(n + 1)
∣∣∣∣
d(kT )

dr

∣∣∣∣ = µmu g. (3.15)

Она легко получается также из соотношения (IV.1.11) (с. 176)

(n + 1) P = ρ Φ,

если в него подставить P , даваемое уравнением состояния идеального газа

P =
R∗
µ

ρ T,
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что дает
(n + 1) kT = µ mu Φ. (3.16)

Осталось продифференцировать это соотношение — и мы сразу же приходим
к (3.14).

Отметим, что при n > 0 ускорение силы тяжести (и градиент температуры
в нормальной политропе) изменяются с r немонотонно, достигая максимума
тем ближе к центру, чем больше n (см. рис.IV.4.8, с. 232).

3.2. Политропы со
световым давлением

В звездах больших масс, как было показано в
разд. III.3, заметную роль должно играть дав-
ление излучения. Произведем его учет, пред-

полагая по-прежнему, что распределение вещества и давления в звезде описы-
вается политропой некоторого индекса n, а звезда состоит из невырожденного
газа. Обозначим, как обычно, долю газового давления в полном давлении че-
рез β, так что βP = (R∗/µ) ρ T . Тогда доля давления излучения равна 1 − β,
и (1− β)P = aT 4/3. Из этих выражений исключением T легко получить связь
между P , ρ и β:

P =

[(R∗
µ

)4 3
a

1− β

β4

]1/3

ρ4/3, (3.17)

из которой мы и исходили в п. III.3.1 при выводе универсальной оценки вклада
давления излучения в центре звезды 1 − βc. Для политроп это соотношение
позволяет продвинуться дальше, давая возможность найти не только 1 − βc,
но и ход 1− β вдоль радиуса.

Действительно, если считать звезду химически однородной (µ = const), то
из последнего соотношения немедленно следует, что

(
P

Pc

)3

=
(1− β)/β4

(1− βc)/β4
c

(
ρ

ρc

)4

.

Но для политропы индекса n имеем P = Pc θn+1, ρ = ρc θn, и поэтому оказыва-
ется, что

1− β

β4
=

1− βc

β4
c

θ3−n(ξ). (3.18)

Распределение доли давления излучения вдоль радиуса фактически выражено
тем самым через функцию Эмдена (с точностью до необходимости решения
алгебраического уравнения четвертой степени). С помощью (III.3.4), с. 130,
последнее соотношение можно переписать также в виде

1− β

β4
= bc

π3

270
(
µ2M/M?

)2
θ3−n(ξ), (3.19)
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где bc — зависящий от n структурный множитель, равный (проверьте!)

bc =
24

(n + 1)3µ2
1

.

Из (3.18) следует, что при n < 3 вклад давления излучения максимален в
центре звезды, монотонно убывая наружу. Отсюда, между прочим, можно за-
ключить, что у полностью конвективных звезд небольших масс, представляю-
щих собой политропы индекса n = 3/2 (звезды ГП типа M и прародительницы
звезд нижней части ГП, находящиеся на стадии гравитационного сжатия) дав-
ление излучения мало́ не только в центре — вывод, к которому мы пришли еще
в разд. III.3, — но и по всей звезде. Поэтому его можно не учитывать вовсе.

Любопытно, что на ранних этапах кельвиновского сжатия (в верхней ча-
сти трека Хаяши) звезда умеренной массы может обладать довольно высокой
светимостью, и тем не менее, как мы только что установили, давление излуче-
ния в ней должно быть несущественно. В звезде же ГП, обладающей той же
светимостью (но большей массой) оно может уже играть заметную роль.

В политропах с n > 3, согласно (3.18), роль давления излучения с удале-
нием от центра возрастает. Хотя звезд с распределением плотности, близким
к тому, которое имеется в политропах с n, заметно бо́льшим 3, в природе, ви-
димо, нет, вывод о росте вклада давления излучения наружу при n > 3 все
же представляет интерес по следующей причине. С ростом индекса политропы
концентрация материи к центру возрастает. Поэтому политропы с n > 3 долж-
ны обладать значительной концентрацией вещества к центру. Вывод о росте
доли давления излучения при удалении от центра у звезд с таким характе-
ром распределения плотности не связан с конкретным его видом (политропа).
Звезды же с сильной концентрацией материи к центру, хотя и мало похожие
на политропы, весьма многочисленны. Таковы, в частности, красные гиганты
с массами M >∼2.5 M¯. Можно думать — и детальные расчеты звездных моде-
лей подтверждают это, — что у таких звезд роль давления излучения будет с
приближением к поверхности возрастать.

Наконец, имеется исключительный случай n = 3, когда доля давления из-
лучения на всех глубинах одна и та же. Это знаменитая в свое время эддинг-
тоновская стандартная модель звезды (см. следующий пункт).

Задав значение индекса политропы, мы фактически фиксировали профили
давления и плотности. Профиль же температуры при учете давления излуче-
ния, как легко убедиться, определяется уже не только значением n, но и массой
конфигурации, точнее, значением µ2M (если n 6= 3). Иначе это можно сфор-
мулировать так: при учете давления излучения политропы из идеального газа
с n 6= 3 не являются полностью гомологичными (однако частичная гомоло-
гичность — по давлению и плотности — сохраняется). В самом деле, таким же
путем, как при β = 1 выше было найдено (3.1), из соотношения βP = (R∗/µ) ρ T
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теперь получим

T = Tc
β

βc
θ.

Поскольку, однако, β = β(ξ), где ξ — расстояние от центра в эмденовских
единицах, и вид функции β(ξ) при разных µ2M разный, что непосредственно
следует из (3.19), ход температуры вдоль радиуса оказывается зависящим не
только от n, но и от µ2M . При n < 3 спад температуры наружу происходит
более плавно, при n > 3 — круче, чем при β = 1, то есть в предельном случае
малых масс.

Что касается центральной температуры, то учет давления излучения сни-
жает ее по сравнению со случаем нормальной политропы той же массы и ради-
уса. Как легко видеть, в выражении для Tc появляется дополнительный мно-
житель βc, так что

Tc = βc tc
µ

R∗
GM

R
, (3.20)

где tc по-прежнему дается (3.4). Следует подчеркнуть, что значение βc зависит
от µ2M . Поэтому пропорциональность между Tc и M , имеющая место для
нормальных политроп, при учете давления излучения уступает место более
сложной зависимости. Скорость роста Tc с M при больших M замедляется.

В предельном случае очень больших масс, когда давление излучения Pr

велико по сравнению с газовым, P ∼ Pr = (a/3)T 4. Поэтому (a/3)T 4
c ∼

pc (GM2/4πR4), откуда (ср. с п. III.3.4, с. 134)

Tc ∼ t∗c

(
G

a

)1/4 √
M

R
, (3.21)

где

t∗c =
(

3
4π (n + 1)µ2

1

)1/4

ξ1. (3.22)

Здесь центральная температура не зависит от молекулярного веса, посколь-
ку гравитации противостоит давление излучения, а не газа. Пока неясно, су-
ществуют ли в природе объекты, описываемые рассматриваемым предельным
случаем — скорее всего, нет. Подробнее см. с. 209.

Убедитесь, что выражение для Tc, даваемое (3.21) – (3.22), тождествен-
но тому, которое было приведено на с. 134. Получите (3.21) также как
предельный случай (3.20), соответствующий βc << 1.

3.3. Стандартная
модель Эддингтона

Так называется модель звезды из идеально-
го невырожденного газа с µ = const, в кото-
рой давление излучения составляет постоян-

ную по глубине долю полного давления. Согласно (3.17), в этом случае

P = Kρ4/3,
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где K — постоянная, равная

K =

[
3
a

( R∗
µ

)4 1− β

β4

]1/3

. (3.23)

Итак, стандартная модель — это политропа индекса n = 3. Полезно помнить,
что для нее T 3/ρ = const (почему?). Отсюда, между прочим, следует, что от-
ношение числа фотонов в единице объема (∝T 3) к концентрации частиц (∝ρ)
не меняется с глубиной.

На раннем этапе развития теории строения звезд эта так называемая
,,стандартная модель" сыграла значительную роль. Она была введена одним
из основоположников теории строения звезд А.Эддингтоном около 1920 г.

Стандартной модель с β = const назвал, вопреки часто встречающемуся в
литературе утверждению, конечно, не сам Эддингтон — он был изысканно
воспитанным человеком, — а его современник и соотечественник Э.Милн.
В наши дни термин ,,стандартная модель" применительно к Солнцу имеет
совсем другой смысл — это рафинированная численная модель строения
Солнца.

Первоначальное определение стандартной модели отличалось от нашего.
Эддингтон постулировал существование некоторого соотношения между мощ-
ностью энерговыделения и эффективностью теплоотвода излучением, посто-
янство же β получалось как одно из следствий. Нам удобнее это свойство
стандартной модели (β = const) принять за ее определение. Так поступить
методически удобнее, так как это позволяет ввести стандартную модель в рас-
смотрение уже теперь, до обсуждения вопросов о выделении и переносе энергии
в звездах. Стандартная модель — разумное нулевое приближение при обсужде-
нии строения химически однородных звезд, в которых главенствующую роль
в переносе энергии в большей части звезды играет излучение, а не конвекция.
Таковы все звезды главной последовательности, кроме самых поздних (типа
M). Почему это так и насколько на самом деле эта модель хороша или, если
угодно, насколько она плоха, мы узнаем позже, а пока примем эти слова на
веру.

Итак, стандартная модель — это политропа индекса n = 3. Но политропа
с n = 3, как уже указывалось (с. 187), является вырожденной: зависимость от
радиуса в соотношении масса – радиус в этом случае выпадает, и между массой
звезды M и политропным параметром K имеется однозначная связь вида

M =
4µ1√

π

(
K

G

)3/2

. (3.24)

Проще всего она получается из (2.6), с. 186, хотя следует, конечно, и из соот-
ношения масса – радиус (2.7) – (2.8), с. 187. С другой стороны, согласно (3.23)
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Рис. IV.3.1:
Артур Стенли Эддингтон (Arthur Stanley Eddington, 1882 – 1944).

Его знаменитая книга ,,Internal Constitution of the Stars" заложила
основы физической теории строения звезд. Она вышла в 1926 г. По
прошествии 33 лет потребовалось ее переиздание — замечательный

пример научного долголетия!

для стандартной модели K определяется значением β, что позволяет получить
связь между M и β:

M =
4µ1√

π
G−3/2

[
3
a

(R∗
µ

)4 1− β

β4

]1/2

. (3.25)

По существу соотношение (3.25) уже известно нам из разд. III.3. Это есть
не что иное, как формула (III.3.2), с. 129, в которой структурный параметр
bc взят соответствующим политропе с n = 3.

Последнюю формулу можно переписать также в виде

µ2 M = µ1

√
5
π

12
π

M?

√
1− β

β2
= 9.725 M?

√
1− β

β2
, (3.26)
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Таблица IV.3.1:
Доля давления излучения в полном давлении в звездах

разных масс, построенных по стандартной модели

1− β µ2M 1− β µ2M 1− β µ2M

0.90 1737 0.40 32.2 0.035 3.68
0.85 750 0.35 25.6 0.030 3.37
0.80 409 0.30 20.5 0.025 3.04
0.75 254 0.25 16.3 0.020 2.70
0.70 170 0.20 12.8 0.015 2.31
0.65 120 0.15 9.81 0.010 1.87
0.60 88.6 0.10 7.15 0.005 1.31
0.55 67.0 0.05 4.54 0.000 0.00
0.50 51.8 0.045 4.26
0.45 40.6 0.040 3.97

где M? — эддингтоновская масса (см. с. 139)

M? =
(

c~
Gm

4/3
u

)3/2

= 1.880 M¯ .

Если массу измерять в массах Солнца, то соотношение (3.26) принимает вид
(учитывая, что для политропы с n = 3 мы имеем µ1 = 2.0182, см. Табл. IV.2.1,
с. 184)

µ2 M = 18.00

√
1− β

β2
, (3.27)

где M = M/M¯. Как видим, для стандартной модели с заданным химическим
составом (точнее — с заданным µ) масса однозначно определяет значение β.

Последнюю формулу полезно сопоставить с соотношением (III.3.8) со с. 131,
полученным при обсуждении β∗–теоремы Чандрасекара:

µ2
c M∗ = 5.462

√
1− β∗

β∗2
, (3.28)

где по-прежнему M∗ — это масса в массах Солнца. Напомним, что это выра-
жение относится к политропе индекса n = 0 (однородный шар). По существу
единственное отличие двух последних формул — в множителе в правой части:
в строгом соотношении Чандрасекара вместо эддингтоновых 18.00 стоит 5.462.
Таким образом, для двух моделей — политропы с n = 3 и однородного шара
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(n = 0) с одинаковым вкладом давления излучения в центре, так что β = β∗,
из (3.27) и (3.28) следует, что масса M, определяемая формулой Эддингтона и
M∗, относящаяся к однородному шару, связаны следующим образом:

M = 3.295 M∗. (3.29)

Иначе говоря, на рис. III.3.1 (с. 132) отсчитанное по горизонтали расстояние
между двумя приведенными на нем кривыми не зависит от того, на каком
уровне, то есть при каком 1 − β, мы это расстояние измеряем. Едва ли это
можно заметить, просто глядя на рисунок.

Вклад давления излучения в полное давление в звездах разных масс, по-
строенных согласно стандартной модели, дается Табл. IV.3.1 (см. также ниж-
нюю кривую на рис. III.3.1, с. 132). Поскольку для звезд главной последова-
тельности µ ∼ 0.6 (население I), из данных таблицы следует, что давление
излучения становится заметным лишь для звезд очень больших масс. Так, для
звезды с M ∼ 10 имеем (1− β) ∼ 3%, при M=40 вклад светового давления все
еще ∼ 20%. Наконец, наиболее массивные из всех звезд имеют M ∼ 120. Если
считать, что они адекватно описываются стандартной моделью с µ ∼ 0.6, то,
используя данные Табл. IV.3.1, найдем, что в них излучение и частицы газа
дают примерно одинаковый вклад в давление, точнее, β = 0.54 (значению же
β = 0.5 отвечает M=140). Итак, звезд с преобладающей ролью давления излу-
чения в мире, по-видимому, нет. Говоря словами Эддингтона, ,,we observe that
stellar masses cease abruptly when radiation pressure becomes important".

Впрочем, Эддингтон считал, что роль светового давления в звездах даже
умеренных масс весьма существенна. Представления о составе вещества звезд-
ных недр в те далекие времена сильно отличались от современных. Эддингтон
полагал, что они состоят в основном из тяжелых элементов и потому прини-
мал, что µ ≈ 2 (сначала он считал даже, что µ = 4, но потом склонился к
µ = 2.2). На возражения современников, что атмосферы звезд состоят в основ-
ном из водорода, он отвечал в свойственной ему афористической манере: ведь
не думаете же вы, что покрытый сажей трубочист и внутри целиком состоит
из сажи!

Заметим, что в предельных случаях малых и больших A для корня урав-
нения четвертой степени

Aβ4 = 1− β,

неизменно появляющегося при расчетах вклада давления излучения, имеют
место разложения (проверьте!)

β = 1−A + 4A2 − 22A3 + . . . , A → 0,

β =
1

A1/4
− 1

4A1/2
− 1

8A3/4
+ . . . , A →∞.
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Таблица IV.3.2:
Поправочная функция δ (A)

A δ (A) A δ (A)
0.00 1.0000 4 0.8878
0.01 0.9972 6 0.8881
0.05 0.9845 8 0.8896
0.1 0.9714 10 0.8913
0.2 0.9529 50 0.9131
0.3 0.9404 100 0.9242
0.4 0.9314 500 0.9472
0.5 0.9245 1000 0.9553
0.6 0.9191 5000 0.9700
0.8 0.9112 104 0.9747
1 0.9056 105 0.9859
2 0.8929 106 0.9921

∞ 1.0000

Полезно также представление β в форме

β =
1−A

1−A5/4
δ (A),

где δ (A) — удобная для интерполирования поправочная функция, при всех A
мало отличающаяся от единицы (Табл. IV.3.2).

Приведем для справок сводку основных параметров стандартной модели.
Большинство из них следует из общих формул для политроп с n = 3. Газ
считаем полностью ионизованным, так что показатель адиабаты γ = 5/3. Как
всегда, M и R — масса и радиус в солнечных единицах.

EG = − 5.69 · 1048 M2

R
; (3.30)

E = − 2.84 · 1048 β
M2

R
; (3.31)

Φc = 6.51 · 1015 M

R
; (3.32)

ρc = 76.3
M

R3
,

ρc

ρ
= 54.18; (3.33)
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Pc = 1.24 · 1017 M2

R4
; (3.34)

Tc = 1.96 · 107 µβ
M

R
, T = 0.585 Tc; (3.35)

I = 7.26 · 1053 M R2; (3.36)

gmax = 1.81 · 105 M

R2
при r = 0.217 R. (3.37)

Значения всех величин в (3.30) — (3.37) — EG, Φc и т. д. — в системе CGS.
Подчеркнем, что множители β в (3.31) и (3.35) зависят от µ2M (см. Табл. IV.3.1,
с. 208).

Таблица IV.3.3:
Функция Эмдена индекса n = 3 и связанные с ней величины

как функции доли радиуса x ≡ r/R

x θ(ξ1x) − ∂θ
∂x

∂θ
∂n

0.00 1.00000 0.00000 0.00000
0.05 0.98052 0.76544 0.00011
0.10 0.92598 1.38165 0.00161
0.15 0.84626 1.76657 0.00680
0.20 0.75319 1.92135 0.01702
0.25 0.65705 1.90052 0.03173
0.30 0.56492 1.77206 0.04915
0.35 0.48069 1.59257 0.06724
0.40 0.40588 1.39993 0.08441
0.45 0.34055 1.21557 0.09976
0.50 0.28401 1.04952 0.11289
0.55 0.23524 0.90506 0.12382
0.60 0.19315 0.78185 0.13276
0.65 0.15673 0.67792 0.14000
0.70 0.12508 0.59070 0.14586
0.75 0.09742 0.51763 0.15063
0.80 0.07312 0.45633 0.15457
0.85 0.05163 0.40478 0.15789
0.90 0.03251 0.36122 0.16073
0.95 0.01540 0.32423 0.16324
1.00 0.00000 0.29263 0.16548
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Так как стандартная модель — это политропа индекса n = 3, то ход ос-
новных физических переменных — плотности, давления и температуры — с
удалением от центра дается обычными для политроп формулами

ρ (r) = ρc θ 3(ξ), P (r) = Pc θ 4(ξ), T (r) = Tc θ(ξ),

где θ(ξ) — функция Эмдена индекса n = 3 и ξ = ξ1(r/R) = 6.897 (r/R).
Ввиду важной роли, которую функция Эмдена для n = 3 и связанные

с нею величины играют в теории строения звезд (не только в стандартной
модели!), приводим для справок таблицы ее значений, значений ее производной
по пространственной переменной ξ и по индексу n в функции доли радиуса
(Табл. IV.3.3) и доли массы (Табл. IV.3.4).

3.4. Обсуждение
модели Эддингтона

Начнем с комментариев к сводке формул
(3.30) — (3.37), дающих глобальные парамет-
ры стандартной модели.

Прежде всего обратимся к выражению (3.31) для полной энергии конфигу-
рации, построенной из одноатомного газа согласно стандартной модели, кото-
рое можно записать в виде

E = β
EG

2
. (3.38)

Так как EG < 0, то полная энергия конфигурации отрицательна. Стандартная
модель — пример политропы индекса n = 3 с E < 0, устойчивой относительно
радиальных колебаний. Согласно формуле (3.24), в данном случае политроп-
ный параметр K зависит от массы звезды и не является фиксированной посто-
янной, характеризующей конфигурации любой массы, построенные согласно
стандартной модели.

Вывод приведенной только что формулы для полной энергии звезды E =
(β/2)EG совсем прост. Пусть eтепл и eизл — соответственно объемные плотно-
сти тепловой энергии газа и энергии излучения. Считая газ нерелятивистским,
имеем Pg = (2/3) eтепл, поле же излучения — это ультрарелятивистский фотон-
ный газ, и поэтому Pr = (1/3) eизл. Итак,

βP =
2
3

eтепл, (1− β)P =
1
3

eизл. (3.39)

Пусть ET и ER — соответственно полная тепловая энергия вещества и энер-
гия излучения, запасенные в звезде:

ET =
∫

V

eтепл dV =
3
2

β

∫

V

P dV, (3.40)

ER =
∫

V

eизл dV = 3 (1− β)
∫

V

P dV, (3.41)
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Таблица IV.3.4:
Функция Эмдена индекса n = 3 и связанные с ней величины

как функции доли массы q ≡ Mr/M

q ξ θ(ξ) ∂θ
∂n −∂θ

∂ξ

0.00 0.0000 1.0000 0.0000 0.0000
0.02 0.5063 0.9588 0.0005 0.1564
0.05 0.7039 0.9235 0.0017 0.2033
0.10 0.9146 0.8760 0.0045 0.2405
0.20 1.218 0.7976 0.0116 0.2717
0.30 1.471 0.7277 0.0206 0.2796
0.40 1.710 0.6628 0.0311 0.2760
0.50 1.954 0.5950 0.0432 0.2642
0.60 2.218 0.5276 0.0570 0.2462
0.70 2.522 0.4563 0.0727 0.2222
0.80 2.904 0.3773 0.0911 0.1915
0.90 3.475 0.2801 0.1138 0.1505
0.95 3.966 0.2135 0.1285 0.1220
0.98 4.515 0.1536 0.1406 0.0972
0.99 4.869 0.1216 0.1465 0.0843
1.00 6.897 0.0000 0.1655 0.0424

наконец, E — ее полная энергия:

E = EG + ET + ER. (3.42)

Привлекая вириальное соотношение

3
∫

V

P dV = −EG, (3.43)

находим, что
2ET + ER + EG = 0. (3.44)

В комбинации с (3.42) это дает уже знакомый нам результат (см. с. 68)

E = −ET . (3.45)

С другой стороны, мы имеем

β

∫

V

P dV =
2
3

ET , (3.46)
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Рис. IV.3.2:

Отношение температур в центре T E
c /Tc и центральных плотностей ρE

c /ρc в
химически однородных звездах (X = 0.70, Y = 0.27, Z = 0.03) разных масс

согласно данным детальных расчетов (Tc, ρc) и
по модели Эддингтона (T E

c , ρE
c ).

что при учете (3.43) дает

β
EG

2
= −ET . (3.47)

Принимая во внимание (3.45), приходим к искомому соотношению (3.38).
Отказ от предположения о том, что газ одноатомный, разумеется, сказыва-

ется на величине коэффициента пропорциональности между E и β EG. Найдем
его. Примем, что показатель адиабаты вещества γ одинаков по всей звезде.
Кроме случая γ = 5/3, на самом деле это едва ли когда-либо бывает так, так
что сейчас мы скорее будем отдавать дань тем далеким временам, когда о
звездах знали еще совсем мало, чем обсуждать реально важное обобщение.

В формуле Риттера (2.33), с. 196, связывающей внутреннюю энергию га-
за звезды EU с ее потенциальной гравитационной энергией EG, учет давления
излучения при сделанных предположениях (β = const, γ = const) ведет к появ-
лению в правой части дополнительного множителя β (проверьте!):

EU = − β

3(γ − 1)
EG. (3.48)
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Рис. IV.3.3:

Отношение давлений в центре P E
c /Pc в химически однородных звездах

(X = 0.70, Y = 0.27, Z = 0.03) разных масс согласно данным детальных
расчетов (Pc) и по модели Эддингтона (P E

c ).

Связь же между запасенной в звезде энергией излучения ER и ее гравитаци-
онной энергией

ER = − (1− β)EG, (3.49)

получающаяся интегрированием второго из равенств (3.39) с учетом теоремы
вириала, от γ не зависит. Пользуясь последними двумя выражениями, для
E = EG + EU + ER находим окончательно

E = β
3γ − 4

3(γ − 1)
EG. (3.50)

При γ = 5/3 получаем уже известный нам результат E = βEG/2. Заметим,
далее, что EU = ET = − (β/2)EG при γ = 5/3, так что для стандартной модели
ER/ET = 2(1 − β)/β. Для звезд не слишком больших масс (1 − β) мало́, и
энергия, запасенная в звезде в форме излучения, оказывается много меньше
тепловой энергии газа. Далее, поскольку при термодинамическом равновесии
средняя энергия фотона порядка средней тепловой энергии частицы (2.7 kT
и 1.5 kT , соответственно), то число фотонов в звездах не слишком больших
масс гораздо меньше числа слагающих их частиц (для Солнца — примерно в
103 ÷ 104 раз).
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Еще один комментарий к формуле (3.35) касается роли стоящего перед
G M/R множителя β. Для звезд с массами M<∼10 его отличием от единицы
можно пренебрегать (если требуемая точность не более ∼ 1%). Однако при
M>∼10 температура в центре химически однородных звезд растет с массой мед-
леннее, чем просто пропорционально M. В пределе очень больших масс доля
газового давления β в полном давлении становилась бы малой (почему ,,бы"?).
Из (3.25′) следует, что в этом случае β = (18.00)1/2/(µ

√
M), и (3.35) принимает

вид

Tc = 8.32 · 107

√
M

R
при M →∞. (3.51)

Оценку массы M0, при которой происходит переход от одного предельного
случая (β = 1) к другому (β ¿ 1), можно получить, приравнивая Tc, даваемые
(3.35) (с β = 1) и (3.51), что дает

M0 =
18.00
µ2

. (3.52)

При µ = 0.6 имеем M0 = 50. Поскольку звезд с массами больше ∼ 120 M¯ не
найдено (по крайней мере пока), предельный случай, описываемый формулой
(3.51), представляет, так сказать, академический интерес. Напомним, что, как
уже говорилось на с. 209, для звезды с предельно большой массой M ∼ 120 мы
имеем β ≈ 0.5.

Обратим теперь внимание на выражение (3.37) для максимального ускоре-
ния силы тяжести в звезде gmax. Оно достигается не на поверхности, а внутри
звезды, причем сравнительно близко к центру (при r = 0.217 R). Понятно, что
причиной этого служит сильная концентрация материи к центру в политропе с
n = 3 (подробнее см. п. 4.3, с. 230). С тем же связана и малость коэффициента
при MR2 в выражении (3.36) для момента инерции I, который примерно в 5
раз меньше, чем для однородного шара с теми же M и R.

Что касается потенциала в центре Φc

(
формула (3.32)

)
, то напомним, что он

отсчитывается от поверхности звезды. Далее, если Φc выражать не в системе
СГС (то есть в см2/с2), а в электрон-вольтах в расчете на атомную единицу
массы, что иногда удобно, то для политропы с n = 3 оказывается

Φc = 6.75
M

R
кэВ/а.е.м.

Заметим, что Φc = 3.417 |ϕs|, где ϕs =−GM/R — потенциал на поверхности (см.
Табл. IV.2.3, с. 189). Полезно помнить, что потенциал на поверхности Солнца
∼ 2 кэВ/а.е.м.

Давление, температуру и плотность в центре звезды, даваемые стандарт-
ной моделью Эддингтона, обсудим более подробно. Это позволит читателю
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составить правильное представление о том, чего можно ждать от стандартной
модели, а чего — нет, то есть о ее реальной точности. На рис. IV.3.2 и IV.3.3 мы
приводим графики отношений значений Tc, ρc и Pc, полученных по детальным
расчетам моделей химически однородных звезд (X = 0.70, Y = 0.27, Z = 0.03)
и по стандартной модели (со значениями радиусов, даваемыми детальными
расчетами). Центральные температуры воспроизводятся с погрешностью не
более 40%. Ошибка в центральной плотности не превосходит множителя 2.5.
Центральные давления в химически однородных звездах с массами примерно
в полторы массы Солнца стандартная модель дает с наибольшей ошибкой —
занижает почти в три раза.

Как видим, при всей своей простоте стандартная модель Эддингтона для
химически однородных звезд все же оказывается в общем неплохим прибли-
жением.

3.5. Соотношение
масса – светимость

Самый замечательный результат, полученный
Эддингтоном на основе своей модели звезды,
это соотношение масса – светимость для звезд

ГП. В основе вывода лежало введенное Эддингтоном представление о главен-
ствующей роли лучистого переноса энергии в звездах. (До него, начиная с
работ Лейна 1870-х — 1880-х годов, полагали, что перенос энергии в звездах
осуществляется конвекцией).

Если в недрах звезды диффузия фотонов (или лучше сказать гамма–
квантов) из более глубоких и потому более горячих ее слоев наружу является
основным механизмом переноса энергии, то поток энергии H связан с гради-
ентом температуры dT/dr следующим образом:

H = − 4ac

3κρ
T 3 dT

dr
. (3.53)

Здесь a = 7.5675·10−15 эрг/(см3K4) — постоянная в законе Стефана – Больцма-
на u = aT 4, где u — плотность энергии равновесного планковского излучения с
температурой T ; далее, κ — непрозрачность вещества, связанная с усредненной
по спектру длиной свободного пробега фотона l следующим образом: 1/l = κρ;
размерность κ — см2/г. Если эту формулу переписать в виде

H = − 1
3

c l
d(aT 4)

dr
, (3.54)

то в ней сразу же опознается записанная применительно к рассматриваемому
случаю основная формула элементарной теории диффузии — формула Фика:

j =
1
3

v l gradN. (3.55)
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В ней N — концентрация диффундирующих частиц, v — скорость их хаоти-
ческого движения, l — длина свободного пробега частиц в веществе, наконец
j — поток частиц (см−2· с−1). В нашем случае градиент концентрации диф-
фундирующих в звезде фотонов направлен, очевидно, по радиусу. Если, далее,
домножить обе стороны (3.55) на среднюю энергию фотонов, то слева мы по-
лучим поток переносимой ими энергии. Справа же вместо grad N будет теперь
стоять производная по r от плотности энергии планковского излучения с ло-
кальной температурой T , равной aT 4, то есть 4aT 3 dT/dr. Осталось в (3.55)
подставить l = 1/κρ и v = c — и мы приходим к (3.53). О том, какими физи-
ческим процессами определяется непрозрачность (зависящая от частоты диф-
фундирующих фотонов) и как она усредняется по спектру, мы сейчас говорить
не будем, подчеркнув лишь, что, очевидно, она зависит от плотности и темпе-
ратуры. Упомянем, что в большей части массы недр звезд ГП, кроме самых
массивных, мы имеем приближенно κ ∝ (

ρ/T 7/2
)
(так называемая крамерсов-

ская непрозрачность); в массивных же звездах непрозрачность определяется
электронным рассеянием и κ = 0.20 (1 + X). Немного позже мы еще вернемся
к этому.

Переходим непосредственно к выводу соотношения масса – светимость.
Пусть Lr — энергия, протекающая в звезде за единицу времени через сфе-
ру радиуса r. Если она целиком переносится излучением, то согласно (3.53)
имеем

Lr

4π r2
=− 4ac

3κ

T 3

ρ

dT

dr
. (3.56)

Будем, следуя Эддингтону, считать, что звезды главной последовательности
представляют собой политропы индекса n = 3. Поскольку для них T = Tc θ и
ρ=ρc θ 3, то в последней формуле отношение T 3/ρ оказывается не зависящим
от r и равным T 3

c /ρc. Далее, согласно (3.2) и (3.4), с. 199,

Tc =
ξ1

4 µ1

µ

R∗ β
GM

R
. (3.57)

Здесь справа стоит множитель β, учитывающий влияние давления излучения(
см. выше формулы (3.20), с. 205, и (3.35), с. 211

)
. Формулы (2.10) и (2.11) (см.

с. 188) дают

ρc =
ξ3
1

3µ1

ρ =
ξ3
1

µ1

M

4π R3
, (3.58)

так что
T 3

ρ
=

T 3
c

ρc
=

π

16 µ2
1

(
β

µ

R∗ G
)3

M2. (3.59)

Отношение T 3/ρ не зависит от ξ, то есть от r, что принципиально важно. Это
есть следствие предположения, что звезда — это политропа индекса n = 3. Для
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политроп произвольного индекса n мы имели бы T 3/ρ ∝ θ3−n(ξ) и при n 6= 3
зависимость от ξ, то есть от r, сохранилась бы

(
см. формулу (3.18), с. 203

)
.

Полагая в (3.56) r = R и пользуясь (3.59) и (3.13), c. 202 (с дополнительным
множителем β), окончательно находим

L =
π2

12 µ2
1

ac

κs

( G

R∗
)4

µ4 β4 M3, (3.60)

где κs — непрозрачность при r = R (индекс s — от surface). Если массу и
светимость выразить в солнечных единицах и подставить численные значения
входящих в (3.60) постоянных, в том числе µ1 = 2.0182 (политропа n = 3,
см. Табл. IV.2.1, с. 184), то соотношение (3.60) примет вид (проверьте!)

L = 39.2
µ4

κs
β4 M3. (3.61)

Таким образом, если считать, что κs не зависит от массы, то соотношение
масса – светимость имеет вид L ∝ M3. Именно оно и используется чаще всего
для получения различных оценок. Им верно описывается диапазон светимостей
звезд ГП. Так, согласно этому соотношению звезда ГП с M = 100 M¯ должна
иметь светимость, в миллион раз превосходящую солнечную, как это и есть на
самом деле. Впрочем согласно наблюдательным данным зависимость между
массой и светимостью для звезд главной последовательности с 0.5 <∼M <∼ 10 на
самом деле скорее другая: L ∝ M4. Поэтому из (3.61) следует, что с ростом
массы звезды непрозрачность ее вещества должна убывать (κs ∝ M−1). Это
заключение согласуется с тем, что дают детальные расчеты моделей звезд ГП.

Замечательно, что фундаментальное соотношение между массой и свети-
мостью для звезд ГП получено без использования какой-либо информации об
источниках энергии звезд — зависимости их мощности от температуры и плот-
ности, определяющих распределение темпа энерговыделения от расстояния.
Светимость звезды заданной массы определяется непрозрачностью ее веще-
ства, регулирующей отток энергии, а темп ее производства подстраивается под
возможность оттока.

Множитель β, а точнее β4, фигурирующий в (3.61), для звезд небольших
масс можно полагать равным единице. Однако с ростом M он уменьшается. В
предельном случае очень больших масс имеем β ¿ 1, и из соотношения (3.27),
с. 208, находим

β4 =
(18.00)2

µ4 M2
. (3.62)

Поэтому (3.61) принимает вид

L =
12 700

κs
M. (3.63)
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Противоположный предельный случай — звезды малых масс (M <∼ 0.5). Они
являются полностью конвективными и потому представляют собой политропы
индекса n = 3/2. В их недрах перенос энергии практически целиком осуществ-
ляется за счет конвекции. Поэтому соотношение (3.56), полученное в предпо-
ложении, что главную роль в переносе энергии играет излучение, к ним непри-
менимо.

Возвращаемся к обсуждению (и уточнению) формулы (3.60), с. 219, выра-
жающей соотношение масса – светимость. При этом мы будем следовать под-
ходу, использованному в недавней монографии Egglеton’а (см. список литера-
туры, с. 519).

Кажется неожиданным (а для кого-то даже подозрительным), что в форму-
ле (3.60) фигурирует непрозрачность у поверхности κs, а не непрозрачность,
некоторым образом усредненная по всей массе звезды. Мы сейчас убедимся,
что использование κs — это осмысленное приближение.

Непрозрачность можно аппроксимировать суммой двух членов. Один —
обозначим его κT h — учитывает рассеяние на свободных электронах. Он не
зависит ни от температуры, ни от плотности и имеет вид κT h = σT h/(µe mu) =
0.20 (1 + X). Здесь σT h = 0.6652 · 10−24 см2 — томсоновское сечение элек-
тронного рассеяния, µe = 2/(1 + X) — электронный молекулярный вес. При
весовой доле водорода X = 0.70 имеем κT h = 0.34 см2/г. Со вторым членом
положение сложнее, но в некотором приближении — это крамерсовская непро-
зрачность κKr∝ ρ/T 7/2. Можно думать, что мы не совершим большой ошибки,
если вместо ∝ ρ/T 7/2 будем считать этот второй член пропорциональным ρ/T 3.
Поскольку βP = (R∗/µ) ρ T и (1− β)P = aT 4/3, то

ρ

T 3
=

3R∗
aµ

β

1− β
. (3.64)

Так как для модели Эддингтона β постоянно, то есть не зависит от расстоя-
ния от центра звезды, то правая часть, а тем самым и ρ/T 3 также постоянно.
Не зависящим от r оказывается и полная непрозрачность, которую с учетом
последнего выражения можно записать в виде

κ = κs = κT h + κKr µβ/(1− β), (3.65)

где κKr — численный коэффициент. Таким образом, первое из двух делавшихся
выше предположений — о независимости непрозрачности от r — как видим,
является разумным приближением. Второе же предположение — отсутствие
зависимости κ от массы звезды — оказывается неверным, так как β зависит от
M . Вводя (3.65) в (3.61), получаем

L = 39.2 µ4 β4

κT h + κKr µ β/(1− β)
M3. (3.66)
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Эта формула в комбинации с эддингтоновым уравнением (3.25), с. 207, опре-
деляющим β как функцию M , и дает в неявном виде соотношение масса –
светимость.

Если принять X = 0.70, то κT h = 0.34. Далее, можно считать, что κKr =
0.0105 κT h. Тогда при µ = 0.61 согласно (3.66) оказывается, что L = 1 при M =
1, как это и должно быть. Множитель 0.0105 в соотношении κKr = 0.0105 κT h

мы подобрали так, чтобы формула (3.66) давала L = 1 при M = 1. Это число
(0.0105) несущественно отличается от 0.015, которое иногда рассматривается
как грубая аппроксимация численных расчетов непрозрачности.

Далее, формула (3.66) показывает, что можно выделить три области зна-
чений масс. Во-первых, это область очень больших масс. При предельно (на
самом деле — при запредельно) больших массах давление излучения превосхо-
дит газовое, так что β¿1. Множитель β/(1−β)≈β может оказаться настолько
мал, что второй член в знаменателе дроби в (3.66) станет меньше первого. Фи-
зический смысл этого состоит в том, что в массивных звездах непрозрачность
обусловлена томсоновским рассеянием на свободных электронах. В противопо-
ложном предельном случае звезд малых масс имеем (1− β)¿1, и доминирует
крамерсовская непрозрачность, так что κKr µβ/(1 − β)À κT h. В этом случае
согласно (3.61) и (3.66) мы имеем L ∝ M3/(1 − β) ∝ M5. Наконец, в проме-
жуточной области, то есть когда оба слагаемых в выражении для κ одного
порядка, численные результаты, даваемые приведенными выражениями, хоро-
шо аппроксимируются зависимостью L∝M3. Результаты можно резюмировать
следующим образом:

L ∝ M5 при 0.5 <∼M <∼ 5

L ∝ M3 при 5 <∼M <∼ 140

L ∝ M при M >∼ 140.

Границы этих трех областей существенно зависят от принятого значения мо-
лекулярного веса µ и отношения κT h/κKr. Приведенные здесь числа соответ-
ствуют µ = 0.61 и κT h/κKr = 0.0105.

Как уже упоминалось, свою модель звезд ГП Эддингтон основывал вовсе
не на взятом с потолка предположении о том, что они представляют собой
политропы индекса n = 3. В чем же состояли соображения, которые позволили
ему думать, что политропа n = 3 — это разумное приближение? Поймем это.

Легко видеть, что для любых политроп

Mr =
(
(−ξ2 dθ/dξ)/µ1

)
M. (3.67)

Умножим обе части соотношения (3.56) на (4π r2)/Mr, подставив в правую
часть (3.56) выражение Mr из (3.67). Мы убеждаемся, что множитель dθ/dξ,
входящий в выражение для градиента температуры dT/dr, даваемое (3.12),
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сокращается с таким же множителем, появившимся в знаменателе дроби, об-
разовавшейся при умножении (3.56) на 1/Mr. В правой части появляется также
множитель (r/R)2 = ξ2/ξ2

1 , и возникшее здесь ξ2 сокращается с тем ξ2, кото-
рое появилось в правой части из-за домножения ее на 1/Mr. Пользуясь (3.59),
как и при получении (3.60), после простой выкладки обнаруживаем, что (3.56)
можно переписать в виде

Lr

Mr
=

π2

12µ2
1

ac

κ

( G

R∗
)

µ4 β4 M2. (3.68)

Обозначив
Lr

Mr
= η

L

M
, (3.69)

из (3.68) находим, что

L =
π2

12µ2
1

ac

ηκ

( G

R∗
)

µ4 β4 M3. (3.70)

Множитель η, очевидно, зависит от r. Однако из последней формулы (от-
носящейся, напомним, к политропе с n = 3) следует, что произведение κη от
r не зависит. Это и было исходным предположением Эддингтона, которое он
обосновывал, не вполне, впрочем, убедительно, так как в ту пору об источни-
ках энергии звезд еще практически ничего известно не было (не считая его
же утверждения, что достаточный запас энергии звездам может дать синтез
альфа–частиц из протонов). Его соображения состояли в следующем. Ясно, что
Lr/Mr — это средний темп энерговыделения на единицу массы εr в шаре ра-
диуса r, тогда как L/M — это средний по всей звезде темп выделения энергии
ε

(
эрг/(г·с)). Поэтому согласно (3.69) имеем η = εr/ε. Разумно предположить,

что источники энергии концентрируются к центру звезды, а тогда η должно
убывать с r. С другой стороны, исследование процессов, вызывающих непро-
зрачность внутризвездного вещества, показывало, что с ростом температуры
κ убывает. Поэтому с удалением от центра звезды непрозрачность должна воз-
растать. Действительно, если считать ее крамерсовской, так что κ ∝ (ρ/T 7/2),
то поскольку для политропы с n = 3 отношение T 3/ρ не зависит от r, оказыва-
ется, что при убывании температуры, то есть при удалении от центра звезды,
κ возрастает ∝ T−1/2. Таким образом, убывание η с r будет по крайней мере
частично компенсироваться возрастанием κ. Эддингтон предположил, что эта
компенсация будет полной, то есть κη = const. Второе его допущение состояло
в том, что величина κη одинакова для звезд разных масс. По-видимому, это
обосновывалось тем, что тогда зависимость масса – светимость принимает вид
L ∝ M3, как это было найдено Эддингтоном по имевшимся в его распоряжении
наблюдательным данным.





4. СТРУКТУРА ПОЛИТРОП

4.1. Распределение
вещества и давления

Каково детальное строение политропных
шаров, то есть ход физических параметров в
них вдоль радиуса? Обратимся к рисункам.

Плотность в долях центральной в функции расстояния от центра в долях
радиуса x ≡ r/R показана на рис. IV.4.1А, в функции доли массы q ≡ Mr/M —
на рис. IV.4.1Б. Кривые, соответствующие n = 3/2 и n = 3, на этих и последу-
ющих рисунках ограничивают наиболее для нас интересную область значений
n. Рис. IV.4.1А построен по таблицам функций Эмдена с учетом того, что
ρ = ρc θn и x = ξ/ξ1; о построении рис. IV.4.1Б будет сказано немного позже.

Рис. IV.4.1 наглядно показывает, как концентрация материи к центру рас-
тет с увеличением n. При n = 1.5 центральная плотность превосходит среднюю
в шесть раз. Согласно рис. IV.4.1А, в этом случае плотность убывает вдвое
примерно при r = R/2 и в десять раз — при r ≈ (3/4)R. Рис. IV.4.1Б пока-
зывает, что около 90% массы политропы с n = 3/2 имеет плотность, которая
отличается от центральной не более чем в десять раз.

Когда n = 3, концентрация материи к центру гораздо выше: ρc/ρ = 54. Уже
при r = 0.35R плотность падает в десять раз, а плотность, более чем в 10 раз
меньшую центральной, имеет около 30% всей массы конфигурации.

Распределение массы вдоль радиуса. Другой способ проиллюстриро-
вать увеличение степени концентрации вещества к центру — рассмотреть за-
висимость q = Mr/M от x = r/R при разных n (рис. IV.4.2). В шаре с r = R/2
при n = 1.5 содержится примерно половина, а при n = 3 — около 9/10 всей
массы звезды.

Рис. IV.4.2 построен с использованием электронных таблиц производных
функций Эмдена, так как

q ≡ Mr/M = − ξ2θ ′(ξ)/µ1.

Проверьте это, перейдя в интеграле Mr = 4π
∫ r

0
ρr′2dr′ к переменным θ и

ξ и преобразовав его затем с помощью уравнения Лейна – Эмдена.

Рис. IV.4.2 позволяет рассматривать x как известную функцию q (при за-
данном n) и дает возможность получить зависимость любой физической пере-
менной, найденной в функции x, также и в виде функции q. Например, гра-
фики рис. IV.4.1А с помощью кривых рис. IV.4.2 преобразуются в графики
рис. IV.4.1Б. Более строго это можно сформулировать следующим образом:
соотношения ρ/ρc = θ n(ξ) и q = − ξ2θ ′(ξ)/µ1 представляют собой параметри-
ческие уравнения кривых, показанных на рис. IV.4.1Б (параметр — ξ).

224
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Рис. IV.4.1:
Профили плотности ρ/ρc в политропах с разными n в функции доли радиуса

x = r/R (А) и доли массы q = Mr/M (Б).

Рис. IV.4.2:
Доля полной массы политропы q = Mr/M , заключенная в сфере радиуса r,

как функция доли радиуса звезды x = r/R.



226 Гл.IV. Политропы

Рис. IV.4.3:
Распределение давления вдоль радиуса (А) и по массе (Б) в политропах

разных индексов n.

Давление выражается через функцию Эмдена так: P = Pc θ n+1 =
(Pc/ρc) ρ θ. Поскольку θ — убывающая функция, давление падает с удалением
от центра быстрее, чем плотность ρ = ρc θ n (рис. IV.4.3). Обратите внимание
на то, что при n ∈ [1.5; 3] ход давления по массе мало чувствителен к значению
n. Из рис. IV.4.3Б можно заключить, что среднее по массе давление

P =
1
M

∫ M

0

P dMr

при всех n ∈ [0; 5] не отличается по порядку от давления в центре Pc. Отноше-
ние P/Pc зависит от n слабо.

4.2. Переменные
Милна U и V

Существует еще один способ описания рас-
пределения вещества и давления в звездах,
который в прошлом использовался довольно
широко. Этот способ имеет общий характер

и применим для любых моделей звезд, а не только для политроп.
Рассмотрим некоторую функцию переменной r. Это может быть перемен-

ная масса Mr, давление P или какая-то другая величина. Аппроксимируем эту
функцию наилучшим возможным образом в окрестности некоторого конкрет-
ного значения r степенно́й функцией. Показатель степени этой аппроксимации
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будет, вообще говоря, некоторой функцией r. Однако если исходная функция
меняется в очень широких пределах и быстро — а это так обычно и бывает с
такими величинами как Mr, P и т. п., — то показатель такой степенно́й ап-
проксимации меняется гораздо медленнее и часто в значительно более узких
пределах. В этом состоит одно из достоинств использования этого показателя
степени для описания поведения исходной функции.

Формализуем эту общую идею. Пусть f(x) — произвольная дифференци-
руемая функция, f(x) > 0. Аппроксимируем ее в окрестности x = x0, x0 > 0,
степенно́й функцией, то есть представим в виде

f(x) = f(x0)
(

x

x0

)α

+ . . .

Тогда
ln f(x) = ln f(x0) + α(lnx− ln x0) + . . . ,

и поэтому

α =
d ln f(x)

d ln x

∣∣∣∣
x=x0

.

Показатель α характеризует скорость роста f(x) при x = x0. Фактически пред-
ставление f(x) в виде f(x0)(x/x0)α с α = (d ln f(x)/d ln x)

∣∣
x=x0

есть линейная
аппроксимация ln f(x) как функции ln x в окрестности x = x0.

В соответствии с только что сказанным, распределение массы вдоль ради-
уса должно быть удобно описывать параметром

U =
d ln Mr

d ln r
,

рассматриваемым как функция r. Аналогичным образом, распределение дав-
ления по звезде целесообразно описывать функцией

V = − d ln P

d ln r
,

причем знак ,,минус" добавлен справа для того, чтобы V было неотрицатель-
ным. Переменные U и V были введены в 1930 г. Э.Милном. В домашинную
эпоху при численных расчетах звездных моделей ими пользовались очень ши-
роко. Встречаются они и в более современных публикациях.

С помощью уравнения гидростатического равновесия и уравнения сохране-
ния массы легко показать, что (проверьте!)

U =
4πr3ρ

Mr
, V =

GMr

r

ρ

P
.
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Рис. IV.4.4:
Параметры U и v ≡ V/(n + 1) в функции относительного расстояния x = r/R
от центра для политроп разных индексов n. Пунктир — функция (1− x)−1

(см. Упр. 22◦, с. 251).

Какой физический смысл можно приписать U и V, исходя из этих формул?
Принять, что P = (R∗/µ) ρ T .

Укажем на одно важное обстоятельство. Из определений U и V как показа-
телей степенны́х аппроксимаций Mr и P непосредственно следует, что значения
этих параметров на заданном относительном расстоянии от центра (выражен-
ном в долях радиуса) не зависят от единиц, в которых измеряется r. Поэтому
для моделей с подобным (гомологичным) распределением плотности значения
U и V в подобных точках (то есть в точках с одним и тем же x ≡ r/R) не долж-
ны зависеть от масштабного множителя. Иначе говоря, U и V представляют
собой гомологические инварианты.

Проверить это для V прямым расчетом, воспользовавшись тем, что
для гомологичных моделей давление представимо в виде P (r) =(
GM2/(4πR4)

)
p(r/R).

Из сказанного следует, что для политроп в силу их гомологичности (см.
с. 174) параметры U и V , рассматриваемые как функции безразмерного рассто-
яния от центра ξ = r/r1, где r1 — эмденовская единица длины (1.13), должны
зависеть лишь от индекса политропы n. Легко видеть, что (убедитесь в этом!)

U = − ξ θ n/θ ′, V = − (n + 1)ξ θ ′/θ.
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Рис. IV.4.5:
Кривые на плоскости (U, V ), изображающие

структуру политроп разных индексов n.

На рис. IV.4.4А и Б даны графики U и v ≡ V/(n+1) в функции x ≡ r/R = ξ/ξ1

при разных n.
Обдумайте общий вид кривых, приведенных на этих рисунках. Дайте фи-
зическую интерпретацию расходимости V при x → 1 для нормальных
политроп.

Приведенные только что выражения для U и V через функцию Эмдена и
ее производную можно рассматривать как параметрические уравнения кривой
на плоскости (U, V ), изображающей структуру политропы данного индекса n.
Эти кривые для разных n даны на рис. IV.4.5.

4.3. Температура и
гравитационное

поле

Как было показано в разд. IV.3, темпе-
ратура в нормальной политропе T (r) выра-
жается через функцию Эмдена следующим
образом: T (r) = Tc θ(ξ1r/R).

Профили температуры при разных n в функции доли радиуса x = r/R
приведены на рис. IV.4.6А. На рис. IV.4.6Б даны распределения температуры
в политропах разных индексов в функции доли массы q = Mr/M . Обращаем
внимание на слабую зависимость T (q) от n. Кривые для n = 3/2 и n = 3 в
масштабе рисунка были бы едва различимы. Следствием малой чувствитель-
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Рис. IV.4.6:
Профили температуры в нормальных политропах в функции

доли радиуса (А) и доли массы (Б).

ности вида функции T (q) к изменению параметра n является установленная
ранее (п. 3.1, с. 201) слабая зависимость отношения T/Tc от n.

Звезда создает гравитационную потенциальную яму. Глубина этой потенци-
альной ямы при заданных массе и радиусе звезды определяется распределени-
ем вещества, то есть в случае политропы — значением n. Внутри политропы,
при r < R, потенциал ϕ, нормированный к нулю на бесконечности, выражается
через функцию Эмдена θ так (см. разд. IV.2, с. 191):

ϕ(r) = −
[
1 +

ξ1

µ1

θ
(
ξ1

r

R

)]
GM

R
;

при r > R имеем обычный ньютоновский потенциал GM/r. С ростом n глу-
бина потенциальной ямы растет (рис. IV.4.7). Однако при n 6 3 потенциал
внутри звезды по порядку не отличается от его значения на поверхности. От-
сюда, в частности, следует, что если эффекты ОТО малы близ поверхности,
то они малы и по всей звезде. Отметим, что при n = 1 разность потенциалов
между центром политропы и ее поверхностью в точности равна потенциалу на
ее поверхности −GM/R, отсчитанному от бесконечности.

Будет уместно также напомнить, что потенциал, отсчитанный от поверх-
ности, в нормальной политропе пропорционален температуре, то есть Φ ∝ T .
Поэтому профили температуры, показанные на рис. IV.4.6, являются одно-
временно и профилями потенциала Φ/Φc. В частности, согласно рис. IV.4.6Б,
потенциал в долях центрального, рассматриваемый в функции доли массы
q = Mr/M , сравнительно мало чувствителен к значению индекса политропы
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Рис. IV.4.7:
Гравитационное поле политроп разных индексов n.

Хотя с ростом n потенциальная яма становится глубже, при n 6 3
потенциал в пределах всей звезды все еще имеет тот же порядок,

что и на поверхности.

n, то есть к тому, как вещество распределено вдоль радиуса.
Для абсолютной величины ускорения силы тяжести внутри политропы g =

dϕ/dr из предыдущей формулы находим

g = − ξ2
1

µ1

θ ′
(
ξ1

r

R

) GM

R2
.

Максимальное значение g довольно быстро растет с n. Наибольшая сила
тяжести достигается на тем меньших расстояниях от центра звезды (в долях
радиуса), чем больше n (рис. IV.4.8).

Поучительно рассмотреть ускорение силы тяжести и как функцию доли
массы q. Если при этом измерять g в единицах GM/R̃2, где R̃ ≡ (1 − n/5) R,
обозначив

g̃ ≡ g

GM/R̃2
,

то получаются результаты, показанные на рис. IV.4.9. Обратите внимание на
предельную кривую, соответствующую n → 5.

Получите ее параметрическое представление, воспользовавшись явным
выражением для θ(ξ) при n = 5 и асимптотикой ξ1 при n → 5 (формула
(2.2), с. 183).
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Рис. IV.4.8:
Ход ускорения силы тяжести g в политропах разных индексов n.
С ростом n максимальное значение g (в единицах GM/R2) растет
примерно как (5−n)2, причем максимум постепенно перемещается

к центру звезды.

В предельном случае (5 − n) ¿ 1 наибольшая сила тяжести достигается
при q около 0.2. Она превосходит силу тяжести на поверхности конфигурации
асимптотически (n → 5) примерно в 40/(5− n)2 раз.

В связи с рис. IV.4.9 любопытно отметить следующее. Представляется оче-
видным, что все кривые представленного на нем семейства пересекаются в од-
ной точке. Совершенно непонятно, почему это так. Но... это не так! На самом
деле кривые пересекаются не в одной точке. Так, можно показать, что кривые,
соответствующие n = 0 и n = 1, пересекаются в точке (q, g̃) = (0.6673, 0.8739),
тогда как кривые для n = 0 и n = 5 — хотя и в близкой, но все же другой
точке: (q, g̃) = (0.6613, 0.8712). Чтобы проверить эти числа, вполне достаточ-
но калькулятора. Впрочем, и получены они были автором не на компьютере,
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Рис. IV.4.9:
Ускорение силы тяжести, измеренное в единицах GM/R̃2, где R̃ ≡ (1− n/5)R,

как функция доли массы q = Mr/M .

а на калькуляторе. Для этого пришлось выполнить несколько итераций. В ос-
нове расчета, понятно, лежал тот факт, что функции Эмдена для n = 0, 1 и
5 известны в явном виде. Все это вряд ли представляет какой-либо реальный
физический интерес, но ,,мистика" — пересечение всех кривых в одной точке —
исчезла.





5. ИЗОТЕРМИЧЕСКИЕ ГАЗОВЫЕ ШАРЫ

5.1. Постановка
задачи

Когда водород в центральных частях звез-
ды исчерпался, целиком превратившись в ге-
лий, выделение ядерной энергии здесь пре-
кращается и переходит в слоевой источник,

окружающий это выгоревшее ядро. В итоге в центре звезды появляется по-
чти изотермический газовый шар, находящийся под давлением вышележащих
неизотермических слоев. Таково строение красных гигантов. Состояние газа в
их почти изотермических ядрах определяется массой той звезды ГП, из кото-
рой развился красный гигант. Звезды малых масс (M <∼2.5M¯) эволюциониру-
ют в красные гиганты с вырожденными ядрами. Если же масса звезды доста-
точно велика, электронный газ в выгоревшем ядре оказывается невырожден-
ным. Так мы естественно приходим к задаче о расчете равновесия изотерми-
ческого шара из невырожденного газа, находящегося под внешним давлением.

На самом деле эта задача была изучена гораздо раньше, чем стало ясно
строение красных гигантов и даже раньше, чем люди вообще узнали, что среди
звезд бывают гиганты и карлики. Более ста лет назад, в 1882 г., эту естествен-
ную в своей простоте задачу исследовал Риттер. Позже ею занимался Эмден.

Дело, очевидно, сводится к отысканию потенциала ϕ из уравнения Пуассо-
на ∆ϕ = 4πGρ при граничных условиях ϕ (0) = 0, ϕ ′(0) = 0, первое из которых
означает, что мы отсчитываем потенциал от его значения в центре конфигура-
ции, а второе — равенство нулю силы тяжести в центре шара. В изотермиче-
ском газе плотность связана с потенциалом обычной формулой Больцмана

ρ = ρc exp
(
− µmu

kT
ϕ
)

,

так что уравнение Пуассона принимает в данном случае вид

∆ϕ = 4π Gρc exp
(
− µmu

kT
ϕ
)

.

Здесь естественно перейти к безразмерным переменным. Прежде всего, вместо
ϕ буквально ,,просится" новая переменная, стоящая в показателе экспоненты:

ψ ≡ µmu

kT
ϕ =

µ

R∗T ϕ. (5.1)

Физический смысл ψ таков. Это есть отсчитываемая от центра конфигурации
гравитационная энергия связи в расчете на одну частицу, измеренная в едини-
цах ее тепловой энергии kT . Далее, введем характерную длину r0 и положим
r = r0ζ. Выберем r0 из того условия, чтобы в уравнении Пуассона, записанном

235
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в безразмерных переменных ζ, ψ, сократились все числовые коэффициенты.
Для этого нужно взять

r0 =
(

kT

µmu 4π Gρc

)1/2

, (5.2)

что с точностью до множителя порядка единицы есть не что иное как джин-
совская длина — фундаментальное понятие теории гравитационной неустойчи-
вости.

Переписав (5.2) в форме

1

3
kT = µmu

GM0

r0
,

где M0 — масса однородного шара плотности ρc и радиуса r0, поймите
физический смысл r0.

Уравнение Пуассона и граничные условия к нему во введенных только что
переменных записываются в следующей безразмерной форме (оператор Лапла-
са выпишем на этот раз в явном виде):

1
ζ2

d

dζ

(
ζ2 dψ

dζ

)
= e−ψ; (5.3)

ψ (0) = 0, ψ ′(0) = 0.

Функцию ψ(ζ) будем называть изотермической функцией Эмдена. Для изо-
термического газа уравнение состояния P = (R∗/µ) ρ T можно переписать в
форме P = Kρ, где K = (R∗/µ)T = const, а это можно рассматривать как
предельный случай политропной связи P = Kρ1+1/n, соответствующий n = ∞
(точнее, |n| = ∞).

5.2. Изотермическая
функция Эмдена

При малых ζ функцию ψ(ζ) можно найти по
ее разложению

ψ(ζ) =
1
6
ζ2 − 1

120
ζ4 +

1
1890

ζ6 +
61

1 632 960
ζ8 +

629
224 532 000

ζ10 + . . . , (5.4)

справедливость которого устанавливается его подстановкой в (5.3). Соответ-
ствующее распределение плотности есть

ρ(ζ) = ρc

(
1− ζ2

6
+

ζ4

45
+ . . .

)
. (5.5)
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Функция ψ(ζ) монотонно возрастает при всех ζ, что следует, например, из
ее физического смысла. Это можно показать и формально. Так как e−ψ >0, то
при ζ >0 согласно (5.3) d

dζ

(
ζ2 dψ

dζ

)
> 0, и потому величина ζ2dψ/dζ должна воз-

растать с ζ. Поскольку, далее,
(
ζ2dψ/dζ

)∣∣
ζ=0

= 0, то заключаем, что dψ/dζ > 0
при ζ > 0, то есть ψ(ζ) действительно монотонно возрастает. Подобное же рас-
суждение в применении к политропам произвольного индекса n, описываемым
(1.14) – (1.15), с. 177 и 178, доказывающее, что функции Эмдена θ(ζ) монотонно
убывают, на с. 178 мы предлагали читателю провести самостоятельно.

Скорость роста ψ(ζ) убывает с ζ, и при больших ζ, как показал еще Эмден,

ψ(ζ) = ln
ζ2

2
+

A

ζ1/2
cos

(√
7

2
ln ζ + δ

)
+ . . . , (5.6)

где A и δ — некоторые постоянные. Поэтому

ρ = ρc
2
ζ2

[
1− A

ζ1/2
cos

(√
7

2
ln ζ + δ

)
+ . . .

]
, ζ →∞. (5.7)

Асимптотика (5.6) играет важную роль при изучении устойчивости само-
гравитирующих газовых масс. Она получается так. В уравнении (5.3) перейдем
от переменной ζ к t = ln ζ и положим

ψ = 2t− z. (5.8)

В результате для z получается следующее уравнение:

d2z

dt2
+

dz

dt
= − (ez − 2). (5.9)

Оно совпадает с уравнением движения частицы единичной массы в среде с
трением (член dz/dt) под действием силы − (ez − 2), зависящей от положения
частицы. Из-за трения движение будет замедляться, и при t → ∞ точка бу-
дет стремиться к положению равновесия, в котором действующая на нее сила
должна быть равна нулю. Значит, ez − 2 → 0 при t → ∞, то есть z → ln 2.
Поэтому, положив

z = ln 2 + x, (5.10)

можно утверждать, что x при больших t будет мало́, и ex можно заменить на
1+x. В результате этой линеаризации уравнение (5.9) переходит в следующее:

d 2x

dt2
+

dx

dt
+ 2x = 0, (5.11)
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Рис. IV.5.1:

Изотермическая функция Эмдена ψ(ζ) (сплошная линия). Штриховая
линия — значения ψ(ζ) при малых ζ, вычисленные по разложению (5.4).

Функция ψ(ζ) — это гравитационный потенциал на безразмерном
расстоянии ζ от центра изотермического шара, отсчитанный от его
значения в центре и измеренный в единицах характерной тепло-
вой энергии единицы массы kT/µmu. Изотермические шары без-
размерного радиуса (в единицах r0) ζ > ζ∗ = 6.45 гравитационно

неустойчивы.

решение которого есть

x = A e−t/2 cos

(√
7

2
t + δ

)
=

A

ζ1/2
cos

(√
7

2
ln ζ + δ

)
. (5.12)

Собирая вместе (5.8), (5.10) и (5.12), приходим к искомому результату — асимп-
тотике (5.6).

Значения изотермической функции Эмдена ψ(ζ), найденные численным ин-
тегрированием, приведены на рис. IV.5.1. Выход на асимптотику (5.6) иллю-
стрируется рис. IV.5.2. Значения асимптотических констант A и δ, найденные
сравнением численного решения уравнения (5.3) с асимптотикой (5.6), таковы:
A = 1.178, δ = 1.062. При ζ > 356 асимптотика (5.6) дает значения изотер-
мической функции Эмдена, которые отличаются от численно точных не более
чем на 0.001.

Поскольку функция ψ конечна при всех ζ, а ρ = ρc e−ψ, плотность в изотер-
мическом шаре не может обратиться в нуль ни на каком конечном расстоянии
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Рис. IV.5.2:

Выход ψ(ζ) на асимптотику.
Сплошная линия — функция

(
ψ(ζ)− ln ζ2

2

)
ζ1/2,

штриховая линия — A cos
(√

7
2

ln ζ + δ
)
.

от центра. Поэтому давление P = Kρ, где K = (R∗/µ)T = const, не будет обра-
щаться в нуль на поверхности изотермического шара. А это значит, что такой
шар может находиться в равновесии только если он подвергается внешнему
давлению. В звездах такое внешнее давление на их изотермические ядра обес-
печивается весом вышележащих неизотермических слоев. Однако изотермиче-
ский шар заданной массы, химического состава (µ) и температуры способен
выдержать не любое внешнее давление, а лишь не превосходящее некоторого
предельного, в противном случае механическое равновесие нарушается. Это
важное для понимания рождения и хода эволюции звезд обстоятельство по-
дробно обсуждается в двух следующих пунктах. Пока же найдем необходимые
для дальнейшего выражения ряда физических характеристик изотермического
шара через изотермическую функцию Эмдена ψ(ζ).

Массу Mr, заключенную в сфере радиуса r,

Mr = 4π

∫ r

0

ρ r′2dr′,
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Таблица IV.5.1:
Физические характеристики самогравитирующих

изотермических газовых шаров.
ζs µs ζs/µs σc ps ωs

0.000 0.000 ∞ 3.000 0.000 0.600
0.1 0.333-03 0.300+03 3.000 0.111-06 0.600
0.5 0.041 12.300 3.075 0.002 0.601
1.0 0.303 3.301 3.301 0.078 0.606
2.0 1.895 1.055 4.221 2.051 0.621
3.0 4.654 0.645 5.801 7.479 0.643
4.0 7.905 0.506 8.096 12.973 0.668
5.0 11.199 0,446 11.162 16.242 0.694

6.451 15.704 0.4108 17.093 17.564 0.7323
8.0 20.064 0.399 25.517 16.820 0.771
10.0 25.106 0.398 39.831 15.024 0.817
20.0 45.250 0.442 176.792 9.212 0.974
50.0 95.906 0.521 0.130+04 6.199 1.106
100.0 0.184+03 0.543 0.543+04 6.277 1.084

введением переменных Эмдена ζ, ψ можно представить в форме

Mr = 4π r3
0 ρc µ(ζ),

где ζ = r/r0 и

µ(ζ) =
∫ ζ

0

e−ψ(ζ′)ζ ′2dζ ′.

С помощью (5.3) для µ(ζ) можно получить и другое представление (ср. со
с. 224):

µ(ζ) = ζ2 ψ′(ζ).

Если M — полная масса изотермического шара и ζs ≡ R/r0 — его безраз-
мерный радиус, то, очевидно,

M = 4π r3
0 ρc µs, (5.13)

где µs ≡ µ(ζs). При учете (5.2) это можно переписать так:

M =
µs√

4π ρc

(
kT

µmuG

)3/2

. (5.14)
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Степень концентрации материи к центру, мерой которой может служить без-
размерный параметр σc ≡ 3ρc/ρ, где ρ ≡ ρ(ζs) — средняя плотность шара,
оказывается равной

σc =
ζ3
s

µs
.

Она монотонно возрастает с ζs (см. Табл. IV.5.1).
Что касается радиуса шара, то через его массу M и параметры газа T и µ

он выражается так:

R =
(

ζs

µs

)
µ

R∗
GM

T
≡

(
ζs

µs

)
R0 . (5.15)

Для получения этого выражения достаточно в (5.14) подставить ρc =
σc

(
M/(4πR3)

)
. Заметим, что по существу мы уже знаем (5.15) — это есть не что

иное, как соотношение (3.2) (с. 199), записанное в слегка измененной форме.
Значение ζs определяется величиной внешнего давления. Действительно,

строение изотермического шара фиксированных температуры T , массы M и
химического состава (µ), в частности, степень концентрации материи в нем
к центру может определяться единственным оставшимся в нашем распоряже-
нии свободным параметром — внешним давлением. К обсуждению зависимости
характеристик шара от внешнего давления мы теперь и перейдем.

5.3. Гравитационная
неустойчивость

Боннора – Эберта

Газовое давление на поверхности изотерми-
ческого шара Ps, которое должно уравнове-
шиваться внешним давлением, равно, оче-
видно, Ps = (R∗/µ) ρs T , где ρs — плотность

на поверхности шара. Но ρs = ρc e−ψs , где ψs ≡ ψ(ζs), так что

Ps =
R∗
µ

ρc T e−ψs .

Исключив отсюда ρc с помощью (5.14), получим

Ps = ps

(R∗T
µ

)4 1
4π G3M2

≡ ps P0 , (5.16)

где обозначено
ps = µ2

s e−ψs . (5.17)

При заданных M, T и Ps соотношение (5.16) может рассматриваться как урав-
нение для определения структурного параметра ps. Затем по нему из (5.17)
находится безразмерный радиус ζs, который будет иметь изотермический шар
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с фиксированными M , T и µ, находящийся под заданным внешним давлением
Ps. Значения ps в функции ζs даны в Табл. IV.5.1, общий характер зависимо-
сти ps от ζs иллюстрируется рис. IV.5.3. Важной особенностью этой зависи-
мости является ее немонотонный характер. Максимальное значение ps, равное
p∗ = 17.56, достигается при критическом значении ζs ≡ ζ∗ = 6.45075. Это ζ∗
является корнем уравнения

√
2 exp

(
− ψ(ζ∗)

2

)
= ψ ′(ζ∗). (5.18)

Оно получается из (5.17) приравниванием производной ps к нулю (проверьте!).
Согласно (5.16), ограниченность ps означает, что для шара с данными M ,

T и µ существует некоторое критическое внешнее давление Pmax
s ≡ P∗ — то,

которому соответствует ps = p∗. При Ps 6 P∗ изотермический шар может нахо-
диться в механическом равновесии, если же Ps > P∗, механическое равновесие
невозможно. Упругость газа оказывается недостаточной, чтобы противостоять
внешнему давлению, и должно наступать быстрое сжатие. Это — так называ-
емая неустойчивость Боннора – Эберта (У.Боннор, 1956 г.; Р.Эберт, 1955 г.)

Пусть теперь изотермический шар находится под внешним давлением,
меньшим критического. Тогда согласно рис. IV.5.3 этому давлению (оно харак-
теризуется значением безразмерного параметра ps) отвечают два возможных
значения безразмерного радиуса шара — один, меньший критической величи-
ны ζ∗ = 6.45, другой — больший ее. Легко, однако, видеть, что второе значение
не годится, так как соответствует неустойчивой конфигурации. Действитель-
но, согласно (5.15) и данным Табл. IV.5.1, если сжатие шара происходит таким
образом, что температура газа T остается неизменной, то это всегда ведет
к росту ζs. Давление же газа на поверхности шара при ζs > ζ∗ с ростом ζs,
то есть при сжатии, уменьшается. Поэтому малейшее сжатие шара приведет
в этом случае к тому, что внешнее давление окажется больше газового давле-
ния у поверхности шара. Ясно, что такое состояние равновесия неустойчиво и
реализоваться не будет. Поэтому если внешнее давление не превышает крити-
ческого, оно однозначно определяет значение ζs, а тем самым — и радиус шара
R.

Заметим, что при больших ζs на кривой ps = ps(ζs) имеются плавные волны
небольшой амплитуды, убывающей от волны к волне. Может показаться, что
слева от гребня каждой такой волны, то есть там, где ps(ζs) возрастает с ζs,
на оси ζs имеется ,,островок устойчивости". Внимательный анализ показывает,
что это не так, так что при всех ζs > ζ∗ шар неустойчив.

Исследовать вид кривой ps(ζs) при больших ζs можно с помощью асимпто-
тики ψ(ζ) при больших ζ, полученной в п. 5.2.

Рис. IV.5.4 дает наглядное представление о том, как с изменением ради-
уса изотермического шара

(
измеренного в единицах R0, см. формулу (5.15)

)
,
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Рис. IV.5.3:

Зависимость безразмерного внешнего давления ps от безразмерного радиуса
ζs изотермического шара, измеренного в единицах r0, так что ζs ≡ R/r0.

Равновесные конфигурации описываются частью кривой, нанесен-
ной сплошной линией. Пунктир — конфигурации, для которых

механическое равновесие невозможно.

вызванного ростом внешнего давления, изменяется газовое давление на его по-
верхности. Критическое давление P∗ = 17.6P0 достигается при R = 0.41R0.

5.4. Обсуждение
неустойчивости

Боннора – Эберта

Вывод о возможности гравитационной
неустойчивости изотермического газового
шара имеет большое значение для пони-
мания как процесса рождения звезд, так

и путей их эволюции. Поэтому следует ясно представлять себе физическую
причину наступления этой неустойчивости.

Очевидно, что при медленном росте внешнего давления, происходящем без
нарушения механического равновесия и без изменения температуры газа, шар
будет сжиматься. Средняя плотность и плотность в центре шара будут расти.
Одновременно будет происходить перераспределение вещества вдоль радиуса,
и степень концентрации вещества к центру будет постепенно увеличиваться.
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Рис. IV.5.4:

Зависимость безразмерного внешнего давления P/P0 ≡ ps = µ2
s exp (−ψs) от

безразмерного радиуса R/R0 ≡ ζs/µs изотермического шара
Равновесные конфигурации описываются частью кривой, нанесен-

ной сплошной линией.

Это приводит к тому, что по мере роста внешнего давления и сжатия ша-
ра рост плотности, а вместе с нею и давления газа во внешних его частях,
будет происходить все медленнее. В конце концов непрерывно возрастающая
при все увеличивающемся сжатии неоднородность распределения вещества бе-
рет во внешних частях шара верх над общим ростом плотности из-за сжатия.
При дальнейшем сжатии шара давление газа у его поверхности должно начать
уменьшаться. Начиная с этого момента восстановить равенство между внеш-
ним давлением и газовым давлением на поверхности путем сжатия — этого
единственного доступного газовому шару средства регулировки давления —
становится уже невозможно. Механическое равновесие оказывается нарушен-
ным, и должно наступить катастрофическое сжатие — коллапс.

Неизбежность нарушения механического равновесия при росте внешнего
давления и сжатии шара можно понять и с помощью теоремы вириала. В рас-
сматриваемом случае (статическая конфигурация, отличное от нуля внешнее
давление Ps 6= 0, вклад в вириал — только от самогравитации) вириальное
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соотношение (II.2.23), с. 74, принимает вид

EG + 3
∫

V

P dV − 4πR3Ps = 0. (5.19)

Для изотермического шара это дает

3
R∗
µ

TM − ωs
GM2

R
= 4πR3Ps , (5.20)

где ωs — безразмерная гравитационная энергия шара:

ωs = 3
ζs

µs
− e−ψ(ζs)

(
ζ2
s

µs

)2

. (5.21)

Величина ωs — порядка единицы, см. Табл. IV.5.1, с. 240.
При малом внешнем давлении R велико, и гравитационная энергия шара(∝R−1

)
мала по сравнению с его тепловой энергией (не зависящей от R).

Плотность в шаре при этом почти постоянна. В этом предельном случае R ∝
P
−1/3
s . Из-за убывания R с ростом Ps гравитационная энергия в конце концов

становится порядка тепловой. Это ведет к увеличению скорости убывания R с
ростом Ps. Однако радиус не может стать меньше некоторого предельного, что
видно хотя бы из того, что левая часть в вириальном соотношении не может
стать отрицательной. Это, как легко видеть, влечет неравенство

R >
1
5

µ

R∗
GM

T
.

Поэтому механическое равновесие будет возможно только при R > R∗, где
R∗ — предельный радиус. Этому критическому радиусу будет соответствовать
некоторое определенное внешнее давление P∗. При Ps > P∗ вириальное соот-
ношение не будет удовлетворяться ни при каком R, а следовательно, механи-
ческое равновесие невозможно. Мы пришли к уже известному нам результату.
Хотя получить R∗ и P∗ по заданным M , T и µ теорема вириала и не позволяет,
сам факт существования этих предельных значений устанавливается ею, как
видим, весьма наглядно.

Согласно (5.15), радиус шара с ζs = ζ∗ = 6.45, находящегося под критиче-
ским давлением, то есть на границе устойчивости, равен

R∗ = 0.4108
µ

R∗
GM

T
, (5.22)

что можно переписать также в виде

µmu
GM

R∗
= 2.43 kT, (5.23)



246 Гл.IV. Политропы

так что гравитационная энергия связи частицы на поверхности критическо-
го шара в 1.62 раза больше ее тепловой энергии (3/2)kT . Приведем также
выражения для ряда других физических характеристик самогравитирующего
изотермического газового шара, находящегося на границе устойчивости. Его
гравитационная энергия

E∗
G = − ω∗

GM2

R∗
= − 0.7323

GM2

R∗
= − 1.783N kT, (5.24)

где N — полное число частиц в шаре. Таким образом,

|E∗
G| = 1.189 E∗

T , (5.25)

где E∗
T — тепловая энергия шара. Далее, критический перепад давления (и

плотности) от центра к поверхности, при котором нарушается равновесие, со-
ставляет (

Pc

Ps

)

cr

=

(
ρc

ρs

)

cr

= 14.04, (5.26)

а средняя плотность примерно в два с половиной раза больше плотности на
поверхности шара: (

ρ

ρs

)

cr

= 2.465. (5.27)

Наконец, критическое внешнее давление связано с предельным радиусом R∗
простым соотношением, не содержащим каких-либо величин, находимых чис-
ленно:

P∗ =
GM2

8πR4∗
. (5.28)

Самый же важный результат — это верхний предел массы газа заданной
температуры и средней плотности, которая еще может находиться в равнове-
сии:

M 6 M∗ =
√

3
(

µ∗
ζ∗

)3/2 1√
4πρ

(
kT

µmuG

)3/2

. (5.29)

В числах

M∗=
6.58√
4πρ

(
kT

µmuG

)3/2

= 8.17 · 1022

(
T 3

µ3 ρ

)1/2

= 1.30
((

T/107
)3

µ3 ρ

)1/2

M¯ . (5.30)

С точностью до множителя порядка единицы M∗ совпадает с джинсовской
критической массой.
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Описанная картина наступления гравитационной неустойчивости с ростом
внешнего давления имеет непосредственное отношение к проблеме формиро-
вания звезд из межзвездного газа. Впрочем, эта проблема скорее относится к
физике межзвездной среды, чем к физике звезд, и поэтому ее обсуждение не
является для нас первоочередным делом. Однако гравитационная неустойчи-
вость, о которой шла речь, играет важную роль и в эволюции уже сформиро-
вавшихся звезд.



6. УПРАЖНЕНИЯ

1◦ Считая звезды политропами с заданным n, найти отношение давлений
при r = R/2 в двух таких звездах, 1 и 2, у которых гравитационные энергии
связи одинаковы, а M2/M1 = 2.

2◦ Найти температуру в центре нормальной политропы с массой M =
M¯, µ = 1 и потенциальной энергией EG = − 1048 эрг, если n = 5.

3◦ Во сколько раз температура в нормальной политропе с n = 1 на
расстоянии r = R/6 от центра меньше центральной? Чему равно ее абсолютное
значение, если M = M¯, R = R¯ и звезда состоит из чистого водорода?

4◦ Как было показано в п. III.1.5, с. 119, гравитационное давление в цен-
тре звезды с произвольным распределением плотности вдоль радиуса имеет
вид

Pc = c1 GM2/3ρ4/3
c ,

где c1 — структурный множитель, определяемый ходом плотности. Показать,
что для политроп множитель c1 в формуле (IV.1.4), с. 173, тот же самый, что
и в приведенной выше формуле.

5◦ Оценить скорость убегания звезды из центра шарового звездного скоп-
ления с массой ∼ 106M¯ и центральной плотностью ∼ 104M¯/пк3. Скопление
считать политропой индекса n = 5.

6◦ Показать, что при отрицательном индексе n ∈ [−1, 0) химически од-
нородные политропы из идеального газа имели бы плотность, возрастающую
с удалением от центра, температура же в них быстро убывала бы наружу (тем
быстрее, чем меньше n).

7◦ Доказать, что соотношение

(n + 1)
R∗
µ

T + ϕ = const
(

= − GM

R

)
, r ∈ [0, R] ,

где ϕ — потенциал, есть необходимое и достаточное условие того, что нормаль-
ная звезда представляет собой политропу индекса n.

248
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8◦ Показать, что решения уравнения Лейна – Эмдена допускают следу-
ющее преобразование подобия: если θ(ξ) — какое-нибудь решение уравнения
Лейна – Эмдена индекса n (не обязательно удовлетворяющее начальным усло-
виям θ(0) = 1, θ′(0) = 0, то есть не обязательно функция Эмдена), то функция
A2/(n−1)θ(Aξ), где A — произвольная постоянная, также является решением
этого уравнения.

9◦ Применить к политропам универсальное неравенство pc > 8ω4 (см.
Упр. 7◦ к Гл. III, с. 164) и неулучшаемую оценку pc > [1875/2](5−n)−4 со с. 280.
Сопоставив получающиеся оценки pc с данными, приводимыми в Табл. IV.2.2
(с. 189), сделать заключение о качестве этих оценок в применении к звездам
разной структуры (не обязательно политропам).

10◦ Воспользовавшись теоремой вириала в форме (II.2.4), с. 66, показать,
что для политропы индекса n выполняется соотношение

∫ ξ1

0

θn+1(ξ)ξ2 dξ =
(n + 1)µ2

1

(5− n)ξ1
.

11◦ Устремим n → 5 в соотношении, полученном в предыдущей задаче и

учтем, что при этом θ(ξ) → (1+ ξ2/3)−1/2 и µ1 →
√

3. Получающийся интеграл
вычисляется подстановкой ξ =

√
3 tg(α/2). Показать, что результат дает

ξ1 ∼ 32
√

3
π

1
5− n

, n → 5.

Этот результат приводился в тексте (формула (IV.2.3), с. 183) без доказатель-
ства.

12◦ Можно показать, что коэффициент ak в степенно́м разложении функ-
ции Эмдена

θ(ξ) =
∞∑

k=0

ak ξ2k

при k > 1 есть многочлен по n степени k − 1. Приведенные на с. 178 явные
выражения для θ(ξ) при n = 0, 1 и 5 позволяют вычислить ak для этих n.
Опираясь на это, получить a1, a2 и a3 для любого n.

13∗◦ Подстановкой в уравнение Лейна – Эмдена разложения θ(ξ) в сте-
пенной ряд (см. предыдущую задачу) убедиться в том, что ak удовлетворяют
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рекуррентному соотношению (З.Ф.Сеидов, Р.Х.Кузахмедов, 1976 г.)

ak+1 =
1

k(k + 1)(2k + 3)

k∑

i=1

(ni + i− k)(k − i + 1) (3 + 2(k − i)) ai ak+1−i.

Чему равен радиус сходимости рассматриваемого степенного ряда для θ(ξ) при
n = 1 и при n = 5?

14◦ Пусть θ и θ0 — функции Эмдена для индексов политропы, равных
соответственно n и n0. Положим

θ(ξ) = θ0(ξ) + ε0(ξ) (n− n0) + o(n− n0), n → n0.

Получить уравнение и граничные условия, которым удовлетворяет

ε0(ξ) ≡ ∂θ(ξ)
∂n

∣∣∣∣∣
n=n0

.

15∗◦ Подстановкой в уравнение для ε0(ξ) (см. предыдущую задачу) про-
верить, что при n0 = 5 (З.Ф.Сеидов и Р.Х.Кузахмедов, 1978 г.)

ε0(ξ) =
1

48 sin ν

(
sin 2ν − 5

4
sin 4ν + 3ν cos 4ν − 3(2 sin 2ν + sin 4ν) ln cos ν

)
,

где

ν = arctg
ξ√
3

.

16◦ Исходя из результатов двух предыдущих задач, показать, что при
n → 5 корень функции Эмдена

ξ1 ∼ ξas
1 =

32
√

3
π

1
5− n

.

Другим, более простым путем этот результат получен выше в Упр. 11◦.

17◦ Пользуясь выражением для ε0(ξ) из Упр. 15◦, установить, что если
n → 5 и одновременно ξ →∞ так, что (5− n)ξ = const, то

θ(ξ) → θas(ξ) =
√

3
(

1
ξ
− 1

ξas
1

)
,

где

ξas
1 =

32
√

3
π

1
5− n

.
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18◦ Исходя из результатов Упр. 14◦ и 15◦, показать, что безразмерная
масса политропы индекса n при n → 5 равна

µ1 =
√

3
(

1− 5− n

12
+ . . .

)
,

так что она меньше
√

3.

19◦ Исходя из вириального соотношения (см. п. IV.5.4, с. 245)

3
R∗
µ

TM − ωs
GM2

R
= 4π R3Ps

и пользуясь тем, что безразмерная гравитационная энергия изотермического
шара ωs возрастает при его сжатии, причем ωs > 3/5, показать, что радиус
такого шара

R >
4
15

µ

R∗
GM

T
.

20◦ Показать, что гравитационная энергия изотермического шара безраз-
мерного радиуса ζs (определяемого внешним давлением), массы M и темпера-
туры T равна

EG = − ω̃s
R∗
µ

TM,

где

ω̃s = ω̃s(ζs) = 3− ζ3
s

µs
e−ψs = 3

(
1− ρs

ρs

)
.

Здесь ρs и ρs — средняя плотность шара и плотность у его поверхности, соот-
ветственно; µs = ζ2

s ψ′(ζs) и ψs = ψ(ζs), где ψ(ζ) — изотермическая функция
Эмдена.

Чему равно отношение тепловой и гравитационной энергий шара, находя-
щегося на границе устойчивости?

21◦ Показать, что в переменных Милна (U, V ) уравнение Лейна – Эмдена
(1.14) принимает вид

U

V

dV

dU
=

(n + 1)U + V − (n + 1)
(n + 1)U + nV − 3(n + 1)

.

22◦ Пусть V — среднее по массе значение гомологического инварианта V :

V ≡ 1
M

∫ M

0

V dMr =
1
M

∫ M

0

d ln P

d ln r
dMr.
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Проверить, что для политропы индекса n

V = 3
(

1 +
1
n

)
.

23◦ Показать, что для политроп при x ≡ r/R → 0 (около центра)

U = 3− n

5
ξ2
1x2 + . . . ,

V =
n + 1

3
ξ2
1x2

[
1 +

(
1
6
− n

10

)
ξ2
1x2 + . . .

]
,

а при x → 1 (вблизи поверхности)

U =

V =
n + 1
1− x

+ . . .

Каков физический смысл того, что V →∞ при x → 1 и U → 3 при x → 0?





Глава V

ТЕРМОЯДЕРНЫЕ РЕАКЦИИ В
ЗВЕЗДАХ

Ядерная астрофизика — наиболее безопасное из всех приме-
нений ядерной физики.

У.Фаулер





Термоядерные реакции, как показывает само их название, требуют для
своего протекания высоких — на самом деле очень – очень высоких темпера-
тур. Недра звезд идеально подходят для того, чтобы там такие реакции могли
происходить. Чтобы объяснить, как вырабатывается энергия Солнца (и звезд
вообще) и была первоначально развита теория термоядерных реакций. Лет
пятнадцать спустя она понадобилась при разработке самого ужасного, самого
бесчеловечного оружия — водородной бомбы. Ее, впрочем, правильнее было
бы назвать не водородной, а термоядерной бомбой.

В этой главе излагаются элементарные основы теории термоядерных ре-
акций. После краткого введения, дающего простейшие сведения об атомных
ядрах как источниках энергии, приводится вывод формул, позволяющих рас-
считывать скорости протекания нерезонансных реакций. Таковы, в частности,
все реакции горения водорода в звездах — основной источник их энергии на
большей части жизни звезды. Чтобы реакция стала возможной, сталкиваю-
щимся заряженным ядрам приходится за счет туннельного эффекта преодо-
левать высокий кулоновский барьер. Дается (не вполне строгий) вывод фор-
мулы для вероятности подбарьерного проникновения. Затем на этой основе
выводится и подробно обсуждается выражение для скорости протекания ре-
акций и темпа выделения энергии в горячем газе. Подробно рассматривается
зависимость скоростей реакций от температуры.

Термоядерные реакции в звездах не только выделяют энергию, но и из-
меняют химический (точнее, ядерный) состав вещества, синтезируя из легких
элементов более тяжелые. Обсуждается темп этого, как говорят, выгорания
элементов. Затем изучается влияние свободных электронов, окружающих ядра
в ионизованном газе, на скорость протекания нерезонансных реакций. Нако-
нец, в конце главы обсуждаются скорости протекания в звездах резонансных
термоядерных реакций. Таковы, в частности, реакции горения гелия, детально
рассматриваемые в Гл. VIII.

1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

1.1. Ядерное время
звезды

Мы уже упоминали о том, что темп энерговы-
деления в звездах в расчете на единицу массы
ε̄ ≡ L/M небольшой. Так, для Солнца он со-

ставляет всего ∼ 2 эрг/(г · с), что на четыре порядка ниже темпа энерговы-
деления в человеческом организме: ∼ 2 · 104 эрг/(г · с). Для звезд ГП значе-
ния ε̄ заключены между ∼ 10−1 у звезд малых масс на нижнем конце ГП до

256
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∼104 эрг/(г · с) для самых массивных звезд верхней части ГП. Проблема энер-
говыделения в звездах вовсе не в том, что его темп высок, а в том, что такое
энерговыделение звезда поддерживает в течение очень больших промежутков
времени.

За время своей жизни (∼ 5 · 109 лет) Солнце выделило в расчете на 1 г
вещества ∼ 2 (3 · 107) (5 · 109) = 3 · 1017 эрг/г, что составляет ∼ 2 · 1029 эВ/г.
Гораздо нагляднее этот результат выглядит, если его пересчитать в энерго-
выделение в расчете на нуклон. Так как масса нуклона∼ 1.7 · 10−24 г, то мы
получаем ∼ 3 · 105 эВ/нуклон, что, очевидно, не может быть обеспечено ни-
какими химическими реакциями. Интереснее другое. Как известно, энергия
на Солнце производится за счет синтеза альфа–частиц из четырех протонов.
При этом выделяется 26.73 МэВ, или 6.68 МэВ/нуклон, что примерно в 20
раз больше, чем Солнце успело выработать за время своей жизни (в расчете
на нуклон). Энерговыделение происходит лишь в центральных, наиболее го-
рячих частях Солнца. Если принять, что их масса составляет примерно 1/10
всей массы Солнца, то мы придем к выводу, что в этих центральных частях
Солнца энерговыделение составило около 3 МэВ/нуклон. Это значит, что в
тех центральных частях Солнца, где активно идут термоядерные реакции, в
гелий успела превратиться примерно половина водорода. Детальные расчеты
эволюции Солнца показывают, что это действительно так.

Мы только что упомянули, что при синтезе одной альфа–частицы из четы-
рех протонов выделяется энергия 26.73 МэВ. Это составляет 26.73/(4·938.28) =
0.712% ≈ 0.7% суммарной массы покоя четырех протонов. На этом первом эта-
пе термоядерного синтеза элементов в звездах выделяется бо́льшая часть всей
ядерной энергии, запасенной в веществе, примерно 7/9. Поэтому время выгора-
ния водорода в центральных частях звезды с превращением его в гелий задает
характерный масштаб времени всей ядерной эволюции звезды.

Заметим, что выделение энергии при синтезе альфа–частицы из четырех
протонов (4mp − mα)c2 сопровождается также выделением дополнительной
энергии 2mec

2 от аннигиляции двух электронов из окружающего газа с теми
двумя позитронами, которые рождаются при синтезе альфа–частицы. В итоге
полное энерговыделение при синтезе одной альфа–частицы оказывается равно

Q =
(
4mp + 2me −mα

)
c2 = 26.73 Мэв. (1.1)

Энергетически это эквивалентно тому, как если бы альфа–частица синтези-
ровалась из четырех протонов и тех двух электронов, которые аннигилиру-
ют с позитронами. Некоторые авторы предпочитают говорить,что энергия в
26.73 МэВ выделяется при превращении четырех атомов водорода в один
атом гелия. Это действительно так, однако такое утверждение представля-
ется неудачным — там, где идет синтез гелия из водорода, атомов H и He нет,
так как вещество полностью ионизовано.



258 Гл. V. Tермоядерные реакции в звездах

По определению, ядерным временем звезды tN называется время, в тече-
ние которого звезда, сохраняя свою светимость постоянной, превращает в 4He
около 10÷ 15% имеющегося в ней водорода 1H:

tN = 0.007 f X
M c2

L
. (1.2)

Здесь f — доля водорода, после выгорания которой звезда существенно меня-
ет свое строение. В ее центральных частях формируется гелиевое ядро, окру-
женное слоями, богатыми водородом. Далее, X — весовая доля водорода в
веществе, из которого сформировалась звезда. Обычно X ∼ 0.70. Фактически
ядерное, или, как его еще иногда называют, эволюционное время звезды — это
время жизни звезды на ГП. Последнее, между прочим, оправдывает предполо-
жение о постоянстве светимости — на главной последовательности светимости
звезд меняются мало. Несколько неопределенный множитель f = 0.10 ÷ 0.15
взят по результатам численных расчетов эволюции звезд разных масс. Если
принять для определенности f = 0.10 и X = 0.70, то формула (1.2) дает

tN = 1010 M

L
лет. (1.3)

Отсюда с учетом зависимости масса — светимость следует, что время жизни
звезд верхней части ГП невелико. Так, для звезды с M = 30 оно составляет
всего ∼ 107 лет. Динозавры не могли видеть ни одной из ныне живущих мас-
сивных звезд. Они вымерли задолго до того, когда эти звезды родились. На-
оборот, для звезд малых масс с M<∼0.8 их ядерное время превышает возраст
Вселенной. Поэтому те звезды рассеянных скоплений, которые расположены
справа от нижнего конца ГП, являются молодыми, находящимися еще на ста-
дии гравитационного сжатия и не достигшими ГП, так что ядерные реакции в
них либо еще вовсе не начались, либо еще только разгораются и не вышли на
стационарный режим.

1.2. Роль
туннельного
эффекта

Как мы только что установили, синтез альфа–
частиц из четырех протонов способен обеспе-
чить звезды достаточным запасом энергии для
поддержания их светимости. Это было осозна-

но А.Эддингтоном в 1920 г., сразу же после открытия Ф.Астоном того факта,
что масса атома гелия немного меньше массы четырех атомов водорода.

Настойчивая пропаганда Эддингтона поначалу встречала полное неприя-
тие у физиков. Их аргументация основывалась на представлениях классиче-
ской физики — ведь квантовой механики еще не существовало. Она сводилась
к следующему. Чтобы ядерная реакция пошла, протоны должны буквально
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,,столкнуться", то есть сблизиться на расстояние в 2 rp, где rp — радиус про-
тона: rp ∼ 10−13 см. При этом энергия кулоновского отталкивания будет рав-
на e2/(2rp) эрг, что, как легко сосчитать, составляет порядка 1 МэВ. Оценки
температур недр звезд ГП, сделанные, кстати, самим Эддингтоном, показы-
вали, что энергии частиц там порядка кэВ. Расхождение в три порядка, ка-
залось, полностью исключало возможность термоядерных реакций. В самом
деле, доля частиц в хвосте максвелловского распределения, которые обладали
бы при тепловой энергии в 1 кэВ необходимой энергией в 1 МэВ, составля-
ла бы e−1000 ≈ 10−430. При числе частиц в Солнце∼ 1057 это означает, что в
нем не было бы ни одной пары протонов (не говоря уже о ядрах с бо́льшими
зарядами), которые способны сблизиться на такое расстояние, чтобы ядерные
реакции стали возможны. На это Эддингтону нечего было возразить, и он мог
лишь в сердцах воскликнуть: ,,We do not argue with the critic who urges that
stars are not hot enough for this process; we tell him to go and find a hotter place".

Однако искать ,,местечко погорячее" не пришлось. В конце 1920-х годов бы-
ла осознана роль квантовомеханического туннельного эффекта, согласно кото-
рому налетающая частица, израсходовавшая всю свою кинетическую энергию
на преодоление кулоновского отталкивания еще на расстоянии r

C
, во много раз

превосходящем размер ядра–мишени rN , тем не менее имеет хоть и небольшую,
но для нас принципиально важную вероятность быть обнаруженной непосред-
ственно в ядре. Высокий кулоновский барьер, ,,перескочить" через который у
классической частицы не было достаточно энергии, был для нее непреодоли-
мым препятствием. С квантовой частицей, в нашем случае — с налетающим
ядром, положение иное. Она может с некоторой вероятностью ,,просочиться"
сквозь такой барьер, и реакция оказывается возможной. На ключевую роль
этого эффекта применительно к проблеме выработки энергии в звездах пер-
выми, по-видимому, указали Р.Аткинсон и Ф.Хаутерманс в 1929 г. Однако
понадобилось еще целое десятилетие, чтобы эти физически правильные идеи
о термоядерных реакциях в звездах превратились в последовательную коли-
чественную теорию.

1.3. Атомные ядра:
элементарные

сведения

В настоящем пункте приводятся простейшие
сведения об атомных ядрах, большинству чи-
тателей, вероятно, хорошо известные. Можете
пропустить этот пункт, если вы эти азы знаете.

Общеизвестно, что атомные ядра состоят из протонов и нейтронов. Для
сильного ядерного взаимодействия, удерживающего частицы в ядре, они нераз-
личимы и могут рассматриваться как два состояния одной и той же частицы —
нуклона. Число протонов в ядре определяет его атомный номер, совпадающий
с зарядом ядра Z, выраженным в единицах элементарного заряда e. Число
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нуклонов, то есть суммарное число протонов и нейтронов в ядре — это его
массовое число A.

Для ядра X с зарядом Z и массовым числом A используется обозначение
A
Z X или чаще просто AX. Примеры: 1

1H (обычный водород), 2
1D или просто 2D

(тяжелый водород — дейтерий), 4
2He (обычный, а не редко встречающийся и на

Земле, и в звездах легкий изотоп гелия 3
2He), 12C (обычный углерод), 238U —

самый распространенный в земной коре изотоп урана (не тот 235U, который
наряду с плутонием используется в ядерных реакторах и — увы! — в атомных
бомбах).

Ядра с одинаковыми Z и различающимися A называются изотопами, ядра
же с одинаковыми A и различающимися Z — это изобары. Последний термин
нам едва ли понадобится. Изотопы почти неотличимы друг от друга по своим
химическим свойствам. Исключениями являются обычный водород 1H, дейте-
рий — тяжелый водород 2D и тритий 3T. Причина — большое различие масс
их ядер. Ядра этих трех изотопов имеют отдельные названия — протон, дей-
трон (протон+нейтрон) и тритон (протон+2 нейтрона). Последнее название
используется редко и нам не понадобится.

Диапазон изменения чисел A и Z в естественной природной среде на Зем-
ле таков: 1 (водород) ≤ Z≤ 92 (уран), 1 (протон) ≤A≤ 238 (уран). Усилия-
ми физиков-экспериментаторов нескольких лабораторий, в частности у нас в
Дубне, числа эти постепенно растут. Надежно обнаружено ядро с (Z, A)=(114,
289). Период его полураспада составляет около 30 с. На сегодняшний день
(январь 2016 г.) рекорд принадлежит ядру с (Z, A)=(118, 293) и периодом по-
лураспада 120 микросекунд. Будут ли эти замечательные экспериментальные
достижения иметь в обозримом будущем какие-либо астрофизические послед-
ствия, сегодня сказать невозможно.

Но что несомненно имеет важные астрофизические следствия — это тот
факт, что ядер с A=5 и 8 не существует. нестабильны (радиоактивны) также
все ядра с Z>89 (висмут).

Свойства ядер сильно зависят от четности чисел A и Z. Среди стабиль-
ных изотопов больше всего четно – четных ядер (четно и число протонов,
и число нейтронов), меньше всего — нечетно – нечетных. Их всего четыре:
2
1D, 6

3Li, 10
5B, 14

7N.
При малых A, в начале периодической таблицы элементов, стабильные ядра

содержат примерно равное число протонов и нейтронов. При больших A с его
ростом доля нейтронов медленно растет. Так, в ядре наиболее распространен-
ного изотопа железа 56Fe на 26 протонов приходится 30 нейтронов, у золота
197Au имеется 79 протонов и 118 нейтронов, наконец, 238U при 92 протонах
содержит 146 нейтронов.

Большинство элементов имеет по несколько стабильных изотопов. Лишь у
трех элементов — бериллия, натрия и алюминия — устойчивых изотопов нет.
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Наибольшее число стабильных изотопов у олова (Z = 50) — десять. Последнее
обстоятельство, точнее, не то, что их именно десять, а то, что их так много,
в свое время сыграло едва ли не ключевую роль в создании теории синтеза в
звездах элементов тяжелее железа за счет последовательного захвата нейтро-
нов — так называемого s–процесса. Отметим еще, что все изотопы элемента
технеция (Z = 43) нестабильны. Наиболее долгоживущий из них, 98Tc, име-
ет период полураспада 2.6 · 106 лет. В начале 1950-х годов технеций был —
совершенно неожиданно! — открыт в атмосферах звезд типа S, дав прямое до-
казательство того, что синтез тяжелых элементов происходит буквально у нас
на глазах.

В заключение этого пункта опишем способы записи ядерных реакций. Пусть
частица a налетает на ядро X и в результате столкновения получается ядро Y
и частица b. Это можно записать так:

a + X → Y + b.

Пример: p +12C → 13N + γ. Эта система записи очень наглядна, но отнимает
довольно много места. Другой способ записи, широко используемый в ядерной
физике, гораздо ,,лаконичнее". Та же реакция a+X → Y +b записывается так:

X(a, b)Y,

а наш конкретный пример принимает вид 12C(p, γ)13N. Слева принято записы-
вать ядро – мишень, затем в скобках слева налетающую, а за ней, после запя-
той, вылетающие частицы (не обязательно одну). Наконец, справа от скобки —
ядро, в которое превратилась первоначальная мишень. Вот еще один пример —
так называемая протон–протонная реакция 1H +1H → 2D + e+ + ν, в результа-
те которой образуются дейтрон, позитрон e+ и нейтрино ν. В короткой записи
она имеет вид H(p, e+ν)D. Обратите внимание на расположение запятой! Ре-
акции распада типа X → Y + b, где в качестве b может выступать и совокуп-
ность нескольких частиц, кратко записываются так: X(b)Y. Пример: реакция
13N →13 C + e+ + ν в краткой записи имеет вид 13N(e+ν)13C.

Если нас не интересует, какое именно ядро захватило протон с последу-
ющим испусканием γ–кванта, то говорят, что произошла реакция типа (p, γ),
или реакция радиационного захвата протона. Аналогичным образом говорят о
реакциях класса (p, α) и т. п.

Последнее мелкое замечание. В экспериментах на ускорителях вопрос о том,
какая частица налетает — протон, дейтрон, альфа-частица и т. п., а какая явля-
ется мишенью, не встает. В случае термоядерных реакций в звездах разделение
на мишень и налетающую частицу в значительной мере условно. Обе части-
цы налетают друг на друга. Принято считать, что мишенью является то из
сталкивающихся ядер, масса которого больше.
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1.4. Энергии связи
ядер

Энергия связи ядра Enucl — это энергия, кото-
рую необходимо затратить, чтобы полностью
расщепить ядро на составляющие его прото-

ны и нейтроны. Если mp — масса протона, mn — масса нейтрона и mnuc —
масса ядра, то

Enucl =
(
mp Z + mn (A− Z)−mnuc

)
c2. (1.4)

Для устойчивых ядер энергии их связи положительны. Величина Enuc/c2 по-
казывает, насколько масса ядра меньше суммы масс всех составляющих его
протонов и нейтронов.

Энергии связи ядер выражают в МэВ или в атомных единицах массы
(а.е.м.). Напомним, что за атомную единицу массы mu принимается 1/12 массы
атома 12C. Она составляет mu = 1.6605 · 10−24 г. Соответствующая ей энергия
равна muc2 = 1.4924 · 10−3 эрг, или 931.494 МэВ.

Более наглядно ,,прочность" ядра характеризует не сама полная энергия
его связи Enucl, а энергия связи в расчете на нуклон E ≡ Enucl/A. Общее
представление о зависимости E от атомного массового числа A дает рис. V.1.1.
Он заслуживает детального обсуждения.

График состоит из двух ветвей — левой, где энергия связи на нуклон
E возрастает с ростом массы ядра, и правой, где она медленно убывает
с ростом A. Ядра с А от 50 до 65 имеют наибольшие энергии связи на
нуклон. Это так называемый железный пик, ядра которого имеют высо-
кую распространенность в природе. Самыми плотно упакованными ядрами
являются 62Ni (E=8.7945 Мэв/нуклон), 58Fe (E=8.7922 МэВ/нуклон) и 56Fe
(E=8.7903 МэВ/нуклон). В качестве иллюстрации приводим на рис. V.1.2 в
более крупном масштабе кривую E в функции А в районе железного пика.
По-видимому, ввиду высокой распространенности ядра 56Fe в природе обычно
пишут, что именно оно имеет наибольшую энергию связи, что, строго говоря,
не так.

Как рост удельной энергии связи на нуклон при A<56, так и его спад при
A>56 происходит не строго монотонно.

Из рис. V.1.1 ясно, что при синтезе более тяжелых ядер, вплоть до 56Fe, из
более легких должно происходить выделение энергии (звезды, водородная бом-
ба). Для тяжелых же ядер (AÀ 56) энергия будет выделяться при их делении
(атомная бомба, ядерные реакторы).

В приводимой ниже таблице даются значения E в МэВ/нуклон для ряда
ядер, главным образом легких и средних:

Ядро 1H 2D 3He 4He 6Li 7Li
E 0.0 1.111 2.573 7.074 5.332 5.606

Ядро 12C 16O 20Ne 28Si 56Fe 238U
E 7.680 7.976 8.032 8.448 8.790 7.570
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Рис. V.1.1:

Зависимость энергии связи ядер в расчете на нуклон E от массового числа А.

Основные экспериментальные факты, касающиеся удельной энергии связи
ядер, состоят в следующем.

1. Для всех ядер, кроме легких, как видно из рис. V.1.1, в первом приближе-
нии E ≈ const (8÷ 9 МэВ/нуклон). Причина этого в короткодействии ядерных
сил, приводящем к тому, что каждый нуклон взаимодействует не со всеми нук-
лонами, а только со своими непосредственными соседями. В этом отношении
вещество в ядрах подобно жидкости.

2. При небольшом числе нуклонов в ядре заметная их доля находится у
поверхности ядра и потому взаимодействует лишь с теми нуклонами, которые
лежат по одну сторону от них, со стороны ядра. Часть связей оказывается
ненасыщенной, и поэтому средняя энергия связи убывает с уменьшением А(
грубо говоря, как A2/3, то есть как отношение поверхности ядра (∝A2) к его
объему (∝A3)

)
. Физически это тот же эффект, который создает поверхностное

натяжение у жидкостей.
3. Спад E в области больших A объясняется тем, что такие ядра содержат

много протонов. Их взаимное кулоновское отталкивание имеет дальнодейству-
ющий характер. Энергия этого кулоновского взаимодействия, очевидно, про-
порциональна полному количеству пар взаимодействующих протонов, а оно
при ZÀ1 растет как Z2. Средняя же энергия кулоновского отталкивания каж-
дой такой пары обратно пропорциональна среднему расстоянию между заряда-
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Рис. V.1.2:

Зависимость энергии связи ядер в расчете на нуклон E от массового числа А
в районе железного пика.

ми, которое растет с A как A1/3. В итоге полная кулоновская энергия тяжелого
ядра оказывается пропорциональной Z2A−1/3.

4. У ядер с четными A энергия связи несколько выше, чем у их соседей с
нечетным A. Причиной этого служит то, что нуклоны образуют пары. Энергия
такого спаривания нуклонов составляет ∼ 1 Мэв. В масштабе нашего рисунка
этот эффект почти незаметен.

5. При некоторых специальных значениях чисел протонов и/или нейтронов
в ядре энергия его связи оказывается аномально большой. Числа эти таковы:

2, 8, 20, 28, 50, 82, 126.

Ядра с таким числом протонов или нейтронов называются магическими. Если
и число протонов, и число нейтронов является магическим, ядро называется
дважды магическим. Дважды магические ядра обладают особенно высокой
удельной энергией связи на нуклон. Таких ядер совсем немного:

4
2He, 16

8O, 40
20Ca, 48

20Ca, 208
82Pb.

Для нас особенно важно, что 4He — дважды магическое ядро. Это
служит причиной того, что удельная энергия связи гелия так велика
(7.07 МэВ/нуклон). Поэтому на рис. V.1.1 точка, соответствующая 4He, резко
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отскочила вверх от плавного хода средней кривой. Это же служит причиной
того, что уже на первой фазе звездного нуклеосинтеза — превращении водоро-
да в гелий — выделяется подавляющая часть всей ядерной энергии, запасен-
ной в веществе, и звезды проводят на этой фазе бо́льшую часть своей жизни.
В астрономических терминах: существование главной последовательности на
диаграмме Герцшпрунга – Рессела есть следствие того, что 4He — очень плотно
упакованное дважды магическое ядро.

Согласно оболочечной модели ядра, протоны и нейтроны движутся в са-
мосогласованном поле и, подобно электронам в атомах, образуют оболочки.
Ядра с заполненными нуклонными оболочками — это и есть магические ядра.
Они являются ядерным аналогом атомов инертных газов, у которых заполне-
ны их внешние электронные оболочки. Это проявляется, в частности, в том,
что энергии ионизации атомов инертных газов — аналог энергии связи нуклона
в ядре — аномально велики.

Перечисленные выше общие черты зависимости энергии связи ядра Enucl

от массы ядра и числа протонов в нем приближенно описываются полуэмпи-
рической формулой Вейцзекера (1935 г.):

Enucl = a1A− a2A
2/3 − a3Z

2A−1/3 − a4
(A/2− Z)2

A
− a5

δ

A3/4
, (1.5)

где коэффициенты ai согласно последним экспериментальным данным равны
(в МэВ)

a1 = 14.03; a2 = 13.03; a3 = 0.5835; a4 = 77.25; a5 = 33.57.

Физический смысл первых трех слагаемых в правой части этой формулы
мы уже пояснили. Что касается четвертого члена, то он описывает так называ-
емую энергию симметрии — при равенстве числа протонов и нейтронов в ядре
оно более устойчиво, причем и избыток, и дефицит нейтронов по сравнению
с числом протонов сказываются одинаково. Поэтому величина A/2 − Z стоит
в квадрате. Наконец, последнее слагаемое зависит от четности чисел A и Z:
δ = 1 при четных A и Z; δ = 0 при нечетном A; δ = −1 при нечетных A и Z.

Точность формулы Вейцзекера невелика, что видно хотя бы из того, что
оболочечная структура ядра, находящая свое выражение в существовании ма-
гических ядер, ею не отражается. В качестве иллюстрации точности приведем
два примера. Для удельной энергии связи ядра 12C, равной 7.68 Мэв/нуклон,
формула Вейцзекера дает 7.14 МэВ/нуклон; для 56Fe вместо правильных
8.79 МэВ/нуклон получаем 8.65 Мэв/нуклон.



2. СКОРОСТИ НЕРЕЗОНАНСНЫХ ТЕРМОЯДЕРНЫХ
РЕАКЦИЙ

2.1. Выделение
главных факторов в
сечении реакции

В настоящем и двух следующих за ним пунк-
тах мы получим очень важную формулу, даю-
щую скорость протекания нерезонансных тер-
моядерных реакций в функции температуры

газа. Что значит слово ,,нерезонансные", будет разъяснено в дальнейшем. По-
ка же это слово мы будем обычно опускать. Большинство энерговыделяющих
реакций в звездах, в частности, все основные реакции горения водорода, явля-
ются нерезонансными.

Формулу, о которой идет речь, иногда называют основной формулой ядер-
ной астрофизики. Анализ этой формулы, даваемый после ее вывода, позволяет
понять в общих чертах основные особенности того, как протекают термоядер-
ные реакции в звездах. В дальнейшем эти вопросы рассматриваются подробно.

Термоядерные реакции выполняют в звездах две функции — вырабатывают
энергию и синтезируют элементы. Чтобы оценить скорости этих процессов по
известным параметрам газа ρ, T и его химическому составу, надо научиться
рассчитывать скорости протекания каждой из реакций, дающих вклад в эти
процессы.

Обозначим через Rik так называемую скорость реакции, то есть число ре-
акций между ядрами типов i и k в единице объема за единицу времени. Кон-
центрации этих ядер пусть будут Ni и Nk, соответственно. Для Rik имеем
следующее известное выражение:

Rik = (NiNk)∗
∫ ∞

0

σ(v)v f(v) dv, (2.1)

где

(NiNk)∗ ≡ NiNk

1 + δik
(2.2)

и δik — символ Кронекера: δik = 0 при i 6= k и δik = 1 при i = k. Появление
множителя 1/2 при столкновениях частиц одного сорта (i = k) объясняется
тем, что в противном случае взаимодействие каждой пары таких одинаковых
частиц учитывалось бы дважды. Далее, поскольку частицы обоих сортов, как
i (с массами mi), так и k (с массами mk) имеют максвелловкое распределение
скоростей с одной и той же температурой T , то, как можно показать, функция
распределения относительных скоростей частиц также будет максвелловской,
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с заменой масс mi и mk на приведенную массу M :

M =
mimk

mi + mk
. (2.3)

Функция f(v) в формуле (2.1) и есть эта функция распределения относитель-
ных скоростей сталкивающихся частиц:

f(v) = 4π
M3

(2π M kT )3/2
exp

(
− Mv2

2kT

)
v2. (2.4)

Использование максвелловского распределения для ядер в недрах звезд вполне
оправдано, так как газ ядер во всех звездах (кроме нейтронных) не бывает
вырожденным.

Заметим, что массы частиц mi, mk часто удобно выражать в долях атом-
ной единицы массы mu. Напомним, что по определению она равна 1/12 мас-
сы нейтрального атома 12С. Энергия покоя атомной единицы массы muc2 =
931.494 МэВ. Массы частиц mi, mk, выраженные в атомных единицах мас-
сы, мы будем обозначать, соответственно, Mi ≡ mi/mu и Mk ≡ mk/mu. Эти
величины известны как относительные атомные массы. Аналогичным обра-
зом, вместо приведенной массы M мы будем в дальнейшем часто использовать
величину

M≡ M/mu. (2.5)

Формула (2.3) в этих обозначениях переписывается так:

M = mu
MiMk

Mi +Mk
≡ muM. (2.6)

Относительная атомная массаMi численно близка к (целому) массовому числу
Ai. Так, для протона Mp=1.007276, тогда как его массовое число А=1, для
альфа–частицы A=4, а Mα=4.001513.

Ключевым вопросом является вид зависимости сечения реакции σ(v) от
скорости v или от энергии E сталкивающихся заряженных частиц (ядер). Для
термоядерных реакций в звездах кинетические энергии теплового движения
ядер обычно малы по сравнению с высотой отталкивющего кулоновского ба-
рьера. Тогда можно считать, что реакция идет в два этапа — сначала проис-
ходит проникновение через кулоновский барьер, а затем собственно ядерное
взаимодействие.

Расчет вероятности туннельного проникновения налетающей частицы че-
рез (высокий) кулоновский барьер — это известная задача квантовой меха-
ники. Простейший способ ее аккуратного решения состоит в использовании
метода ВКБ. Мы не будем этим заниматься, дав сейчас лишь небольшое по-
яснение. Более серьезное, хотя все же не вполне строгое рассмотрение см. в
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Рис. V.2.1:

Прохождение налетающей частицы через отталкивающий кулоновский
барьер.

следующем пункте. Классическая налетающая частица с энергией на беско-
нечности E = Mv2/2 будет двигаться замедленно из-за возрастающего при
сближении ядер кулоновского отталкивания и остановится на расстоянии rC
от ядра, определяемом условием e2ZiZk/rC = Mv2/2, где eZi и eZk — заряды
ядер (рис. V.2.1). Можно считать более или менее очевидным, что вероятность
подбарьерного проникновения будет определяться тем, сколько де-бройлевских
длин волн частицы λ– = ~/Mv уложится на оставшемся участке пути от точки
остановки r

C
. Таким образом, в задаче появляется характерный параметр

r
C

λ–
=

2e2ZiZk

~v
. (2.7)

При просачивании частицы сквозь барьер будет происходить экспоненци-
альное затухание вероятности ее обнаружения по другую сторону от барьера,
причем показателем экспоненты должен служить только что введенный без-
размерный параметр, с дополнительным множителем порядка единицы, учи-
тывающим форму барьера. В случае кулоновского барьера этот множитель
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оказывается равным π. Итак, вероятность прохождения частицы с энергией E
сквозь высокий кулоновский барьер составляет

exp
(
− 2π e2ZiZk

~v

)
≡ exp

(
−

√
EG

E

)
. (2.8)

Здесь EG — так называемая гамовская энергия (в честь Г.А. Гамова, впервые
в 1928 г. рассмотревшего прохождение частиц через кулоновский барьер при
построении теории альфа–распада):

EG =
M

2

(
2π e2ZiZk

~

)2

. (2.9)

Формулу для гамовской энергии можно представить также в виде

EG = 2π2α2 muc2
(
Z2

i Z2
k M

)
эрг = 979.13

(
Z2

i Z2
kM

)
кэВ. (2.10)

Здесь, как всегда, α = e2/(~c) = 1/137 — постоянная тонкой структуры и
M = M/mu, где M — приведенная масса. Для двух протонов (Zi = Zk =
1, M = Mp/2 = 0.5036) гамовская энергия равна EG = 493 кэВ.

Отметим, что множитель exp
(−

√
EG/E

)
часто записывают в виде e−2π η.

Величина η называется параметром Зоммерфельда.
Учитывая приведенное выше выражение для вероятности туннельного про-

хождения заряженной частицы под кулоновским барьером, представим зави-
симость сечения от энергии в следующем виде (введенном Э.Солпитером в
начале 1950-х годов):

σ(E) =
S(E)

E
exp

(
−

√
EG

E

)
. (2.11)

Три множителя в этом представлении сечения имеют ясный физический
смысл. Экспонента, как уже говорилось, дает вероятность преодоления куло-
новского барьера. Множитель 1/E обычно объясняют тем, что ядро, c которым
должно произойти взаимодействие, — это не точечная частица, а, согласно об-
щим принципам квантовой механики, оно ,,размазано" по площади порядка
πλ–2 ∝ 1/E.

Правильное объяснение состоит в том, что при аккуратном решении задачи о
прохождении сквозь кулоновский барьер перед приведенной выше экспонентой
стоит еще дополнительный множитель E−1/2; второй множитель E−1/2 появля-
ется следующим образом. Геометрическое сечение столкновения ∝ r2

N
, где rN —

сумма радиусов сталкивающихся ядер. Вероятность осуществления ядерной ре-
акции за то время rN /v ∝ 1/

√
E, пока сталкивающиеся частицы находятся в

пределах действия ядерных сил, дает второй 1/
√

E.
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Рис. V.2.2:

Измеренное сечение реакции 12C(p,γ)13N в функции энергии налетающих
протонов (в лабораторной системе отсчета).

Наконец, третий множитель в (2.11), S(E), учитывает собственно ядерную
часть взаимодействия, которая для нерезонансных реакций обычно слабо за-
висит от энергии. Выделение этого множителя позволило сильно продвинуться
в экспериментальном нахождении сечений ядерных реакций, происходящих в
звездах. Множитель S(E) обычно называют S–фактором, а иногда даже аст-
рофизическим множителем, поскольку представление сечения в форме (2.11)
пришло в ядерную физику из астрофизики. Заметим, что размерность S–
фактора, как это очевидно из (2.11), — [энергия]·[площадь]. Обычно S(E) из-
меряют в единицах кэВ · барн, где барн — единица площади, используемая в
ядерной физике: 1 барн = 10−24 см2.

Сечения астрофизически важных ядерных реакций, как правило, находят-
ся экспериментально, с использованием ускорителей. Важное исключение —
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реакция взаимодействия двух протонов, так называемая протон–протонная,
сечение которой столь мало, что измерить его невозможно. К счастью, это
сечение надежно рассчитывается теоретически (подробнее см. с. 306 – 309).
Главная трудность при измерении сечений ядерных реакций для астрофизи-
ки состоит в том, что их нужно знать для очень низких энергий (по меркам
ядерной физики, конечно). Из-за быстро спадающей проницаемости кулонов-
ского барьера сечения очень быстро убывают с уменьшением энергии, и для
астрофизически интересной области их часто не только не удается измерить,
но даже и надежно проэкстраполировать данные прямых измерений в область
тех малых энергий, в которых нуждается астрофизика. Рис. V.2.2 наглядно
иллюстрирует описанное для случая реакции 12C(p,γ)13N — первой реакции
CNO–цикла (см. Гл. VII). Экспериментальные точки, приведенные на этом
рисунке, получены путем облучения на ускорителях мишеней из углерода пуч-
ками протонов, ускоренных до разных энергий. Эти точки можно пересчитать
в соответствующие значения S–фактора, пользуясь тем, что согласно (2.11)

S(E) = E exp

(√
EG

E

)
σ(E). (2.12)

В итоге в интересующей нас области низких энергий получим совсем дру-
гую картину (рис. V.2.3). Значения S–фактора, в отличие от σ(E), изменяются
не на многие порядки, а совсем немного — всего в несколько раз. Измеренные
точки, пересчитанные в S(E), ложатся на плавную кривую, и становится оче-
видной возможность надежной экстраполяции в область интересующих нас
,,звездных" энергий (ограниченную на рисунке двумя короткими вертикаль-
ными линиями). Отметим, что приведенные на этом рисунке данные относят-
ся к сравнительно давним измерениям. Сейчас благодаря прогрессу в технике
экспериментов измерения удалось довести до заметно более низких энергий,
так что экстраполяции часто не требуется. Это во всяком случае верно в от-
ношении ряда реакций протон–протонных цепочек (кроме, разумеется, само́й
pp–реакции).

Измерения S–факторов ведутся уже более полувека в целом ряде ядер-
ных лабораторий. Как правило, результаты разных групп находятся между
собой в удовлетворительном согласии. Представление о состоянии измерений
S–факторов реакций водородных цепочек дает Табл. V.2.1. В ней приведены
значения минимальных энергий Emin (в кэВ), вплоть до которых к ∼2000 г.
произведены измерения S–факторов, в сопоставлении с энергией гамовского
максимума E0 при температуре центра Солнца (15.6 млн К). Гамовский мак-
симум E0 — это энергия тех частиц, которые дают наибольший вклад в ско-
рость протекания реакции (подробнее см. п. 2.3). Вывод таков: для звезд ГП с
массами M >∼M¯ никакой экстраполяции экспериментальных данных для всех
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Рис. V.2.3:
S–фактор реакции 12C(p,γ)13N в функции энергии налетающих протонов (в

лабораторной системе отсчета).

реакций водородных цепочек, кроме 3He(α, γ)7Be и 7Be(p, γ)8B, не требуется.
Обновляемые сводки S–факторов и связанных с ними величин периоди-

чески публиковались пионером этой области деятельности У.Фаулером с со-
трудниками, начиная с 1967 г. В настоящее время создана специальная меж-
дународная коллаборация из представителей всех групп, активно работающих
по измерениям и расчетам астрофизически важных сечений ядерных реакций,
публикующая критические сводки соответствующих данных. Последняя такая
сводка (T.G.Adelberger et al., Rev. Mod. Phys., 83, 195 – 245, 2011) составлялась
коллективом из 47 соавторов!
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Таблица V.2.1:
Измерения S–факторов реакций протон–протонных цепочек

Реакция Emin E0
2D(p, γ)3He 10 7
3He(3He,2p)4He 15 22
3He(α, γ)7Be 100 23
7Be(p, γ)8B 70 18
7Li(p, α)4He 10 15

2.2. Проницаемость
кулоновского

барьера

Все обсуждение предыдущего пункта фактиче-
ски было построено на песке, так как фунда-
ментальные формулы (2.8) — (2.9) для прони-
цаемости кулоновского барьера были по сути

дела приведены в готовом виде и лишь кратко пояснены физически. Ввиду
той ключевой роли, которую проницаемость кулоновского барьера играет в
теории термоядерных реакций в звездах, мы возвращаемся к этому вопросу и
даем хотя и не вполне строгое, но все же более серьезное его рассмотрение.

Пусть мы имеем частицу, движущуюся с импульсом p. Ей отвечает волновая
функция

exp
{

i
p x

~

}
,

или
exp

{
i

~

∫
p dx

}
,

если частица движется в силовом поле, так что ее импульс p является функцией
координат. Так как p2/(2m) — это кинетическая энергия частицы, то, в силу
закона сохранения энергии,

p2

2m
= E − U, (2.13)

где E — полная и U — потенциальная энергия частицы. Отсюда

p =
√

2m(E − U) . (2.14)

Если движение частицы (ядра) с зарядом eZi происходит в кулоновском поле
отталкивания ядра с зарядом eZk, то

U =
e2ZiZk

r
, (2.15)

где r — расстояние между частицами. Классическая частица, преодолевая воз-
растающее отталкивание, остановилась бы и повернула назад в точке r = rC ,
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где вся ее кинетическая энергия оказалась бы израсходованной. Координата r
C

этой точки поворота определяется условием

E =
e2ZiZk

rC
. (2.16)

Согласно квантовой механике, частица может проникнуть в область r < r
C
,

причем ее импульс в этой области будет равен

p = i
√

2m(U − E) , (2.17)

так что в волновую функцию войдет множитель

exp
{
− 1
~

∫ r
C

r

√
2m(U − E) dr

}
. (2.18)

Чтобы вступило в силу ядерное взаимодействие, ядра должны сблизиться
до расстояния r = r

N
, где r

N
— сумма радиусов ri = rpA

1/3
i и rk = rpA

1/3
k

сталкивающихся ядер:

r
N

= 1.44 · 10−13
(
A

1/3
i + A

1/3
k

)
см. (2.19)

Высота кулоновского барьера при r = rN равна

EN =
e2ZiZk

rN
. (2.20)

Даже в том случае, когда EN минимальна — при столкновении двух прото-
нов — высота барьера равна примерно 500 кэВ, что гораздо больше энергии E
сталкивающихся частиц. Отметим также, что

E

E
N

=
r
N

r
C

. (2.21)

Вероятность обнаружить частицу при r = r
N

равна квадрату волновой
функции в этой точке, то есть согласно (2.18)

exp
{
− 2
~

∫ r
C

r
N

√
2m(U − E) dr

}
. (2.22)

Чтобы получить интересующую нас вероятность T туннельного преодоления
кулоновского барьера, нам нужно, во-первых, подставить в последнюю форму-
лу явное выражение для U из (2.15) и, во-вторых, учесть, что, как всегда в зада-
че двух тел, при переходе в систему отсчета центра инерции необходимо массу
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налетающей частицы m заменить на приведенную массу M
(
формула(2.3)

)
. В

итоге окончательно получаем

T = exp
{
− 2
~
√

2M

∫ r
C

r
N

(
e2ZiZk

r
− E

)1/2

dr

}
. (2.23)

Нам осталось провести несложные преобразования этой фундаментальной
формулы, чтобы получить приводившееся ранее простое выражение (2.8) –
(2.9) для проницаемости барьера. Подстановка r = r

C
x во входящем в (2.23)

интеграле с учетом (2.16) приводит его к виду

∫ r
C

r
N

(
e2ZiZk

r
− E

)1/2

dr =
e2ZiZk√

E

∫ 1

r
N

/r
C

(
1
x
− 1

)1/2

dx. (2.24)

Последний интеграл представим в виде разности двух:

∫ 1

r
N

/r
C

=
∫ 1

0

−
∫ r

N
/r

C

0

. (2.25)

Первый элементарно вычисляется (подстановка x = sin2 θ):

∫ 1

0

(
1
x
− 1

)1/2

dx =
π

2
. (2.26)

Что касается второго, воспользовавшись малостью отношения r
N

/r
C

= E/E
N

(оно порядка 10−1 ÷ 10−2), можем разложить подынтегральную функцию

(
1
x
− 1

)1/2

= x−1/2 − 1
2

x1/2 + . . . ,

и в итоге находим, пренебрегая членами старших порядков, что

∫ 1

r
N

/r
C

(
1
x
− 1

)1/2

dx =
π

2
− 2

√
E

EN

+
1
3

(
E

EN

)3/2

. (2.27)

Наконец, вводя (2.24) и (2.27) в (2.23) и пользуясь выражением (2.9) для га-
мовской энергии EG, окончательно получаем

T = exp

{
−

√
E

G

E

(
1− 4

π

√
E

E
N

+
2
3π

(
E

E
N

)3/2
)}

. (2.28)
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Второй и третий члены в показателе экспоненты представляют собой поправки,
соответственно, на конечный радиус ядра r

N
и на конечную высоту кулонов-

ского барьера EN к главному первому члену, дающему уже приводившуюся
ранее (с. 269) проницаемость барьера в виде

exp

(
−

√
EG

E

)
. (2.29)

Отметим, что поправка на конечный радиус ядра

exp

(
4
π

√
EG

E
N

)
(2.30)

не зависит от энергии E сталкивающихся частиц. Этот множитель, казалось
бы, следует учитывать, так как он заметно отличается от единицы. Так, для
столкновения двух протонов он равен ∼ 3.5. Однако в силу того, что эта по-
правка не зависит от энергии, ее можно не учитывать, так как этот множитель
автоматически включается в S-фактор. Поправка на конечную высоту барье-
ра дает множитель, во всех случаях близкий к единице. Он также считается
включенным в S-фактор. Поэтому всюду в дальнейшем обоими поправочными
множителями мы будем пренебрегать, принимая проницаемость кулоновского
барьера равной (2.29).

2.3. Вывод основной
формулы

Теперь мы готовы к тому, чтобы приступить
непосредственно к расчету скорости реакции
Rik. Прежде всего, перейдем в основной фор-

муле (2.1) (с. 266) от интегрирования по скоростям v к интегрированию по
энергиям E. Так как E = Mv2/2, то dE = Mv dv, и из f(v) dv = Ψ(E) dE, где
Ψ(E) — распределение по энергиям, следует, что

Ψ(E) =
2√
π

(kT )−3/2 exp
(
− E

kT

)√
E. (2.31)

Вводя это и представление сечения в форме (2.11) в (2.1), находим, что

Rik = (NiNk)∗ <σv>, (2.32)

где

<σv>=

(
8

πM

)1/2 (
kT

)−3/2
∫ ∞

0

S(E) exp

(
− E

kT
−

√
EG

E

)
dE. (2.33)
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Поскольку множитель S(E) под интегралом меняется медленно по сравне-
нию с экспонентами, не внеся большой погрешности, его можно вынести из-под
интеграла в некоторой точке, оптимальный выбор которой вскоре прояснится.
Соответствующее значение S–фактора обозначим S0. Тогда вместо последней
формулы будем иметь

<σv>=

(
8

πM

)1/2(
kT

)−3/2
S0

∫ ∞

0

exp
(
−F (E)

)
dE, (2.34)

где обозначено

F (E) =
E

kT
+

√
EG

E
. (2.35)

Подынтегральная функция в последнем интеграле — это произведение
двух экспонент: убывающего с E обычного больцмановского множителя
exp (−E/kT ) и возрастающей с E проницаемости кулоновского барьера
exp

(
−(EG/E)1/2

)
. Это произведение имеет минимум при E = E0, где E0 опре-

деляется очевидным условием

F ′(E0) =
1

kT
− 1

2

√
EG

E
3/2
0

= 0, (2.36)

что дает

E0 =

(
EG (kT )2

4

)1/3

. (2.37)

Если воспользоваться явным выражением (2.10) для EG, последняя формула
принимает вид

E0 =
(

π2α2muc2

2

)1/3 (
Z2

i Z2
k M

)1/3(
kT

)2/3 эрг, (2.38)

или в электрон-вольтах

E0 = 1.220
(
Z2

i Z2
k M

)1/3
T

2/3
6 кэВ, (2.39)

где T6 — температура в миллионах кельвинов.
Рис. V.2.4 иллюстрирует поведение подынтегральной функции в (2.34).

Очевидно, что основной вклад в интеграл дает окрестность E0. При E, за-
метно меньших E0, вероятность туннеллирования под кулоновским барьером
ничтожно мала, частиц же с энергией E À E0, которые могли бы с большой
вероятностью преодолеть кулоновский барьер, в газе почти что нет. Максимум
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exp

(

−

E

kT

)

exp

(

−

√

EG

E

)

EE 0kT
0

Рис. V.2.4:

Гамовский максимум. Объяснения см. в тексте.

подынтегральной функции в окрестности E0 в астрофизике принято называть
гамовским максимумом. Частицы с энергиями из гамовского максимума дают
определяющий вклад в скорость протекания термоядерной реакции.

Заметим мимоходом, что кривые exp (−E/kT ) и exp
(−(EG/E)1/2

)
пересе-

каются не при E = E0, как это обычно изображают в руководствах по физике
звезд на рисунках, подобных рис. V.2.4, а заметно правее, при E = 41/3E0 ≈
1.59E0. Следует, впрочем, иметь в виду, что на самом деле масштабы по верти-
кали для всех трех кривых на рис. V.2.4 (как и на аналогичных ему рисунках
в других книгах) для большей наглядности разные. В частности, ,,гамовский
колокольчик", как мы называем штриховую кривую на рис. V.2.4, изображен
с большим увеличением по вертикальной оси.

Описанная сейчас в общих чертах картина поведения подынтегральной
функции в (2.34) позволяет легко получить приближенное и, что очень важно,
обладающее высокой точностью явное выражение для Rik(T ). Прием, кото-
рым мы воспользуемся, есть частный случай общего весьма мощного мето-
да асимптотической оценки интегралов — метода перевала. В окрестности E0

функцию F (E) = E/kT +
√

EG/E, стоящую в интеграле (2.34) в показателе
экспоненты (со знаком минус), можно заменить ее тейлоровским разложением
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(
напоминаем, что F ′(E0) = 0

)

F (E) = F (E0) +
F ′′(E0)

2
(
E − E0

)2 + . . . , (2.40)

отбросив в нем все старшие члены, так как их вклад вблизи E0 мал. В итоге
получаем

∫ ∞

0

exp
(
−F (E)

)
dE = e−F (E0)

∫ ∞

0

exp
(
− F ′′(E0)

2
(E − E0)2

)
dE. (2.41)

Обозначив x = E − E0 и распространив интегрирование по x от −∞ до ∞,
можем написать

∫ ∞

0

exp
(
− F ′′(E0)

2
(E − E0)2

)
dE =

∫ ∞

−∞
exp

(
−

(
x

∆/2

)2
)

dx, (2.42)

где (проверьте!)

∆ =

√
8

F ′′(E0)
=

4
21/331/2

E
1/6
G (kT )5/6. (2.43)

Величина ∆ дает ширину гамовского максимума на уровне 1/e от максималь-
ного. Заметим, что ∆ можно представить также в виде

∆ =
4√
3

(
E0 kT

)1/2
. (2.44)

В числах мы имеем

∆ = 0.75
(
Z2

i Z2
k M

)1/6
T

5/6
6 кэВ. (2.45)

Теперь формула (2.41) окончательно дает

∫ ∞

0

exp
(
−F (E)

)
dE =

√
2π

F ′′(E0)
e−F (E0) =

√
π

2
∆ e−F (E0). (2.46)

Обсудим две последние формулы. Множитель e−F (E0) в (2.46) определяет
главную часть зависимости скорости реакции Rik(T ) от температуры. Из (2.35)
и (2.36) легко убедиться, что

τ ≡ F (E0) =
3E0

kT
= 3

(
EG

4 kT

)1/3

, (2.47)
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так что τ ∝ T−1/3. Параметр τ играет важную роль в ядерной астрофизике и
будет часто встречаться в дальнейшем.

Отметим, что подстановка в последнюю формулу явного выражения для
EG из (2.10) дает

τ = 3

(
π2α2muc2

2k

)1/3 (
Z2

i Z2
k M

T

)1/3

. (2.48)

Величина ∆ дает эффективную ширину гамовского максимума, а множи-
тель при e−F (E0) в (2.46), если воспользоваться терминологией, принятой в
оптике для спектральных линий, — это ,,эквивалентная ширина" гамовского
,,колокольчика", измеренная в единицах его максимального значения. В следу-
ющем пункте мы еще вернемся к обсуждению полученных сейчас результатов
и, в частности, убедимся, что ширина гамовского пика невелика.

Наконец, комбинируя (2.34) с (2.46) и (2.43), находим, что

Rik(T ) = (NiNk)∗
4
√

2
21/331/2

S0√
M

E
1/6
G (kT )−2/3 e−τ . (2.49)

Далее, если воспользоваться явным выражением для EG из (2.9) и выразить
kT через τ согласно (2.47), после небольшой выкладки из (2.49) окончательно
находим

Rik(T ) = (NiNk)∗
8

9
√

3 π
(α muc)−1 S0

Zi ZkM τ2 e−τ . (2.50)

После всего сказанного очевидно, что ввиду умеренной ширины гамовского
максимума и того факта, что S–фактор слабо зависит от энергии, в качестве
S0 в (2.50)

(
и, разумеется, в (2.34)

)
естественно взять S(E0). В дальнейшем мы

убедимся (см. c. 288 – 289), что такой выбор S0 все же не является оптимальным
и его можно немного улучшить. Впрочем, часто в качестве S0 можно брать и
S(0).

После подстановки численных значений постоянных в (2.50) и (2.48) оконча-
тельно получаем следующие рабочие формулы, широко используемые в ядер-
ной астрофизике:

Rik(T ) = 7.20 · 10−19 (NiNk)∗
S0

Zi ZkM τ2 e−τ см−3с−1, (2.51)
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где S0 измерено в единицах кэВ · барн и

τ = 42.49

(
Z2

i Z2
k M

T6

)1/3

. (2.52)

Здесь, как обычно, T6 — температура в мегакельвинах: T6 = T/106. Две послед-
ние формулы (с различными поправками, см. ниже) и используются обычно
для вычисления скоростей (нерезонансных) термоядерных реакций в звездах.

Наряду с формулой (2.51) мы будем в дальнейшем часто пользоваться так-
же одной из двух кратких форм ее записи

Rik = (NiNk)∗ <σv>ik или Rik = (NiNk)∗ λik. (2.53)

Мы убедились, что зависимость скорости термоядерной реакции от темпе-
ратуры имеет довольно-таки замысловатый вид:

Rik(T ) ∝ T−2/3 exp
(
− Cik

T 1/3

)
. (2.54)

И тем не менее мы получили замечательный результат — скорость реакции
найдена в виде явной формулы. Следует, впрочем, помнить, что это не точная
формула, а лишь хорошая аппроксимация. Ведь при ее выводе был сделан ряд
приближений, и поэтому обеспечиваемая ею точность заслуживает специаль-
ного обсуждения. Оно дается в пп. 2.4 и 2.5.

2.4.
Обсуждение

Начнем с терминологического предостере-
жения. Под термином ,,гамовская энергия"
разные авторы понимают разные величины.

Наше EG действительно фигурировало в пионерской работе Г.А. Гамова по тео-
рии альфа-распада. Однако в астрофизической литературе гамовской энергией
чаще называют величину, которая у нас обозначена как E0. Встречаются авто-
ры, которые называют гамовским множителем вероятность прохождения через
высокий кулоновский барьер, даваемую формулой (2.8). Будьте бдительны!

Прежде всего обсудим свойства гамовского максимума. Первый факт, на
который следует обратить внимание, — это то, что энергия E0 существенно
больше тепловой энергии kT . Поэтому главный вклад в скорость протекания
термоядерных реакций дают частицы далекого максвелловского хвоста. Дей-
ствительно, из (2.37) и (2.10) следует, что

E0

kT
=

(
EG

4 kT

)1/3

=
(
979.13

Z2
i Z2

k M
4 kT

)1/3

, (2.55)
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где kT выражено в кэВ. Так, для протон–протонной реакции (Zi =Zk =1, M≈
A = 1/2) при kT = 1.5 кэВ (центр Солнца) оказывается, что E0 ≈ 4.3 kT .
Здесь A — приведенное массовое число: A = AiAk/(Ai + Ak). Для реакции
14N(p, γ)15O, самой медленной в CN–цикле, Zi = 7, Zk = 1, M = 0.940 ≈
A = 14/15 = 0.933, и при kT = 2 кэВ имеем E0 ≈ 17.8 kT . Следует ясно пред-
ставлять себе, что в последнем случае энергией в пределах ,,гамовского коло-
кольчика" ∼∆e−τ обладает ничтожная доля частиц. И вот эти-то энергичные
частицы, составляющие в газе едва ли не миллионную долю, обеспечивают
огромную светимость массивных звезд ГП.

Второе обстоятельство, на которое следует обратить внимание, — это не
вполне обычная зависимость E0 от температуры: E0 ∝ T 2/3. Впрочем, в теории
термоядерных реакций зависимости различных параметров от температуры,
как правило, отличны от простой пропорциональности T или T−1.

Рассмотрим теперь ширину гамовского максимума. Формула (2.43) дает

∆
kT

=
4

21/331/2

(
EG

kT

)1/6

. (2.56)

Так, для реакции 14N(p, γ)15O при kT = 2 кэВ полная ширина гамовского
максимума ∆, как следует из последней формулы, составляет 9.6 kT , так что
основной вклад в скорость реакции дает область E0 ±∆/2 = (17.8± 4.8) kT .

Наконец, настало время обсудить основную формулу (2.51) для скорости
протекания термоядерных реакций. Из нее ясно видно, чем определяется эта
скорость, а значит, и темп энерговыделения, и темп нуклеосинтеза. О реа-
гирующих ядрах нужно знать, конечно, их заряды и атомные массы — это
очевидно. Однако самое замечательное состоит в том, что никаких сведений о
зависимости сечения реакции от энергии иметь не нужно. Все, что требуется —
это одно число — S–фактор. Для реакций, идущих по слабому (с испусканием
e± и нейтрино или антинейтрино), электромагнитному (испускается γ–квант)
и по сильному взаимодействию его значения различаются на многие порядки.
Тем не менее для реакций с легкими ядрами и с ядрами промежуточных масс
к настоящему времени S–факторы известны вполне надежно.

В формуле (2.51) для Rik(T ) есть в определенном смысле ,,главный" мно-
житель τ2e−τ . При τ > 2 — а это всегда так — он убывает в ростом τ , причем
при больших τ очень быстро. Поэтому согласно (2.52) при повышении темпе-
ратуры первыми должны начинаться те реакции, для которых произведение
Zi Zk минимально, так что кулоновский барьер самый низкий. Ясно, что пер-
вым должен загораться водород (обычный и тяжелый, то есть дейтерий).

2.5. Степенна́я
аппроксимация

Хотя мы и нашли зависимость скоростей реак-
ций от температуры в явном виде, прозрачной
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ее никак не назовешь:

Rik(T ) ∝ T−2/3 exp
(
− Cik

T 1/3

)
.

Даже для простых прикидок нужен калькулятор. Нетрудно, однако, получить
хотя и более грубую, но зато наглядную аппроксимацию Rik(T ), которой часто
оказывается достаточно, чтобы разобраться в сути дела.

В окрестности некоторой фиксированной температуры T = T0 для Rik(T )
можно использовать степенну́ю аппроксимацию вида

Rik(T ) ≈ Rik(T0)
(

T

T0

)ν

. (2.57)

Мы имеем, очевидно,

ν =
d ln Rik

d ln T

∣∣∣∣
T=T0

=
d ln Rik

dτ

dτ

d ln T

∣∣∣∣
T=T0

. (2.58)

Простой расчет с использованием формул (2.51) и (2.52) дает

ν =
τ0 − 2

3
, (2.59)

где τ0 ≡ τ(T0). Параметр ν мы иногда будем называть температyрным пока-
зателем скорости реакции.

Обращаем внимание на то, что для нахождения температурного показате-
ля ν знать S–фактор не нужно. Поэтому, например, для протон–протонной
реакции p + p → d + e+ + ν в окрестности T0 = 15 · 106 K по формуле (2.52)
находим τ0 = 13.7, так что ν = 3.90 ≈ 4. Итак, не зная абсолютного значения
скорости протон–протонной реакции в центре Солнца, мы сумели установить,
как она зависит от температуры: примерно пропорционально T 4. Общее выра-
жение для ν в случае протон–протонной реакции имеет вид

ν =
11.27

T
1/3
6

− 2
3

, (2.60)

где T6 — температура в миллионах кельвинов. Численные значения ν для
нескольких характерных значений температуры таковы:

T6 10 15 20 25
ν 4.56 3.90 3.49 3.18
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Для реакции 14N(p, γ)15O при T0 = 20·106 имеем τ0 = 56.0, так что скорость
этой реакции в окрестности T6 = 20 растет с температурой как T 18. Чтобы на-
глядно представить себе, насколько круто в этом случае изменяется с темпера-
турой скорость реакции (а одновременно и темп энерговыделения в CN–цикле),
представим себе, что температура опустилась c 20 до 18 мегакельвинов. Мы
имеем тогда Rik(T6 = 18)/Rik(T6 = 20) = (20/18)−18 = (1 + 2/18)−18 ≈ e−2 ≈
1/7.4 = 0.135. Таким образом, снижение температуры всего на 10%, с 20 до 18
мегакельвинов, уменьшает скорость реакции 14N(p, γ)15O в ≈ 7.4 раза! (Расчет
на калькуляторе, без использования приближения (20/18)18 ≈ e2, дает несколь-
ко меньшее число 6.66 ≈ 7, так что первый знак все же верен, а большего в
этой порядковой оценке нам и не нужно).

Общее выражение для ν в случае реакции 14N(p, γ)15O таково:

ν =
50.8

T
1/3
6

− 2
3

. (2.61)

Его численные значения для тех температур, при которых эта реакция опре-
деляет общий темп энерговыделения в звездах ГП, следующие:

T6 15 20 25 30
ν 19.9 18.0 16.6 15.6

Значительное различие в зависимости скоростей реакций pp–цепочек и CN–
цикла от температуры имеет важные астрофизические последствия. Посколь-
ку температура недр звезд главной последовательности, как мы знаем, растет
с массой (см. п. 2.2 Гл. III, в частности, рис. III.2.1, с. 126), в верхней части ГП
основную роль в выработке энергии должны играть реакции CN–цикла. Разли-
чие в значениях температурного показателя ν для pp–реакции и для CN–цикла
приводит к радикальному отличию внутреннего строения звезд верхней части
ГП от звезд нижней ее части. В звездах верхней части ГП почти вся энер-
гия вырабатывается вблизи самого их центра, так как скорость ее выделения
растет примерно пропорционально T 16 ÷ T 18. По существу, эти звезды имеют
почти точечный источник энергии в центре. Это массивные звезды высокой
светимости, и почти вся их светимость вырабатывается в небольшой области
близ центра звезды. В итоге потоки энергии в этой центральной области ока-
зываются колоссальными. Если бы весь этот поток переносился излучением,
возникали бы огромные градиенты температуры. Природа ,,не любит" боль-
ших градиентов и находит способ их уменьшить: возникает конвекция, которая
принимает на себя перенос энергии, и градиент уменьшается. Таким образом,
у массивных звезд должно существовать конвективное ядро.

Ядерные реакции горения водорода в ядре будут идти до тех пор, пока во-
дород не выгорит в пределах всего конвективного ядра, так как конвективное
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перемешивание будет доставлять топливо из всего конвективного ядра в те
центральные области, где активно идут ядерные реакции горения водорода. В
каждый данный момент конвективное ядро химически однородно, а содержа-
ние водорода в нем постепенно убывает. Когда водород иссякает, в централь-
ных областях звезды оказывается пассивное гелиевое ядро. Ядерные реакции
перемещаются в богатый водородом слой, окружающий это гелиевое ядро.

У звезд нижней части ГП выделение энергии обеспечивается горением во-
дорода в pp–цепочках, причем зависимость темпа энерговыделения от темпе-
ратуры не очень сильная: ν ≈ 4. Выделение энергии происходит в заметной
доле объема звезды, да к тому же светимости этих звезд невелики. Поэтому
у таких звезд конвективного ядра нет, и химический состав их недр меняется
вдоль радиуса плавно.

2.6. Скорость
энерговыделения и
время выгорания

Знание скорости протекания реакции Rik(T )
позволяет без труда найти темп выделения
энергии — достаточно знать, сколько энергии
выделяется за одну реакцию. Другой важный

параметр реакций — время выгорания ядер, участвующих в реакции. Начнем
с первого вопроса.

Темп энерговыделения в расчете на единицу массы принято обозначать ε
(
в

эрг/(г· с)). Тогда выделение энергии в единице объема за единицу времени в
реакции между ядрами i и k равно ρεik, где ρ — плотность. Имеем, очевидно,

ρεik = Qik Rik(T ), (2.62)

где Qik — энерговыделение в расчете на одну реакцию между ядрами типов i и
k (в эргах). Оно легко подсчитывается по разности масс частиц, вступающих в
реакцию, и тех, которые получаются в ее итоге. В выражении для скорости ре-
акции Rik(T )

(
формула (2.51)

)
концентрации ядер Ni и Nk удобно представить

в виде

Nl =
ρXl

ml
, l = i, k,

где Xl — весовая доля ядер типа l в веществе. Тогда получаем такое окон-
чательное выражение для темпа выделения энергии за счет рассматриваемой
реакции:

εik = Qik 7.20 · 10−19 ρ Xi Xk

mimk (1 + δik)
S0

Zi ZkM τ2 e−τ эрг г−1с−1. (2.63)

Обсуждение численных значений скорости энерговыделения в протон–
протонных цепочках pp I, в частности, в центре современного Солнца см. в
Гл.VI, п. 1.2 (c. 316).
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Термоядерные реакции в звездах не только вырабатывают энергию, но од-
новременно изменяют ядерный состав вещества. Скорость последнего процесса
описывается параметром, известным как время выгорания. По определению,
временем выгорания ядер типа k за счет реакции с ядрами типа i называется
величина

τi(k) =
1

Ni <σv>ik

, (2.64)

где <σv>ik определено, как обычно, согласно (2.51) — (2.53). Если Ni 6= Nk,
то, очевидно, τi(k) 6= τk(i). Так, время выгорания имеющего низкую распро-
страненность 3He в реакции 3He

(
4He, γ

)
7Li не равно времени выгорания в этой

реакции гораздо более обильного 4He на 3He.
Поясним определение (2.64). Изменение со временем содержания ядер ти-

па k за счет единственной реакции с ядрами типа i описывается очевидным
уравнением dNk/dt = − Rik, или

dNk

dt
= − NiNk <σv>ik . (2.65)

Обозначая для краткости λik ≡<σv>ik, будем иметь

dNk

Nk
= − λik Ni dt, (2.66)

откуда

Nk(t) = Nk(0) exp
(−λik Ni t

)
= Nk(0) exp

(
− t

τi(k)

)
. (2.67)

Таким образом, время выгорания τi(k) — это время, за которое содержание
ядер типа k за счет реакции с ядрами типа i убывает в e раз.

До сих пор неявно предполагалось, что содержание ядер типа i и темпера-
тура в ходе выгорания остаются постоянными. Первое из этих предположений
заведомо не выполняется, когда речь идет о горении ядер какого-то типа на
самих себе. Важнейший пример такого случая — протон–протонная реакция
p + p → d + e++ ν.

Если i = k, то в формуле (2.65) справа должен, казалось бы, появиться
множитель (1 + δkk)−1 = 1/2. Он, однако, компенсируется тем, что в каждой
реакции сразу оба реагирующие ядра исчезают, превращаясь в какие-то другие
частицы. Поэтому при горении на самих себе ядер, скажем, типа k, вместо
(2.66) мы имеем

dNk

N2
k

= −λkk dt, (2.68)

откуда
1

Nk(t)λkk
− 1

Nk(0)λkk
= t. (2.69)
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В качестве времени выгорания в данном случае естественно по определению
принять время t ≡ τk(k), за которое концентрация ядер убывает вдвое. Тогда
из последнего соотношения следует, что

τk(k) =
1

Nk(0)λkk
. (2.70)

По структуре это выражение не отличатся от формулы (2.64). Единственное
отличие состоит в том, что вместо Ni = const здесь надо брать концентрацию
ядер в начальный момент. Кроме того, как мы помним, когда реагируют разли-
чающиеся ядра, то время выгорания — это время уменьшения концентрации
в e раз, тогда как в случае горения ядер на самих себе за время выгорания
концентрация ядер уменьшается вдвое.

Полученная сейчас формула используется без какого-либо обсуждения во всех
руководствах по физике звезд. Между тем выражаемый ею результат кажется
по меньшей мере странным. По мере выгорания ядер типа k на самих себе их
концентрация падает, а потому, согласно формуле (2.70), время выгорания остав-
шейся их части возрастает! Так, если в протон–протонной реакции выгорела
половина имевшихся первоначально протонов, то оставшиеся протоны будут вы-
горать вдвое дольше, чем уже выгоревшая их часть.

Это напоминает мне известную апорию Зенона "Ахиллес никогда не догонит
черепаху", только там расстояние между Ахиллесом и черепахой со временем все
же уменьшается, у нас же достижение конечной цели — полного выгорания —
со временем отдаляется.

Еще одно важное обстоятельство, связанное с термоядерными реакциями.
Они не только служат источниками энергии звезд и постепенно изменяют хи-
мический состав их недр, но тем самым одновременно изменяют и молекуляр-
ный вес вещества, а потому и давление (даже если бы температура и плотность
оставались постоянными). Это с неизбежностью должно вести к перестройке
звезды. Рассмотрим сначала простейший пример. Пусть у нас первоначально
был чистый водород и он полностью выгорел, превратившись в гелий (неважно,
каким путем — по pp–цепочкам или в CN цикле). В результате четыре ,,атома”
водорода, то есть четыре протона и четыре свободных электрона, преврати-
лись в ,,атом” гелия (альфа-частица+два свободных электрона). Число частиц
уменьшилось с 8 до 3, а значит и давление (P = NkT ) упало в 8/3 = 2 2

3 раза.
Более реалистичная ситуация. Можно полагать, что первоначально химиче-
ский состав вещества в центре Солнца был тот же, что и у тогдашней фото-
сферы (X=0720, Y=0.266, Z=0.014). При полной ионизации молекулярный вес
вещества дается следующим известным выражением:

1
µ

= 2X +
3
4
Y +

1
2
Z,
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откуда находим, что µ = 0.61. В центре сегодняшнего Солнца половина водо-
рода уже превратилась в гелий и поэтому там сейчас X=0.36, Y=0.63, Z=0.01.
Молекулярный вес в итоге поднялся до µ = 0.83.

2.7. Уточнения
Мы уже упоминали о том, что формула
(2.51) для Rik не является точной. Кратко

рассмотрим теперь три различных ее уточнения. Во-первых, при вычислении
интеграла в (2.41) мы ограничились нахождением только главного члена того
асимптотического разложения по обратным степеням τ , которое может быть
получено. Во-вторых, мы неявно предполагали, что в пределах гамовского мак-
симума значение S–фактора можно считать постоянным

(
и равным S(E0)

)
. На

самом деле следует учитывать, что S–фактор хотя и слабо, но все же зависит
от E. Следующий шаг — считать, что его зависимость от E в пределах га-
мовского максимума линейная. Что даст учет этого обстоятельства? Наконец,
третья поправка, которой мы коснемся подробнее, — учет того, что ядро на са-
мом деле не является ,,голым", а окружено облаком свободных электронов, что
должно вести к некоторому снижению кулоновского барьера. Эту поправку мы
рассмотрим в следующем пункте (см. с. 290).

Вычисление первой поправки требует довольно длинных чисто формаль-
ных преобразований, не имеющих прямого физического смысла. Поэтому мы
ограничимся тем, что приведем готовый результат. Множитель τ2e−τ в окон-
чательной формуле (2.51) следует заменить на

τ2e−τ

(
1 +

5
12

1
τ

+ O
(
τ2

))
. (2.71)

Так как параметр τ во всех практически интересных случаях большой, поправ-
ка оказывается малой. Так, для протон–протонной реакции при T6 = 15 (центр
Солнца) мы имеем τ = 13.7, так что эта поправка составляет всего 3%. Для
реакции 14N(p, γ)15O, определяющей, как уже говорилось, темп энерговыделе-
ния в CNO–цикле, при T6 = 20 имеем τ = 56, и рассматриваемая поправка
оказывается совсем малой — 0.7%.

Вторая поправка учитывает то обстоятельство, что в пределах гамовского
максимума S–фактор не остается постоянным, а медленно меняется. Зависи-
мость его от энергии в этой узкой области можно в первом приближении счи-
тать линейной. До сих пор мы этим пренебрегали и принимали, что S0 равно
значению S(E) в точке гамовского максимума: S0 = S(E0). Если учесть, что
S(E) в пределах гамовского ,,колокольчика" медленно возрастает, то очевидно,
что значение S0 следует брать немного правее E0. Окончательный результат
выглядит совсем просто:

S0 = S

(
E0 +

5
6

kT

)
, (2.72)
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однако получение его требует громоздких выкладок. Заметим, что поскольку
E0, как мы видели выше, в разы превосходит kT , то рассматриваемая поправка
всегда мала.

Часто зависимость S(E) при малых энергиях (E<100 кэВ) аппроксимируют
не линейной функцией, а параболой:

S(E) = S(0) + S′(0)E +
1
2

S′′(0)E2. (2.73)

В этом случае S0 с учетом обсуждавшихся только что двух поправок, как
можно показать, дается следующим выражением:

S0 = S(0)
(
1 +

5
12

1
τ

)
+S′(0) kT

τ

3

(
1 +

35
12

1
τ

)
+

1
2

S′′(0) (kT )2
τ2

9

(
1 +

89
12

1
τ

)
.

(2.74)
Здесь kT выражено в кэВ, а безразмерный параметр τ , как всегда, равен

τ =
3E0

kT
, (2.75)

где E0 — энергия гамовского максимума (подробнее см. пп. 2.3 и 2.4). Напом-
ним, что τ∝T−1/3.

Оценим с помощью (2.74) точность часто используемой простейшей ап-
проксимации S0 ≈ S(0). В качестве первого примера рассмотрим реакцию
14N(p,γ)15O, фактически определяющую темп энерговыделения в CNO–цикле.
При kT = 2 кэВ, чему соответствует T6 = 23.2, имеем τ = 54.1, и формула
(2.74) дает S0 = 1.64 кэВ· барн (значения S(0), S′(0) и S′′(0) для этой реак-
ции см. в Табл. VII.1.1, с. 355). Поскольку отличие S0 = 1.64 кэВ· барн от
S(0) = 1.66 кэВ· барн составляет всего 0.02, а само значение S(0), согласно
данным Табл. VII.1.1, известно с погрешностью ±0.12, простейшее прибли-
жение S0 = S(0) в рассматриваемом случае вполне оправдано. В качестве
второго примера рассмотрим протон–протонную реакцию 1H(p, e+ν)2D, опре-
деляющую темп протекания реакций протон–протонных цепочек. Данные об
S–факторе этой реакции заимствуем из Табл. VI.1.1, с. 309. Заметим, что значе-
ние S′′(0) для этой реакции неизвестно. При kT = 1.5 кэВ, чему соответствует
температура T6 = 17.4 К, при которой протон–протонные цепочки все еще да-
ют основной вклад в темп энерговыделения, мы находим по формуле (2.74) с
отброшенным последним слагаемым, что S0 = 4.50 · 10−22 кэВ· барн, тогда как
S(0) = 4.01 · 10−22 кэВ· барн. Таким образом, в рассматриваемом случае учет
поправок дает заметный эффект: S0 превышает S(0) на ∼12%. Этот случай
является экстремальным. Для всех остальных энерговыделяющих водородных
реакций отличие S0 от S(0) меньше 10%.

Убедитесь, что если в формуле (2.74) отбросить последний член, то она
переходит в (2.72) с дополнительным множителем

(
1 + 5

12
1
τ

)
в правой ча-

сти.
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2.8. Электронное
экранирование

До сих пор при расчете скоростей термо-
ядерных реакций мы пренебрегали тем об-
стоятельством, что сталкивающиеся ядра
погружены в плазму. Заряд каждого ядра

вызывает ее поляризацию — притягивает отрицательно заряженные электроны
и отталкивает положительно заряженные ядра. Как подробно рассматривает-
ся в п. 2.2 Гл. XI, в результате этого потенциал ядра с зарядом eZi оказывается
не кулоновским, а дебаевским

ϕ(r) =
eZi

r
e−r/r

D , (2.76)

где дебаевский радиус r
D

определяет характерный размер поляризационного
облака, экранирующего кулоновский заряд eZi/r :

r
D

= 8.89 · 10−12

√
T

ζρ
см, (2.77)

где

ζ =
∑
+

Zi (Zi + 1)
Xi

Ai
. (2.78)

Символ
∑

+ означает, что суммирование идет только по ионам. Здесь, как
обычно, Zi и Ai — зарядовое и массовое числа ионов типа i, а Xi — их весовая
доля в газе. Величина ζ обычно близка к единице. Так, для чисто водородной
плазмы ζ = 2, для чистого гелия ζ = 3/2, для полностью ионизованного газа
с химическим составом, обычным для звезд населения I (X=0.70, Y=0.27,
Z=0.03), имеем ζ = 1.18.

В важнейшем для дальнейшего случае, когда r¿ r
D
, разлагая экспоненту

в (2.76), получаем

ϕ(r) =
eZi

r
− eZi

r
D

≡ eZi

r
− ϕ

D
, (2.79)

где

ϕ
D

=
eZi

r
D

. (2.80)

Наличие дебаевской экранировки снижает высоту потенциального барьера
вблизи ядра, при r¿ rD , на величину ϕD , а следовательно увеличивает ве-
роятность проникновения налетающей частицы в область ядра. В этом суть
дела.

Мы начнем с того, что приведем конечный результат, отложив на время
его вывод. Оказывается, что для учета электронного экранирования получен-
ное ранее выражение для скорости реакции (2.51) в дебаевском приближении
следует увеличить на множитель

fD = eE
D

/kT , (2.81)
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где

ED =
e2ZiZk

r
D

. (2.82)

Величина ED представляет собой, очевидно, энергию кулоновского взаимодей-
ствия зарядов eZi и eZk, разнесенных на расстояние дебаевской длины r

D
.

Условие применимости приведенного только что выражения для поправки на
электронное экранирование (как и вообще дебаевского приближения) состоит
в том, что эта энергия мала по сравнению с тепловой энергией kT :

E
D
¿ kT. (2.83)

В этом случае говорят о слабом экранировании. Противоположный случай
сильного экранирования E

D
>∼ kT встречается лишь при очень высоких плот-

ностях, и мы его здесь рассматривать не будем. Для всех водородных реакций
в звездах экранирование слабое.

Переходим к выводу. Нас будут интересовать частицы, дающие главный
вклад в скорость реакции. Они обладают энергией, близкой к E0 (см. с. 277
и рис. V.2.4). При пренебрежении влиянием дебаевского экранирования клас-
сическая точка поворота для них находится при r = r0 , где r0 определяется
очевидным условием

E0 =
e2ZiZk

r0
. (2.84)

Мы видим, что в рассматриваемой задаче имеются два характерных па-
раметра, rD и r0 . Для ,,нормальных" звезд, как мы вскоре убедимся, rD Àr0 .
Поэтому налетающая частица проходит ,,насквозь" почти все дебаевское зкра-
нирующее облако, прежде чем достигает расстояния от ядра, где вступает в
подбарьерную область. Так как здесь r¿r

D
, то, как мы видели, высота барьера

снижена на не зависящую от r постоянную величину E
D
. С учетом этого об-

стоятельства формула (2.33) для <σv> — по сути дела, именно она определяет
скорость нерезонансной реакции — переписывается так:

<σv>
D

=

(
8

πM

)1/2(
kT

)−3/2
∫ ∞

0

S(E) exp

(
− E

kT
−

√
EG

E + E
D

)
dE. (2.85)

Здесь нижний индекс D у <σv> указывает на то, что эта формула учиты-
вает поправку на дебаевское экранирование. Фактически все дело свелось к
тому, что в члене

√
E

G
/E в показателе экспоненты в формуле (2.33), который

описывает вероятность туннелирования под барьером, величина E заменена на
E+ED . Объяснение состоит в том, что вследствие электронного экранирования
высота барьера уменьшилась на ED , а это эквивалентно увеличению энергии
налетающей частицы на ED .
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Положив в интеграле в (2.85) E′ = E + E
D
, получим

∫ ∞

0

S(E) exp

(
− E

kT
−

√
EG

E + E
D

)
dE =

= exp
(

ED

kT

) ∫ ∞

E
D

S(E′ − ED ) exp

(
− E′

kT
−

√
EG

E′

)
dE′. (2.86)

Поскольку, как мы помним (см. п. 2.3), главный вклад в последний интеграл
дает сравнительно узкая область (гамовский ,,колокольчик" , см. рис. V.2.4),
мы не совершим заметной ошибки, заменив в последнем интеграле нижний
предел интегрирования E

D
на 0, а S(E′ − E

D
) — на S(E′). (Вариант: при вы-

несении S(E) из-под интеграла можно брать значение S0 равным не S(E0),
как это делалось в п. 2.3 (c. 280), а S(E0 − E

D
). Впрочем, так как E0 À E

D
,

этой поправкой вполне можно пренебрегать, как обычно и поступают). В итоге
оказывается, что

<σv>
D

=<σv> exp
(

E
D

kT

)
. (2.87)

Это тождественно постулированному выше результату, что поправка на элек-
тронное экранирование дается формулой (2.81).

Предположение о том, что высота барьера уменьшается из-за экраниро-
вания на величину E

D
, лежащее в основе приведенного вывода, справедливо

лишь если
rD Àr0 . (2.88)

Покажем, что это действительно так. Из (2.77) и (2.84) имеем

rD
r0
≈ 61.8

E0

ZiZk

(
T6

ζρ

)1/2

, (2.89)

где E0 выражено в кэВ. Для протон–протонной реакции (Zi = Zk = 1) в центре
сегодняшнего Солнца (T6 = 15, ρ = 150 г/см3) мы имеем E0 ≈ 4.3 кэВ (см.
с. 282) и ζ ≈ 1, так что r

D
/r0 ≈ 84, и условие применимости проведенных

рассуждений выполнено. Для реакции 14N(p, γ)15O при T6 = 20 и ρ = 100 г/см3

мы имеем E0 ≈ 36 кэВ, и rD/r0 ≈ 70, так что и здесь все в порядке. Фактически
критерий (2.88) выполняется для энерговыделяющих областей всех звезд ГП
(кроме наименее массивных).

Нам осталось обсудить вопрос о реальной величине поправки на электрон-
ное экранирование. Мы имеем

E
D

kT
=

e2ZiZk

r
D

kT
= 0.188ZiZk

(
ζρ

T 3
6

)1/2

. (2.90)
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Для протон–протонной реакции в центре Солнца это дает ∼ 4%, так что
exp

(
E

D
/kT

) ≈ 1.04. Электронное экранирование увеличивает скорость про-
тон–протонной реакции всего на∼ 4%. Для реакции 14N(p, γ)15O при T6 = 20
и ρ = 100 г/см3 увеличение ее скорости за счет дебаевского экранирования
несколько больше,∼15% (проверьте!).



3. РЕЗОНАНСНЫЕ ТЕРМОЯДЕРНЫЕ РЕАКЦИИ

3.1. Введение
На Рис. V.2.1 (см. с. 268), иллюстрирующем
прохождение частиц через отталкивающий ку-

лоновский барьер, отсутствует одна очень важная деталь. Ядро, подобно ато-
му, имеет дискретные уровни энергии (Рис. V.3.1). Они лежат как в области
отрицательных, так и положительных энергий. Последние соответствуют ква-
зистационарным состояниям ядра, и именно они будут нас интересовать. Если
энергия налетающей частицы совпадает с энергией какого-то уровня ядра, как
это изображено на Рис. V.3.1, или очень близка к ней, то ситуация существенно
отличается от рассматривавшейся до сих пор. Говорят, что в этом случае мы
имеем дело с резонансной реакцией. Сечение реакции при резонансной энер-
гии имеет максимум. Так, для реакции 12C(p, γ)13N, как видно из Рис. V.2.2
(c. 270), есть резонанс с энергией 460 кэВ, причем он довольно широкий. Шири-
на резонанса обозначается Γ. Она измеряется в электрон–вольтах по величине,
половинной от максимума сечения (в центре резонанса). Ширина резонанса
связана со временем жизни ядра τ на рассматриваемом уровне обычным выра-
жением, вытекающим из соотношения неопределенностей ∆E ∆ t ∼ ~, именно
Γ = ~/τ .

По определению, резонанс считается изолированным, если его ширина су-
щественно меньше расстояния до другого (ближайшего по энергии) резонанса.
Если возбужденное ядро может в принципе испустить заряженную частицу,
скажем, альфа–частицу, то ширина кулоновского барьера, который этой части-
це надо преодолеть, чтобы вылететь из ядра, тем меньше, чем больше энергия
уровня. Поэтому время жизни ядра на таком уровне тем меньше, а тем самым
он тем шире, чем больше энергия возбуждения уровня. Начиная с энергий
порядка 50 МэВ говорить об отдельных изолированных уровнях ядра уже не
приходится — ширины уровней возрастают настолько, что они перекрываются,
образуя квазиконтинуум.

Ядерные уровни, имеющие небольшую положительную энергию, являются
узкими. Однако сечение в резонансах зачастую оказывается настолько велико,
что они дают главный вклад в скорость протекания термоядерных реакций в
звездах.

Причина, по которой расчет скоростей резонансных реакций существен-
но отличается от подробно рассматривавшегося до сих пор расчета скоростей
нерезонансных реакций, состоит в следующем. Вблизи изолированного резо-
нанса сечение, а вместе с ним и S–фактор имеет высокий узкий максимум.
Поэтому если резонанс расположен в пределах ,,гамовского колокольчика", то

294
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Рис. V.3.1:

Ядро, как и атом, имеет дискретные квазистационарные энергетические
уровни. Если энергия налетающей частицы совпадает с энергией какого-либо

из уровней, как это изображено на рисунке, то происходит резонансная
реакция.

при оценке интеграла для <σv>, определяющего скорость реакции
(
формула

(2.33, с. 276
)
,

<σ v>=

(
8

πM

)1/2 (
kT

)−3/2
∫ ∞

0

S(E) exp

(
− E

kT
−

√
EG

E

)
dE, (3.1)

где

EG =
M

2

(
2π e2ZiZk

~

)2

, (3.2)

считать S–фактор постоянным и выносить его из-под интеграла нельзя. Здесь
необходим другой подход, к изложению которого мы вскоре и перейдем.
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3.2. Боровская
картина протекания
ядерных реакций

Согласно Н.Бору, можно считать, что при
энергиях E ≤ 50 МэВ, что с большим запа-
сом выполняется при термоядерных реакциях
в звездах, реакции между заряженными ядра-

ми a + X → Y + b происходят в два этапа. На первом этапе в результате
взаимодействия a + X образуется так называемое составное, или компаунд–
ядро С∗ в возбужденном состоянии: a+X→C∗. Время жизни составного ядра
существенно больше так называемого ядерного времени t1 ∼ 10−21 с, то есть
времени, за которое частица, движущаяся со скоростью v ∼ 0.1c, пролетела
бы сквозь ядро. Если длина свободного пробега частицы a в ядре X мала по
сравнению с размером этого ядра, то энергии частиц a и X под действием
ядерных сил успевают перераспределиться между всеми нуклонами составно-
го ядра. Образно говоря, компаунд–ядро полностью забывает, как и из чего оно
сформировалось. (Для тех, кто знаком с теорией многократного рассеяния фо-
тонов спектральных линий в разреженном газе: концепция компаунд–ядра —
это ядерный аналог приближения полного перераспределения по частотам при
рассеянии). Очевидно, что необходимое условие образования составного ядра
состоит в том, что энергия, привнесенная налетающей частицей в расчете на
один нуклон в возникшем составном ядре, должна быть мала по сравнению с
удельной энергией связи нуклона в этом ядре. Пусть E — относительная ки-
нетическая энергия сталкивающихся частиц, E — энергия связи на нуклон в
составном ядре с массовым числом A. Критерий применимости боровской мо-
дели имеет вид E ¿ (A − 1) E . Так, для реакции 12C+α мы имеем A = 12 и
E ∼7 Мэв, так что E ¿ 80 МэВ.

На втором этапе происходит распад компаунд–ядра, что может осуществ-
ляться различными путями, или, как говорят, происходить по разным каналам:

C∗ →





X + a (упругое рассеяние)
X∗ + a (неупругое рассеяние)
Y + b (излучение частицы)
C + γ (радиационный распад)

У изолированного возбужденного атома есть единственный доступный ему
способ перехода вниз — испускание фотона. Ядро, находящееся в возбужден-
ном состоянии, имеет гораздо больше возможностей. Во-первых, возбуждение
может быть снято за счет неупругого рассеяния (вторая строка в приведенной
только что схеме распада). В итоге налетающая частица a отдает часть своей
кинетической энергии на возбуждение ядра X. Если энергия возбуждения яд-
ра C∗ достаточно велика, могут испускаться различные частицы — нейтроны n
(для них вылет из ядра не требует преодоления кулоновского барьера, поэтому
вероятность их испускания наибольшая), протоны p, альфа–частицы α, может
произойти и деление ядра. Если энергия возбуждения ядра C∗ недостаточна
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для испускания, скажем, альфа–частицы, то этот канал распада заперт. Все
эти процессы происходят за счет сильного взаимодействия.

Если энергия возбуждения ядра недостаточна для испускания каких бы
то ни было тяжелых частиц, возбуждение может сниматься путем испускания
гамма–кванта. Последнее происходит за счет электромагнитного взаимодей-
ствия. Так как оно гораздо слабее, чем сильное ядерное взаимодействие, испус-
кание гамма–кванта после захвата ядром тяжелой частицы занимает сравни-
тельно много времени, и такие уровни оказываются очень узкими (от ∼ 10−3 эВ
до ∼ 0.1 эВ). Испускание гамма–кванта также является единственной возмож-
ностью перехода вниз для возбужденного ядра, находящегося на уровне с отри-
цательной энергией. Укажем, что глубина потенциальной ямы ядер составляет
десятки МэВ.

Каждому из каналов распада компаунд–ядра отвечает свое характерное
время жизни ядра на исходном уровне и соответствующий ему вклад в полное
время жизни, а тем самым и в ширину уровня. Таким образом, i-му каналу рас-
пада отвечает своя ширина Γi — так называемая парциальная ширина. Полная
ширина уровня Γ равна сумме всех парциальных ширин. Так, если единствен-
ные два возможных канала распада компаунд–ядра — это испускание протона
или гамма–кванта, то Γ = Γp + Γγ .

До сих пор речь шла только об энергетике реакций. На самом деле в ходе
реакций должны также выполняться законы сохранения углового момента и
четности. Подробнее об этом мы говорить здесь не будем.

Заметим, что существуют реакции, к которым модель компаунд–ядра
неприменима. Во-первых, это реакции β±–распада, происходящие за счет сла-
бого ядерного взаимодействия. Во-вторых, это процессы фоторасщепления
ядер, при которых ядро поглощает γ–квант, расщепляющий ядро, точнее
,,выбивающий из него", скажем, альфа–частицу. Ясно, что гамма–квант, по-
рождающий этот процесс, должен обладать достаточной энергией, чтобы это
могло произойти. Процессы фоторасщепления тяжелых ядер играют важную
роль на поздних этапах эволюции массивных звезд. В них развиваются столь
высокие температуры, что в хвосте теплового планковского распределения по-
являются фотоны или лучше сказать гамма–кванты, достаточно энергичные,
чтобы вызвать фоторасщепление ядер. В частности, фоторасщепление ядер
железа 56Fe в конце эволюции массивных звезд ведет к потере их устойчиво-
сти и служит одной из причин взрыва сверхновых.

3.3. Формула
Брейта–Вигнера

Пусть a + X → Y + b — резонансная реакция,
причем мы имеем дело с изолированным уров-
нем. Здесь a — налетающая на ядро X заря-

женная частица, b — частица или гамма–квант, испускаемые компаунд–ядром,
возникающим при реакции a+X. Зависимость сечения реакции a+X → Y + b
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от энергии дается формулой Брейта–Вигнера

σ(E) = πλ–2 ω
ΓaΓb

(E − Er)2 + (Γ/2)2
. (3.3)

Здесь λ– — де-бройлевская длина волны: λ– = ~/(Mv) = ~/
√

2ME, так что
λ–2 ∝ 1/E. Далее, M = MaMX/(Ma + MX) — приведенная масса, Er — энер-
гия уровня, Γ = Γa + Γb — полная ширина уровня компаунд–ядра C∗, равная
сумме парциальных ширин Γa и Γb, наконец, ω — статистический множитель,
определяемый спинами частиц:

ω =
2J + 1

(2Ja + 1)(2Jb + 1)
, (3.4)

где J — угловой момент резонанса, а Ja и Jb — спины частиц a и b.
Как следует из формулы Брейта–Вигнера, при E = Er ± Γ/2 сечение ста-

новится вдвое меньше, чем в пике резонанса, так что, согласно данному ранее
определению, Γ — это ширина резонанса. Напомним, что резонанс считается
изолированным, если его ширина Γ много меньше расстояния до ближайших
к нему резонансов (с энергиями как бо́льшей, так и меньшей Er).

Максимальное сечение в резонансе достигается при E = Er и составляет

σ(Er) = 4πλ–2 ω
ΓaΓb

Γ2
. (3.5)

Наибольшее возможное сечение в резонансе (при Γa = Γb) равно, с точностью до
статистического множителя ω, квантовомеханическому геометрическому попе-
речному сечению частицы:

σmax(Er) = ω πλ–2. (3.6)

Оно не зависит от ширины резонанса. В случае, когда частица, вылетающая из
компаунд–ядра, совпадает с налетающей, говорят, что произошло резонансное
рассеяние. Его сечение при E = Er, то есть в центре резонанса, очевидно,
дается последней формулой.

Заметим, наконец, что
∫ ∞

0

σ(E) dE = 2π2 λ–2(Er)ω
ΓaΓb

Γ
. (3.7)

Эта формула легко получается из (3.3) в предположении, что резонанс узкий
и потому λ– и Γa можно вынести из-под интеграла, положив в них E = Er.

Формула (3.3) относится к случаю лобового столкновения частиц a и X,
когда угловой момент l равен нулю (s–волна). При термоядерных реакциях в



V.3. Резонансные термоядерные реакции 299

звездах это практически всегда так и есть. Для реакций с l 6= 0 в правой части
формулы Брейта–Вигнера добавляется множитель (2l + 1).

3.4. Скорости
резонансных

реакций

Изолированные уровни низкой энергии, с кото-
рыми чаще всего приходится иметь дело при
термоядерных реакциях в звездах, являются
очень узкими, с ширинами ∼ 1 эв и даже на

порядок – два меньше. Причина в том, что испускание заряженных частиц
требует преодоления ими высокого кулоновского барьера (разумеется, за счет
туннельного эффекта), и соответствующая парциальная ширина оказывается
поэтому очень малой. Что же касается излучения гамма–квантов, то оно про-
исходит со сравнительно малой вероятностью, так как электромагнитное вза-
имодействие, ответственное за их рождение, гораздо слабее сильного ядерного
взаимодействия, ответственного за испускание массивных частиц.

Комбинируя определение S-фактора
(
формула (2.12), с. 271

)

S(E) = σ(E) E exp

(√
EG

E

)
(3.8)

с формулой Брейта–Вигнера (3.3), получаем

S(E) =
π

2M
~2 ω

ΓaΓb

(E − Er)2 + (Γ/2)2
exp

(√
EG

E

)
. (3.9)

Если энергия резонанса Er лежит в пределах гамовского максимума E0±∆/2,
то основной вклад в скорость протекания такой реакции дает узкая область
энергий вблизи Er. Так как интересующие нас резонансы являются узкими, то
в пределах резонанса зависимостью от E множителя λ–, парциальной ширины
Γa и больцмановского фактора exp {−E/(kT )} можно пренебречь и вынести
их из-под знака интеграла, получающегося при подстановке (3.9) в (3.1). В
результате находим, что

<σ v>=
~2

2π

( 2π

MkT

)3/2

ω ΓaΓb exp
(
− Er

kT

)∫ ∞

0

dE

(E − Er)2 + (Γ/2)2
. (3.10)

Входящий сюда интеграл подстановкой E−Er = (Γ/2) x приводится к таблич-
ному (появляющийся нижний предел −2Er/Γ ввиду малости Γ по сравнению
с Er можно заменить на −∞). В итоге получаем следующее окончательное
выражение для <σ v>:

<σ v>= ~2
( 2π

MkT

)3/2

ω
ΓaΓb

Γ
exp

(
− Er

kT

)
, (3.11)
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или в числах

<σ v>= 8.10 · 10−12 ω

(AT6)3/2

ΓaΓb

Γ
exp

(
−11.61

Er

T6

)
см3 c−1, (3.12)

где A = AaAX/(Aa + AX) — приведенное массовое число, ширины Γ и энер-
гия резонанса Er выражены в кэВ, наконец. T6 — как всегда, температура в
миллионах кельвинов.

Согласно (3.11), показатель ν степенной аппроксимации зависимости ско-
рости резонансной реакции RaX = (NaNX)∗ <σ v > от температуры (T/T0)ν в
окрестности T0 имеет вид

ν = 1.16 · 107 Er

T0
− 3

2
. (3.13)

Он определяется только энергией резонанса и не зависит ни от масс реагиру-
ющих частиц, ни от значений парциальных ширин Γa и Γb. Чтобы избежать
громоздкого и малопонятного обозначения (T0)6 , в последней формуле, в от-
личие от (3.12), температура выражена в кельвинах, а не в 106 К (а Er — по
прежнему в кэВ).

Заметим, что приближения, которые мы использовали при получении
(3.11), эквивалентны представлению зависимости σ(E)

(
а следовательно и

S(E)
)
в виде произведения дельта-функции δ(E − Er) на множитель, зави-

сящий от Er:

σ(E) =

(
2π2 λ–2(Er) ω

ΓaΓb

Γ

)
δ(E − Er) =

(∫ ∞

0

σ(E) dE

)
δ(E − Er). (3.14)

Неудивительно, что полученное нами окончательное выражение (3.11) для
<σ v >, а потому и для скорости протекания реакции RaX = (NaNX)∗ <σ v >,
совершенно не похоже на то, что мы имели для нерезонансных реакций (фор-
мулы (2.51) и (2.52), с. 280 и 281). На первый взгляд кажется странным —
раз налетающая частица заряженная

(
скажем, протон в резонансной реакции

(p, γ)
)
, то в выражении для <σ v> должен быть множитель, учитывающий ве-

роятность подбарьерного проникновения этой частицы в ядро, а его не видно.
На самом деле он есть, но ,,спрятан" в Γa (см. ниже).

Рассмотрим два важных частных случая формулы (3.11). Первый случай —
это ΓbÀΓa. Множитель ΓaΓb/Γ тогда практически равен Γa, зависимости от Γb

фактически нет. Это означает, что скорость протекания реакции определяется
скоростью образования резонансного состояния. Очевидно, что она пропорци-
ональна вероятности exp

(−
√

EG/Er

)
туннельного проникновения в ядро на-

летающей заряженной частицы, имеющей энергию Er. Коэффициент пропор-
циональности определяется параметрами ядра, с которым происходит взаимо-
действие — его радиусом и структурой. Скорость протекания реакции имеет
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поэтому вид
RaX ∝ (NaNX)∗ T−3/2 exp{−F (Er)}, (3.15)

где

F (E) =
E

kT
+

√
EG

E
. (3.16)

При расчете скорости нерезонансной реакции множитель exp{−F (E)} сто-
ял под знаком интеграла, а медленно меняющийся S–фактор выносился из-под
интеграла

(
см. формулы (2.33) — (2.35), с. 276 и 277

)
. Если же реакция резо-

нансная и резонанс узкий, то зависимость S–фактора от энергии аппроксими-
руется дельта-функцией δ(E−Er) и потому вместо интеграла от exp{−F (E)} в
выражении для скорости реакции появляется множитель exp{−F (Er)}. Этот
множитель, как мы знаем, имеет максимум при Er = E0 (см. рис. V.2.4, с. 278)
и поэтому сечение резонансной реакции при ΓbÀΓa тем больше, чем Er ближе
к энергии гамовского максимума E0.

В числах выражение для скорости протекания резонансной реакции в том
случае, когда ΓbÀΓa, имеет вид

RaX = (NaNX)∗ 2.0 · 10−7

(
ZaZX

R3

)1/2 ( θ

A

)2

T
−3/2
6 exp{−F (Er)}. (3.17)

Здесь R — радиус ядра в ферми (R = 1.44 A1/3 фм), θ — безразмерный мно-
житель, определяемый структурой ядра (так называемая безразмерная при-
веденная ширина). Значения θ2 заключены между 1 и ∼ 10−2. Они находятся
экспериментально (а для простейших моделей ядерного потенциала могут быть
и рассчитаны).

Второй частный случай, который мы рассмотрим, это резонансное рассея-
ние, то есть процесс a+X → C∗ → X +a. Учитывая, что Γa = ~/τa, выражение
для скорости этой реакции, следующее из (3.11), при a 6= X принимает вид
(относительно случая a = X см. Упр. 2◦, с. 394)

RaX =
1
τa

NaNX ω
h3

(2πM kT )3/2
exp

(
− Er

kT

)
. (3.18)

Казалось бы, в правой части здесь еще должен быть множитель 1/2, так как
ΓaΓb/Γ при Γa = Γb дает Γa/2, а не просто Γa. Однако эта 1/2 сокращается с
дополнительным множителем 2, появляющимся в рассматриваемом случае из-
за того, что при упругом рассеянии, с которым мы имеем здесь дело, процесс
испускания частицы a неотличим от реакции, при которой испускается ядро–
мишень X.
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Обозначим, далее, через NC∗ равновесную концентрацию компаунд–ядер
C∗, возникающих при реакции a + X → C∗. Она определяется равенством
скорости их синтеза, даваемого (3.18), и скорости распада

RaX =
NC∗

τa
. (3.19)

Из двух последних формул следует, что

NaNX

NC∗
=

(2πMkT )3/2

h3
exp

( Er

kT

)
. (3.20)

В этой формуле читатель, надеюсь, опознае́т ионизационную формулу Саха,
точнее, ядерный ее аналог. Связанным состоянием — аналогом ионизуемого
атома – здесь является компаунд–ядро C∗, а a и X — аналоги соответственно
электрона и иона. В отличие от процесса рекомбинации, при создании связан-
ного состояния — компаунд–ядра C∗ — энергия не выделяется, а затрачивается.
Поэтому в показателе экспоненты вместо −χ/kT , где χ — энергия ионизации,
стоит +Er/kT , где Er — энергия резонанса.

Формула (3.20) является ключевой при рассмотрении так называемого 3α–
процесса горения гелия (с. 384 — 386).





Глава VI

ГОРЕНИЕ ВОДОРОДА. I





1. ПРОТОН–ПРОТОННЫЕ ЦЕПОЧКИ

1.1. Цепочка pp I Мы приступаем к обсуждению горения водо-
рода в звездах с превращением его в гелий с

рассмотрения цепочек реакций, начинающихся с протон–протонной реакции.
Всего этих цепочек три — pp I, pp II и pp III. Начнем с первой из них. Для нас,
живущих в Солнечной системе, она является важнейшей.

Дело в том,что бóльшая часть водорода в звездах ГП с массами до ∼1.2 M¯,
в том числе и на Солнце, превращается в гелий именно по цепочке pp I:

1H +1H →2D + e+ + ν (1.1)
1H +2D →3He + γ (1.2)
3He +3He →4He + 2 1H. (1.3)

Первые две реакции проходят два раза, вырабатывая два ядра 3Не, после чего,
если температура достаточно высока, становится возможна третья реакция, в
которой эти ядра 3He реагируют между собой. На Солнце по цепочке pp I в
настоящее время синтезируется ∼ 84% ядер 4He.

Ключевой момент цепочки pp I — это первая, так называемая протон–
протонная реакция. Она самая медленная и поэтому ею определяется об-
щий темп выделения энергии. S–фактор этой реакции рекордно мал: S0 ∼
4 · 10−22 кэВ · барн, и измерить его экспериментально невозможно. К счастью,
его удается надежно рассчитать теоретически, что, впрочем, требует использо-
вания довольно тонкой теории. Однако понять суть того, почему эта реакция
столь аномально медленная и получить оценку ее S–фактора можно из про-
стых физических соображений. Но прежде чем переходить к этому, укажем,
что очевидный на первый взгляд конкурент протон–протонной реакции — ре-
акция 1H+4He — невозможна, так как ядра с A=5 не существует; реакция
же 1H+3He→4He+e++ ν несущественна, так как из-за бета–распада протекает
крайне медленно, да к тому же содержание 3He чрезвычайно низкое.

Итак, возвращаемся к протон–протонной реакции. Чтобы из двух прото-
нов образовался дейтрон — ядро 2D — протоны должны сблизиться на рас-
стояние порядка размеров дейтрона ∼ 4.2 · 10−13 см. Энергия связи дейтрона
2.224 МэВ. Ее достаточно, чтобы один из протонов в результате β–распада
мог превратиться в нейтрон. Напомним, что масса нейтрона превосходит мас-
су протона на 1.293 МэВ, и в свободном состоянии он испытывает β–распад
n → p + e−+ ν̃, где ν̃ — антинейтрино. Период полураспада свободного ней-
трона составляет 614 c. При столкновении двух протонов обратный β–распад
p → n + e+ + ν, превращающий один из протонов в нейтрон, должен успеть
произойти за то короткое время, пока сталкивающиеся частицы находятся в

306
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пределах размеров дейтрона. Еще одно существенное обстоятельство состоит
в том, что два протона, являющиеся фермионами (спин 1/2), в силу запрета
Паули не могут одновременно занимать одну ячейку фазового пространства
координат и импульсов. Поэтому спины сталкивающихся протонов, оказыва-
ющихся на короткое время рядом, должны быть антипараллельны. Спины же
протона и нейтрона в ядре дейтерия параллельны. Поэтому за время тесного
сближения не только один из протонов должен успеть превратиться в нейтрон,
но и спин его должен измениться на противоположный (это так называемый
β–распад типа Гамова – Теллера). Крайне малая вероятность того, что такой
β–распад успеет произойти за время тесного сближения протонов — как гово-
рят, на лету — и является основной причиной медленности протон–протонной
реакции. Разумеется, свой вклад вносит и необходимость туннельного проник-
новения сквозь кулоновский барьер, но в этом отношении протон–протонная
реакция выделена из других термоядерных реакций тем, что здесь кулонов-
ский барьер самый низкий, поскольку заряды ядер минимальны: Zi = Zk = 1.
,,Изобретение" протон–протонной реакции Х.Бете (рис. VI.1.1) и независимо
К.Вейцзекером в 1938 г. явилось важным шагом в понимании источников энер-
гии звезд.

Учитывая нарисованную только что физическую картину протекания
протон–протонной реакции, можно использовать следующее известное прибли-
женное выражение для ее сечения:

σ(E) ≈ (
4πb2

)
[√

EG

E
exp

(
−

√
EG

E

)] (
2b

v

ln 2
t1/2

)
. (1.4)

Здесь b = 4.2 · 10−13 см — радиус дейтрона. Он существенно больше разме-
ра протона: дейтрон — ,,рыхлое" ядро. Первый множитель представляет со-
бой сечение соударения. Стоящий в квадратных скобках второй множитель —
это вероятность проникновения сквозь кулоновский потенциальный барьер.
Третий множитель дает вероятность превращения протона в нейтрон за счет
β–распада за то короткое время сближения 2b/v, пока частицы находятся в
пределах действия сильного взаимодействия, и часть энергии связи дейтро-
на (2.24 Мэв) может быть израсходована на превращение протона в нейтрон
(1.29 МэВ) и рождение позитрона (0.511 МэВ). Поскольку период полураспада
нейтрона t1/2 = 614 с, то при v ∼ 108 см/с время этого тесного сближения чрез-
вычайно мало, так что третий множитель оказывается ∼ 10−23. Если учесть,
что v∝√E, эту формулу можно представить в стандартной форме

σ(E) =
S(E)

E
exp

(
−

√
EG

E

)
. (1.5)

Значение <σ v>, даваемое приближенной формулой (1.4), отличается от полу-
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Рис. VI.1.1:
Ганс Бете (Hans Albrecht Bethe, 1906 – 2005).

Сыграл ключевую роль в создании количественной теории источ-
ников энергии звезд. Выдающийся физик–теоретик, принимавший
в 1940-х годах участие в работах по созданию первой атомной бом-
бы. До последних лет своей долгой жизни активно работал в аст-
рофизике, в частности, по теории вспышек сверхновых. В 1967 г.
удостоен Нобелевской премии ,,for his contributions to the theory of
nuclear reactions, especially his discoveries concerning the energy pro-

duction in stars".

чающегося при точном расчете с учетом различных поправок всего примерно
втрое. Поэтому формулой (1.4) вполне можно пользоваться для получения гру-
бых оценок.

Значение S–фактора для протон–протонной реакции ∼ 4·10−22 кэВ · барн.
Поэтому эта реакция протекает столь медленно, что измерить в обозримом
будущем ее сечение экспериментально на земных установках едва ли удаст-
ся. Действительно, при бомбардировке мишени протонами с энергией 0.5 МэВ
(в системе центра масс, чему отвечает энергия в пучке в лабораторной си-
стеме в 1 МэВ) этому S–фактору соответствует сечение ∼ 8 · 10−48 см2. При
таком сечении протонный пучок интенсивностью в 1 A, чему соответствует
поток в ∼ 6.3 · 1018 протонов/с, падающий на плотную мишень, имеющую
1020 протонов/см2, будет вызывать одну pp–реакцию раз в 6 лет!
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Таблица VI.1.1:

Параметры реакций цепочки pp I
(Источник: E.G.Adelberger et al., Rev. Mod. Phys., 83, 195 – 245, 2011)

Реакция S(0), кэВ·барн S′(0), барн Q,МэВ
1H +1H→2D + e+ + ν (4.01± 0.004) · 10−22 (4.49± 0.05) · 10−24 1.442
1H +2D→3He + γ (2.14+0.17

−0.16) · 10−4 (5.56+0.18
−0.20) · 10−6 5.493

3He +3He→4He + 21H (5.21± 0.027) · 103 −4.9± 3.2 12.86

Поучительно также подсчитать сечение протон–протонной реакции при
энергии гамовского максимума E0. Для центра Солнца kT ∼ 1.5 кэВ, и
E0 = 4.3 · 1.5 = 6.45 кэВ (см. с. 282). Учитывая, что для двух протонов
EG = 493 кэВ, из формулы (1.5) после элементарного подсчета находим, что
сечение pp–реакции для протонов с энергией гамовского максимума составляет
∼ 10−26 барна, или 10−50 см2. Эта величина на 6÷ 7 порядков меньше сечения
взаимодействия нейтрино с веществом (10−43 ÷ 10−44 см2 при Eν ∼ 1 МэВ),
которое обычно рассматривается как рекордно малое. По-видимому, среди из-
меренных сечений ядерных реакций сечение протон–протонной реакции для
условий недр Солнца находится вне конкуренции. Действительно, поскольку
температура в центре Солнца известна вполне надежно (хотя бы из измере-
ний потока солнечных нейтрино высокой энергии, см. ниже п. 2.3, в частности,
с. 338), сечение протон–протонной реакции можно считать полученным экспе-
риментально на природной установке, именуемой Солнцем.

Широко распространено мнение, что крайне малая скорость протон–
протонной реакции обеспечивает Солнцу его долгую жизнь на ГП, ∼1010 лет,
а будь pp–реакция в несколько раз более быстрой, примерно во столько же
раз сократилось бы и время жизни Солнца на ГП. Это не так. Еще со времен
Эддингтона известно, что светимость звезды гораздо более чувствительна к
эффективности оттока энергии, чем к темпу ее выделения. Если бы S–фактор
протон–протонной реакции был бы в несколько раз больше, температура в об-
ласти энерговыделения подстроилась бы так, что общее энерговыделение, а
потому и время жизни на ГП, изменились бы мало.

Энергия, которая выделяется в результате протон–протонной реакции, со-
ставляет 1.442 МэВ (см. Табл. VI.1.1). Она включает энергию покоя (теплового)
электрона (0.511 МэВ), аннигилирующего с позитроном, рожденным при pp–
реакции. Часть выделившейся энергии безвозвратно теряется для звезды. Ее
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уносят нейтрино, для которых Солнце прозрачно. Средняя энергия, уносимая
нейтрино в расчете на одну pp–реакцию, составляет 0.265 МэВ. Энергетический
спектр нейтрино, рождающихся при pp–реакции, непрерывный, так как выде-
ляющаяся энергия может по-разному делиться между тремя возникающими
в результате реакции частицами. Максимальная энергия нейтрино составляет
0.420 МэВ и соответствует тому, что дейтрон и позитрон имеют нулевую ки-
нетическую энергию. Энергия в 0.420 МэВ равна разности энергии покоя двух
протонов и дейтрона + позитрон.

Подробное обсуждение протон–протонной реакции могло создать впечат-
ление, что в цепочке pp I она является энергетически наиболее важной. Как
следует из данных Табл. VI.1.1 (с. 309), это совсем не так. Основная часть
энергии синтеза He из протонов — будь то 3He и тем более 4He — выделяется
при второй и третьей реакциях этой цепочки. И тем не менее протон–протонная
реакция играет во всем процессе синтеза гелия определяющую роль — будучи
самой медленной, она задает темп протекания следующих за ней гораздо более
быстрых реакций.

Заканчивая на этом обсуждение протон–протонной реакции и связанных с
ней вопросов, приведем для справок следующее из общих формул (2.51) и (2.52)
Гл.V (с. 280) выражение для скорости этой реакции, записанное в числах:

Rpp(T ) = 3.27 · 10−37 N2
p T

−2/3
6 exp

(
− 33.81

T
1/3
6

)
см−3 с−1, (1.6)

или, поскольку Np = ρXH/mp,

Rpp(T ) = 1.17 · 1011 ρ2 X2
H T

−2/3
6 exp

(
− 33.81

T
1/3
6

)
см−3 с−1. (1.7)

В частности, в центре современного Солнца (ρ = 150 г/см3, XH = 0.35, T6 = 15)
скорость протон–протонной реакции равна ∼ 6 · 107 см−3 с−1.

В двух последних формулах мы приводим только главные члены, поправоч-
ные же множители, учитывающие эффекты, обсуждавшиеся выше в п. V.2.7,
опущены. Это соответствует нашей цели — дать понимание физики явлений, а
не сводку формул, используемых для реальных расчетов и учитывающих все
второстепенные детали.

Помимо протон–протонной реакции, дейтерий может синтезироваться из
двух протонов и электрона также путем так называемой pep–реакции:

p + e−+ p →2D + ν. (1.8)

Поскольку мы имеем здесь дело с тройным столкновением, вероятность чего
мала, да к тому же один из протонов, как и в pp–реакции, должен в момент
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столкновения успеть превратиться в нейтрон за счет β–процесса, скорость этой
реакции в центре Солнца оказывается очень малой, примерно в 400 раз мень-
шей скорости pp–реакции. Поэтому ее роль в энергетике пренебрежимо мала.
Интерес же к этой реакции был вызван проблемами, возникшими лет 40 назад
при регистрации солнечных нейтрино. Энергия нейтрино, испускаемого в pep–
реакции, равна 1.442 Мэв. Это число появляется так: 1.442 = 0.420 + 2 · 0.511
(поймите, в чем здесь дело). Нейтрино от pep–реакции, в отличие от нейтри-
но, рождающихся при pp–реакции, являются моноэнергетическими (поймите,
почему). Главное же для проблемы регистрации нейтрино от Солнца состо-
ит в том, что энергия pep–нейтрино заметно превышает максимальную энер-
гию нейтрино от pp–реакции (0.420 МэВ). Поэтому эти нейтрино регистриро-
вались первым солнечным нейтринным детектором, тогда как к нейтрино от
pp–реакции этот детектор был ,,слеп". Подробнее об этом пойдет речь в п. 2.3.

Вторая реакция цепочки pp I, 1H (d, γ)3He, является ,,обычной", она проте-
кает за счет электромагнитного (испускается γ–квант), а не слабого ядерного
взаимодействия, как pp–реакция. Поэтому S–фактор этой реакции на 18 по-
рядков (!) больше, чем для ,,аномальной" pp–реакции (см. Табл. VI.1.1). За-
метим, что с реакцией 1H (d, γ)3He конкурируют и другие реакции, например
2D+2D, 2D+4He, но из-за крайне низкого содержания дейтерия по сравнению
с 1Н (см. ниже) их роль пренебрежимо мала.

Дейтерий синтезируется медленно, а выгорает быстро. Отношение соответ-
ствующих времен составляет, как мы сейчас увидим, ∼ 18 порядков. Поэтому
содержание дейтерия можно в каждый данный момент считать равновесным,
определяемым условием Rpp = Rpd. Если в первом приближении пренебречь
небольшим различием для pp– и pd–реакций в значениях параметра τ , давае-
мого формулой (2.52) Гл.V (см. с. 280), то будем иметь

Rpp

Rpd
≈ H

D

Spp
0

2Spd
0

, (1.9)

откуда D/H ∼ 10−18. Здесь множитель 1/2 учитывает фактор (1 + δik)−1 для
протон–протонной реакции, а через H и D (наклонный шрифт!) для краткости
обозначены концентрации ядер водорода и дейтерия, соответственно. Более
аккуратный расчет с использованием (2.51) показывает, что при T6 = 15

D

H
=
Mpd

Mpp

(
τpp

τpd

)2

exp
(−τpp + τpd

) Spp
0

2Spd
0

∼ 3.5 · 10−18. (1.10)

Мы видим, что скорость выгорания дейтерия действительно на 18 порядков
превосходит скорость его синтеза за счет протон–протонной реакции и потому
в центре Солнца составляет секунды.



312 Гл. VI. Горение водорода. I

Зависимость отношения содержаний D/H от температуры сравнительно
слабая. Так, предлагаем читателю убедиться самостоятельно, что в окрестно-
сти T6 = 15 с ростом температуры содержание дейтерия убывает, именно,

(
D

H

)∣∣∣∣
T6

/(
D

H

)∣∣∣∣
15

≈
(

T6

15

)(τpp−τpd)/3

=
(

T6

15

)−0.46

. (1.11)

Аккуратное рассмотрение кинетики нуклеосинтеза дейтерия составляет пред-
мет Упр. 3◦ (c. 344).

Причина крайне низкого содержания дейтерия в недрах Солнца и всех вооб-
ще звезд очевидна. Кулоновский барьер для pd–реакции минимальный — такой
же, как и для pp–реакции, — а S–фактор обычный. Поэтому при нагревании
газа протозвезды в ходе ее кельвиновского сжатия первым выгорает дейтерий.
Это самая низкотемпературная из всех термоядерных реакций в звездах. Она
идет даже в бурых карликах (чем они и отличаются от массивных газовых
планет, где никакие термоядерные реакции невозможны по определению).

На Земле, в Солнечной системе и в межзвездной среде содержание дейте-
рия гораздо выше, чем в недрах звезд: D/H ∼ 10−4 ÷ 10−5. Считается, что
этот дейтерий является продуктом первичного нуклеосинтеза при Большом
Взрыве. Его содержание служит важным количественным параметром в тео-
рии космологического нуклеосинтеза. Мы же отметим тот любопытный, хотя
обычно и не осознаваемый факт, что самыми древними из всех имеющихся
у нас на Земле атомов являются атомы дейтерия. Водород и гелий тоже по
большей части имеет космологическое происхождение, но к ним примешана
заметная доля атомов, синтезированных в недрах звезд гораздо позже.

Последнее замечание. Низкая температура, при которой происходит выго-
рание дейтерия (и лития, см. с. 320) позволило использовать дейтерид лития
в качестве основной ,,взрывчатки" водородных бомб.

1.2. Нуклеосинтез
3He и энергетика

цепочки pp I

Обратимся теперь к важному вопросу о кине-
тике нуклеосинтеза 3He. Главный вывод, ко-
торый будет иметь существенное значение, в
частности, при более аккуратном рассмотре-

нии горения водорода в недрах Солнца одновременно во всех трех pp–цепочках,
состоит в том, что с ростом температуры равновесное содержание 3He долж-
но убывать. Это утверждение почти очевидно: температурный показатель
протон–протонной реакции νpp, определяющий скорость синтеза 3He (точнее,
ее зависимость от температуры), при T6 = 15 равен 3.9 (см. Таблицу на с. 283).
Для реакции же горения 3He на самом себе, завершающей цепочку pp I, как
легко рассчитать по формулам Гл.V (2.59) (с. 283) и (2.52) (c. 281), при T6 = 15
мы имеем ν33 = 15.9 (проверьте!). В итоге увеличение скорости синтеза 3He c



VI.1. Протон – протонные цепочки 313

ростом температуры с лихвой перекрывается еще бо́льшим увеличением ско-
рости его выгорания. Легко сообразить, что равновесное содержание 3He в
окрестности температуры T6 = 15 будет убывать с T как T ν33−νpp ≈ T 12.

После этого предварительного замечания переходим к аккуратному количе-
ственному рассмотрению. Изменение со временем содержания 3He описывается
следующим очевидным уравнением:

d
(
3He

)

dt
= Rpd − 2R33. (1.12)

Первый член справа дает число ядер 3He, синтезируемых в единицу времени
в единице объема за счет реакции 1H(d, γ) 3He, второй член описывает убыль
этих ядер в реакции 3He(3He, 2p)4He. Множитель 2 во втором члене учитывает
тот факт, что при этой реакции гибнут два ядра 3He.

Используя обозначения (2.53) Гл.V, последнюю формулу можно записать
в виде

d
(
3He

)

dt
= λpd H D − λ33

(
3He

)
2, (1.13)

где символы H, D и 3He (наклонный шрифт!) означают концентрации соответ-
ствующих ядер. Концентрацию дейтерия всегда можно считать равновесной.
Она определяется очевидным уравнением

λpp

2
H2 = λpd D H, (1.14)

откуда

D =
λpp

2λpd
H. (1.15)

Последняя формула позволяет нам переписать (1.13) в виде

d
(
3He

)

dt
=

λpp

2
H2 − λ33

(
3He

)2
. (1.16)

Это уравнение ясно показывает, что каково бы ни было начальное содер-
жание 3He, в конце концов будет достигнут равновесный режим, при котором
правая часть обратится в нуль. Действительно, если первоначально второй
член справа был больше первого, то вся правая часть отрицательна, и поэтому
концентрация 3He будет убывать до тех пор, пока правая часть не обратит-
ся в нуль. Если, наоборот, начальная концентрация 3He была низкой, так что
правая часть была положительной, то содержание 3He будет со временем воз-
растать, пока правая часть не станет равна нулю. Равновесная концентрация
3He определяется поэтому условием

λpp

2
H2 = λ33

(
3He

)2
e
, (1.17)
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откуда (
3He

H

)

e

=
(

λpp

2λ33

)1/2

. (1.18)

Здесь нижний индекс e означает равновесие.
В нашем рассмотрении мы неявно предполагали, что температура посто-

янна и не очень высока, так что оттока ядер 3He в цепочки pp II и pp III нет.
Предполагалось также, что содержание водорода не меняется со временем.

Теперь перед нами два вопроса: во-первых, чему равно равновесное отноше-
ние 3He/H и как оно меняется с температурой и, во-вторых, сколько времени
требуется для достижения равновесия. Последнее, очевидно, также зависит от
температуры.

Для ответа на первый вопрос перепишем последнее выражение, воспользо-
вавшись формулами (2.53) и (2.51) – (2.52) Гл.V, в виде

(
3He

H

)

e

=
1√
2

( M33

4Mpp

)1/6(
Spp

0

S33
0

)1/2

exp
(
− τpp − τ33

2

)
, (1.19)

или в числах (
3He

H

)

e

= 1.86 · 10−13+19.32 T
−1/3
6 . (1.20)

В частности, при T6 = 15 (центр Солнца) имеем отсюда 3He/H = 1.3 · 10−5. В
приводимой ниже таблице даны значения равновесного отношения 3He/H для
ряда характерных температур. Они получены в предположении, что действует
одна только цепочка pp I. При T6

>∼ 15 это не так, и за счет дополнительного вы-
горания 3He в цепочках pp II и pp III его содержание будет в действительности
ниже приводимых в таблице значений (см. следующий пункт).

T6 5 8 10 15
3He/H 3.7 · 10−2 8.5 · 10−4 1.7 · 10−4 1.3 · 10−5

T6 20 25 30 40
3He/H 2.5 · 10−6 7.8 · 10−7 3.2 · 10−7 8.5 · 10−8

Высокое равновесное содержание 3He при низких температурах заставляет
думать, что время достижения равновесия в этом случае должно быть боль-
шим. Впрочем, оно велико даже и для Солнца. Обозначив W = 3He/H, можем
переписать уравнение (1.16) в виде

dW

dt
= λ33 H

(
W 2

e −W 2
)
, (1.21)

где We — равновесное значение W . Решение последнего уравнения при началь-
ном условии W (0) = 0, как можно показать (см. Упр. 4◦, с. 344), имеет вид
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Рис. VI.1.2:

Время t0.9, по истечении которого содержание 3He достигает 90%
от равновесного. По оси ординат отложена величина (ρXH/50) t0.9

в годах.

W = We th
(
λ33 H We t

)
= We th

(
t

τ3(3)

)
, (1.22)

где τ3(3) есть время выгорания 3He на самом себе по достижении последним
равновесного содержания:

τ3(3) =
1

λ33 (3He)e
. (1.23)

Хотя формула (1.22) содержит в себе всю информацию о времени достиже-
ния равновесного содержания 3He, она не позволяет наглядно увидеть, за какое
время происходит приближение к равновесному режиму при разных темпера-
турах. Небольшое преобразование меняет положение радикально. Обозначим
через tf время, по истечении которого содержание 3He составляет долю f от
равновесного:
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tf = τ3(3) Arth f ≡ τ3(3)
1
2

ln
1 + f

1− f
. (1.24)

Пользуясь (1.23) и (1.18), можем переписать последнюю формулу в виде

tf =
1

H
(
2λpp λ33

)1/2
ln

1 + f

1− f
. (1.25)

На рис. VI.1.2 приведен график зависимости величины (ρXH/50) t0.9 от
температуры. При T6 < 8 время достижения равновесной концентрации 3He
превышает 109 лет (при ρ = 100 г/см3 и весовой доле водорода XH = 0.5).
При T6 = 5 оно превышает возраст Вселенной! И даже при температуре цен-
тра Солнца концентрация 3He достигает 90% от равновесной лишь спустя
∼ 106 лет.

Зависимость от f совсем проста и отделена от зависимости от температуры.
Так, элементарный подсчет показывает, что время t0.99 лишь в 1.8 раз больше
времени t0.9, значение же t0.999 лишь в 1.4 раза больше t0.99. Согласитесь, это
кажется неожиданным.

Вопрос о том, является ли содержание 3He равновесным, играет существен-
ную роль при расчете энерговыделения в цепочке pp I. Если содержание 3He
гораздо ниже равновесного, то последняя реакция цепочки pp I фактически
,,отключена", и выделение энергии в расчете на одну pp–реакцию существенно
(почти вдвое) ниже, чем по полной цепочке pp I (см. Табл. VI.1.1, с. 309).

Обозначим через ε
I
скорость выделения энергии (в расчете на 1 г) по пол-

ной цепочке pp I, когда содержание 3He достигло равновесия. Энергия, выделя-
ющаяся в расчете на синтез одной альфа–частицы и остающаяся в звезде, со-
ставляет тогда 26.20 МэВ (см. Табл. VI.1.1, с. 309). Здесь мы учли, во-первых,
что при каждой протон–протонной реакции 0.265 МэВ уносится нейтрино и
теряется для звезды и, во-вторых, что для выделения энергии в 12.86 МэВ
при реакции 3He(3He,2p)4He должно произойти две pp–реакции. Поскольку
1 МэВ= 1.602 · 10−6 эрг, находим, что

ρ ε
I

= 2.099 · 10−5 Rpp эрг/(см3 c), (1.26)

или, по подстановке явного выражения для Rpp из (1.6) и учета того, что Np =
ρXH/mp,

ρ εI = 2.41 · 106 ρ2 X2
H T

−2/3
6 exp

(
− 33.81 T

−1/3
6

)
эрг/(см3 c). (1.27)

Для центра современного Солнца мы имеем ρ = 150 г/см3, XH ≈ 0.35 и T6 = 15,
так что последняя формула дает ρ εI=1.2·103 эрг/(см3 c)=1.2 · 10−4 Вт/см3 и
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ε
I
=8 эрг/(г· с). Это всего в 4 раза превышает среднее по массе энерговыделе-

ние на Солнце
(
2 эрг/(г·с)). А вот в обычной 100-ваттной лампочке с колбой

диаметром ∼ 5 см выделяется ∼ 1.6 Вт/см3 — в ∼ 104 раз больше, чем термо-
ядерные реакции вырабатывают за секунду в 1 см3 в центре Солнца!

Отметим, что наряду с ,,точной" формулой (1.27) оказывается полезной
также следующая степенна́я аппроксимация зависимости скорости энерговы-
деления от температуры:

ρε
I
≈ 8.7 · 10−6 ρ2 X2

H T 4
6 эрг/(см3 c). (1.28)

Численный коэффициент в этой формуле взят таким, чтобы она давала пра-
вильный результат для центра Солнца

(
ρ ε

I
= 1.2 · 103 эрг/(см3c)

)
при при-

нимавшихся в предыдущем абзаце значениях ρ и XH , именно, ρ = 150 г/см3,
XH ≈ 0.35 и T6 = 15.

Напомним, что приведенные сейчас формулы дают темп выделения по пол-
ной цепочке pp I той энергии, которая остается в звезде (то есть за вычетом
энергии, уносимой нейтрино). Они применимы в предположении равновесно-
го содержания 3He, когда каждые две протон–протонные реакции приводят
к синтезу альфа–частицы. Однако на ранних этапах жизни звезд, энергети-
ка которых обеспечивается цепочкой pp I, положение не так просто. Следует
отдельно рассчитать темп энерговыделения за счет первых двух реакций, со-
ставляющий

ρ ε(3 1H→ 3He) = 1.069 · 10−5Rpp эрг/(см3 c). (1.29)

Здесь мы учли суммарное выделение энергии в реакциях 1H(p, e+ν)2D и
1H(d, γ)3He, составляющее 6.67 МэВ (за вычетом потери 0.265 МэВ на ней-
трино) и тот факт, что вторая реакция — выгорание дейтерия — происходит
практически мгновенно, за секунды, вслед за протон–протонной реакцией. К
этой энергии следует добавить выделение энергии в третьей реакции 3He(3He,
2p)4He, для нахождения скорости которой R33 необходимо знать концентрацию
ядер 3He. Она же до достижения равновесия изменяется со временем (даже
если температура остается постоянной). Поэтому самое большее, что можно
сделать для нахождения темпа энерговыделения в цепочке pp I до достижения
равновесной концентрации 3He — это воспользоваться формулой (1.22) и по
находимым по ней концентрациям 3He рассчитывать скорость реакции R33 и
далее — полную скорость энерговыделения по формуле

ρ ε
I

= 1.069 · 10−5Rpp + 2.060 · 10−5 R33 эрг/(см3 c). (1.30)

Впрочем, этот рецепт годится лишь при соблюдении довольно жестких усло-
вий: начальная концентрация 3He равна нулю и температура не меняется со
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временем. Только тогда можно пользоваться формулой (1.22). Если же это не
так, то концентрация 3He для каждого данного момента должна находиться
численным решением соответствующего уравнения кинетики.

По достижении равновесной концентрации 3He мы имеем, очевидно,

R33 =
Rpp

2
, (1.31)

и формула (1.30) переходит в (1.26), как это и должно быть.
Подчеркнем, что даже когда в центральной области звезды достигнуто рав-

новесие по 3He, это наверняка не так в периферических частях области энер-
говыделения. Поэтому общее заключение довольно сурово: без прослеживания
всей эволюции Солнца с детальным расчетом радиального хода содержания
3He (и, разумеется, также 4He) и его изменения со временем аккуратно рас-
считать интегральное выделение энергии по цепочке pp I (а также по pp II и
pp III) в современном Солнце невозможно. Понятно, что это относится не толь-
ко к Солнцу, но и к звездам вообще.

В заключение обсуждения цепочки ppI отметим, что последняя ее реак-
ция 3He+ 3He→4He+21H в звездах главной последовательности малых масс
практически не идет — температуры в них недостаточны для ее протекания.
В итоге в недрах красных карликов 3He только синтезируется, но не выгорает.
Его содержание со временем растет и может становиться весьма значительным.

1.3. Цепочки pp II и
pp III

Цепочки pp II и pp III поучительно выписать
рядом с цепочкой pp I (см. Табл. VI.1.3). Как
уже говорилось, согласно стандартной модели

современного Солнца, по цепочке pp I синтезируется ∼ 85% альфа–частиц, по
цепочке же pp II — ∼ 15%. Цепочка pp III в энергетике роли почти не играет.
По ней синтезируется всего ∼ 0.02% ядер 4He.

Первые две реакции во всех трех цепочках совпадают, различие начинается
с третьей строки — вместо реакции горения 3He на самом себе в pp II и pp III
3He взаимодействует с 4He.

Сопоставление цепочек pp II и pp III с pp I выявляет два принципиально
важных их различия. Во-первых, в цепочке pp I для синтеза альфа–частицы
требуются две протон–протонные реакции, в цепочках же pp II и pp III —одна.
Поэтому полное энерговыделение по pp II и pp III в расчете на одну протон–
протонную реакцию оказывается вдвое больше, чем по pp I. Звезде, правда,
достается не вся эта энергия. Нейтринные потери в pp I малы — составляют
всего около 2%. Для цепочек pp II и pp III они существенно больше — соответ-
ственно 4% и 26%. В Табл. VI.1.3 в последней строке приведена для каждой
из цепочек энергия Qeff, которая в итоге остается в звезде (то есть полная
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Таблица VI.1.2:
Протон–протонные цепочки

pp I pp II pp III

1H+1H→2D+e++ ν 1H+1H→2D+e++ ν 1H+1H→2D+e++ ν
1H+2D→3He+γ 1H+2D→3He+γ 1H+2D→3He+γ
3He+3He →4He+21H 3He+4He→7Be+γ 3He+4He→7Be+γ

7Be+e−→7Li+ν 7Be+1H→8B+γ
7Li+1H→4He+4He 8B→8Be∗+e++ ν

8Be∗→4He+4He

Qeff = 26.19 МэВ Qeff = 25.65 МэВ Qeff = 19.75 МэВ

энергия Q = 26.73 МэВ, выделяющаяся в звезде при синтезе альфа–частицы,
за вычетом энергии, уносимой нейтрино в каждой из цепочек).

Второе принципиальное отличие состоит в том, что темп протекания реак-
ций по pp II и pp III зависит от имеющейся концентрации 4He, который в обеих
этих цепочках реакций выступает в роли катализатора. Поэтому даже если бы
температура оставалась все время постоянной, по мере выгорания водорода
и вызванного этим увеличения содержания 4He роль цепочек pp II и pp III по
сравнению с pp I должна возрастать.

На первый взгляд отношение скоростей реакций 3He+3He→4Не+21H
и 3He+4He→7Be+γ, определяющее относительную роль цепочек pp I и
pp II+pp III, должно слабо зависеть от температуры, поскольку параметры τ
для этих двух реакций, которые мы обозначим соответственно τ33 и τ34, раз-
личаются мало, всего на 4.6%. В действительности положение совсем другое —
в звездах ГП с массами от ∼ 1M¯ или, что то же самое, при температуре в
центре T6

>∼15, с ростом T роль цепочки pp II быстро возрастает. Объясняется
это тем, что равновесная концентрация 3He убывает с ростом температуры (см.
с. 314). Скорости же реакций 3He+3He→4Не+21H и 3He+4He→7Be+γ зависят
от концентрации 3Не по-разному — первая квадратично, а вторая линейно.

В реакции 3He(4He,γ)7Be, общей и для pp II, и для pp III, вырабатывается
радиоактивный 7Be. В цепочке pp II за этим следует реакция 7Be+e−→7Li+ν.
Период полураспада 7Be в земных условиях составляет ∼ 53 дня. Происхо-
дит захват электрона с внутренней K-оболочки. Однако в недрах звезд 7Be
практически полностью ионизован, поэтому процесс идет иначе — захватыва-
ется свободный электрон. Поскольку кулоновского барьера для этой реакции
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нет, скорость ее должна зависеть от температуры слабо. Оказывается, что она
∝ T−1/2 (и, разумеется, ∝ Ne). Соответствующая формула будет приведена
позже

(
см. (1.52), с. 326

)
. Время жизни 7Be в центрах звезд ГП составляет

порядка года.
Нейтрино, возникающие при реакции 7Be+e−→7Li+ν, являются моноэнер-

гетическими. Точнее, в 90% случаев ядро 7Li образуется в основном состоя-
нии, и тогда испускаются нейтрино с энергией 0.86 МэВ. В 10% случаев ядро
7Li образуется в возбужденном состоянии, и на долю нейтрино остается всего
0.38 МэВ. Таким образом, реакция 7Be+e−→7Li+ν порождает две нейтринные
линии с энергиями 0.86 и 0.38 МэВ и отношением потоков в них 9:1. Этим за-
мечанием мы воспользуемся в разд. 1, посвященном обсуждению нейтринного
излучения Солнца и его регистрации.

Последняя реакция цепочки pp II имеет вид 7Li+1H→4He +4He. Посколь-
ку она идет по сильному взаимодействию, ее S-фактор большой, ∼ 1.2 ·
103 кэВ · барн. Поэтому литий выгорает очень быстро и его равновесная кон-
центрация оказывается чрезвычайно низкой, 7Li/H ∼ 2 · 10−9.

Следует рассмотреть подробнее, как происходит конкуренция между pp I и
pp II+pp III. Поскольку, как уже говорилось, зависимость скоростей реакций
3He(3He,2p)α и 3He(α, γ)7Be от температуры практически одинакова, измене-
ние с температурой относительной роли цепочек pp I и pp II+pp III почти це-
ликом определяется изменением концентрации 3He c T . Мы будем считать, что
концентрация 3He равновесная. Ранее, при обсуждении цепочки pp I, мы уже
говорили об изменении с температурой равновесного содержания 3He, считая
при этом, что цепочки pp II и pp III ,,отключены". Это предположение верно
лишь при низких температурах, скажем, T6

<∼ 12. При более высоких темпера-
турах равновесная концентрация 3He определяется очевидным уравнением

λpp

2
H2 = λ33

(
3He

)2
e

+ λ34

(
3He

)4

e
He, (1.32)

обобщающим (1.17) на случай любых (не обязательно низких) температур. Сле-
ва стоит скорость производства ядер 3He за счет первых двух реакций цепочки
pp I. Первый член справа — это темп выгорания 3He на самом себе за счет тре-
тьей реакции цепочки pp I, тогда как второй член учитывает отток в цепочки
pp II и pp III части ядер 3He, рождающихся в цепочке pp I. Очевидно, что це-
почка pp I доминирует над pp II и pp III, когда первый член в правой части
(1.32) значительно превосходит второй, то есть при

λ33

(
3He

)
e
À λ34

4He. (1.33)

Пренебрегая небольшим различием в значениях τ33 и τ34 и полагаяM33 ≈M34,
что вполне допустимо при порядковых оценках, вместо последней формулы
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получаем такую оценку:
(
3He

)
e
À S34

0

S33
0

4He. (1.34)

Поскольку S34
0 = 0.56 и S33

0 = 5.2 · 103 кэВ·барн, мы находим, что (1.34) дает

(
3He

H

)

e

À 10−4

(
4He

H

)
. (1.35)

При выполнении противоположного неравенства синтез альфа–частиц будет
происходить преимущественно по цепочкам pp II и pp III (рис. VI.1.3).

В химически однородных звездах населения I, когда при начале горения
водорода мы имеем 4He ≈ 0.1H, согласно данным таблицы со с. 314 неравен-
ство (1.35) выполняется при T6

<∼ 15. По мере выгорания водорода отношение
4He/H, а вместе с ним и вклад цепочки pp II растет. К моменту, когда выгорает
примерно половина водорода (как в центре современного Солнца), оказывает-
ся, что 4He ≈ 0.5 H (проверьте!). При этом неравенство (1.35) дает следующее
условие преобладания цепочки pp I: 3He/H À 5 · 10−5, что, согласно данным
таблицы на с. 314, имеет место при T6

<∼ 12. Вывод, который отсюда следует,
состоит в том, что в самом центре современного Солнца цепочка pp II должна
давать ощутимый вклад в скорость горения водорода. Этот вывод не противо-
речит тому, что вклад pp II в полную скорость синтеза альфа–частиц на Солнце
составляет всего∼ 15%. По мере удаления от центра температура и содержание
4He по отношению к водороду падают, и цепочка pp I в этих областях, дающих
заметный вклад в скорость синтеза гелия, оказывается доминирующей.

Рассмотрим теперь цепочку pp III. Конкуренция между pp II и pp III опре-
деляется отношением скоростей реакций 7Be+e−→7Li+ν и 7Be+1H→8B+γ.
Скорость первой из них, как говорилось выше, зависит от температуры слабо
(∝T−1/2). Вторая, напротив, из-за необходимости преодоления довольно вы-
сокого кулоновского барьера очень чувствительна к температуре. Параметр τ

для этой реакции, как легко подсчитать, равен 102.6 T
−1/3
6 , так что темпера-

турный показатель ν = 13.2 при T6 = 15, и с ростом температуры роль pp III
должна поэтому быстро возрастать. В итоге оказывается, что при T6

>∼ 25 це-
почка pp III берет верх над pp II и становится основным способом производства
альфа–частиц по pp–цепочкам.

Рис. VI.1.4 показывает, как меняется с температурой доля альфа–частиц,
производимых по цепочкам pp I, pp II и pp III. При низких температурах,
T6

<∼ 18, основную роль играет цепочка pp I, при T6 от ∼ 18 до ∼ 25 доминирует
pp II, наконец, при T6

>∼ 25 преобладает pp III. Данные относятся к содержанию
4He, при котором весовые доли водорода и гелия равны. Каким образом были
рассчитаны кривые, приведенные на этом рисунке, станет ясно немного позже.
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Рис. VI.1.3:

Отношение содержания (3He)e при действии всех трех pp–цепочек
к содержанию (3He)e при действии одной только цепочки pp I. Счи-
тается, что весовые доли водорода и гелия равны: X = Y .

(Источник: C. Iliadis, 2007, p. 392.)

Образующийся в реакции 7Be+1H→8B+γ бор неустойчив (период полурас-
пада t1/2 = 770 миллисекунд), так что он практически мгновенно распадается
по схеме 8B→8Be∗+e++ν. Рождающиеся при этом распаде нейтрино обладают
большой энергией, вплоть до 14.8 МэВ. Эти так называемые борные нейтрино
играли ключевую роль в знаменитом опыте Дэвиса по регистрации солнеч-
ных нейтрино (подробнее см. п. 2.3). Наконец, ядро 8Be∗ живет всего порядка
10−16 с и распадается на две альфа–частицы, одну из которых можно рас-
сматривать как возродившуюся частицу–катализатор цепочек pp II и pp III, а
вторая есть ,,желанный продукт" — гелий, синтезировавшийся из четырех про-
тонов.

1.4. Энергетика
цепочек pp II и

pp III

Обратимся теперь к важнейшему вопросу —
производству энергии по pp–цепочкам. Обо-
значим через ε энергию, которая вырабаты-
вается за единицу времени в расчете на еди-

ницу массы по всем трем pp–цепочкам (за вычетом энергии, уносимой нейтри-
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Рис. VI.1.4:

Зависимость от температуры доли альфа–частиц, производимых по
цепочкам pp I, pp II и pp III. Считается, что весовые доли водорода

и гелия равны (X = Y ).
(Источник: C. Iliadis, 2007, p. 395.)

но). Мы имеем, очевидно

ε = 26.73
d (4He)

dt

(
fI

F
I

+ fII
F

II
+ fIII

F
III

)
МэВ/(г·c) , (1.36)

или, если выражать энергию не в МэВ, а в эргах (1МэВ=1.602 · 10−6 эрг),
получим

ε = 4.283 · 10−5 d (4He)
dt

(
f

I
F

I
+ f

II
F

II
+ f

III
F

III

)
эрг/(г·c) . (1.37)

Здесь fi, i = I, II, III — доля энергии из выделяющейся в цепочке pp i,
которая остается в звезде после учета потерь на нейтрино (f

I
= 0.98, f

II
=

0.96, f
III

= 0.74), а Fi — доля альфа-частиц, синтезируемых по цепочке pp i,
так что FI + FII + FIII = 1. Получим сначала полную скорость синтеза альфа-
частиц d(4He)/dt, отложив на время нахождение величин Fi.

Когда содержание 3He достигло равновесного значения, выражение для
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d(4He)/dt, как можно показать (см. Упр. 5◦, с. 344), принимает вид

d(4He)
dt

=
λpp

4
H2 +

λ34

2
(
3He

)
e

4He, (1.38)

или
d(4He)

dt
=

λpp

4
H2

[
1 + 2

λ34

λpp

(
3He

H

)

e

(
4He

H

)]
. (1.39)

Величина, стоящая в квадратных скобках, представляет собой поправку к ско-
рости синтеза альфа–частиц за счет вклада цепочек pp II и pp III. Знак плюс
перед вторым членом в квадратных скобках может на первый взгляд пока-
заться странным, так как в обеих цепочках, и pp II и pp III, 4He выгорает

(
в

реакции 3He(α, γ) 7Be
)
. Однако эта убыль числа альфа–частиц компенсируется

тем, что на конечном этапе обеих цепочек синтезируется по два ядра 4He.
Равновесная концентрация 3He, входящая в последнее выражение, опреде-

ляется уравнением (1.32), которое для удобства читателя мы выпишем здесь
еще раз, слегка его видоизменив:

λpp

2
= λ33

(
3He

H

)2

e

+ λ34

(
3He

H

)

e

(
4He

H

)
. (1.40)

Две последние формулы являются для нас сейчас основными. Из (1.40) видно,
что содержание

(
3He/H

)
e
определяется содержанием 4He (точнее, величиной

4He/H) и, разумеется, температурой T . В принципе, дальше можно действо-
вать ,,методом грубой силы" — задав температуру и 4He/H, из квадратного
уравнения (1.40) находим

(
3He/H

)
e
и затем, задав дополнительно концентра-

цию протонов H, подставляем полученное значение в (1.39), что сразу дает
искомую полную скорость производства альфа–частиц d(4He)/dt. Разумеется,
предварительно следует рассчитать значения всех параметров λ для принятого
значения температуры.

Гораздо информативнее, однако, другой подход. Введем величину

α =
λ2

34

λ33λpp

(
4He

H

)2

, (1.41)

через которую, как мы сейчас убедимся, просто выражаются почти все инте-
ресующие нас величины. Действительно, как показывает простое вычисление,
формула (1.40) после перехода в ней к параметру α дает

(
3He

H

)

e

=
1
2

√
λpp

λ33

(√
α + 2−√α

)
. (1.42)
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С учетом этого выражение (1.39) для скорости синтеза альфа–частиц легко
приводится к виду

d(4He)
dt

=
λpp

4
H2 Φ(α), (1.43)

где поправка Φ(α) на скорость синтеза альфа–частиц по цепочкам pp II и pp III(
то есть квадратная скобка в (1.39)

)
оказывается равна (проверьте!)

Φ(α) = 1− α +
√

α (α + 2) . (1.44)

Формулы (1.43) и (1.44) дают искомый результат — значение d(4He)/dt.
Разумеется, предварительно надо рассчитать для выбранных 4He/H и T вели-
чину α, а также задать содержание протонов H. Если бы дело ограничивалось
только этим, то от введения параметра α большой пользы не было бы. Однако,
как мы вскоре убедимся, через α просто выражается и ряд других полезных
величин.

Переходим к обсуждению долей Fi, которые различные pp–цепочки вносят
в полную скорость синтеза альфа–частиц. Прежде всего, найдем отношение
F

I
/(F

II
+ F

III
). Легко сообразить, что

FI

FII + FIII

=
FI

1− FI

=
1
2

λ33

λ34

3He
4He

. (1.45)

Воспользовавшись (1.41) и (1.42), при равновесном содержании 3He эту вели-
чину легко выразить через параметр α:

FI

1− FI

=
1

4
√

α

(√
α + 2−√α

)
, (1.46)

откуда следует такое окончательное выражение для FI через α:

F
I

=
√

α + 2−√α√
α + 2 + 3

√
α

. (1.47)

Может оказаться полезной и формула, обратная по отношению к (1.47), то
есть дающая значение α как функцию FI :

α =
(1− FI )

2

4FI (1 + FI )
. (1.48)

В частности, полагая в ней F
I

= 1/2, что соответствует ситуации, когда це-
почки pp I и pp II+pp III дают равный вклад в скорость синтеза 4He, находим
α = 1/(12). При этом значении α фактор Φ(α), показывающий, во сколько
раз синтез α–частиц по всем трем pp–цепочкам происходит быстрее, чем по
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одной только цепочке pp I, согласно (1.44) оказывается равен 4/3. Объяснить
физический смысл этого кажущегося странным результата мы предоставляем
читателю. !!!

Теперь рассмотрим подробнее, как конкурируют между собой цепочки pp II
и pp III. Очевидно, что

FII = (1− FI )
R7e−

R7e− + R17
= (1− F

I
)

λ7e−Ne

λ7e−Ne + λ17H
, (1.49)

F
III

= (1− F
I
)

R17

R7e− + R17
= (1− F

I
)

λ17H

λ7e−Ne + λ17H
, (1.50)

где через R7e− и λ7e− обозначены скорость реакции 7Be+e−→7Li+ν и значение
λ ≡<σv> для этой реакции, Ne — электронная концентрация. Далее, R17 — это
скорость реакции 1H+7Be→8B+γ и λ17 — величина <σv> для этой реакции.
Поэтому согласно (1.49) и (1.50)

F
III

F
II

=
λ17H

λ7e−Ne
. (1.51)

Выражение для λ7e− имеет вид

λ7e−Ne = 4.62 · 10−9 ρ (1 + X)T
−1/2
6 c−1, (1.52)

где X — весовая доля водорода. Множитель ρ (1 + X) в этой формуле имеет
следующее происхождение. Мы имеем такое очевидное выражение для элек-
тронной концентрации: Ne = ρ/(muµe), где µe — электронный молекулярный
вес, для полностью ионизованной плазмы равный, как известно, µe ≈ 2/(1+X)
(см. с. 142). Поэтому Ne ∝ ρ (1 + X). Численный коэффициент в формуле
(1.52) взят согласно расчетам J.H.Bahcall and Ch.P.Moeller, Ap.J., 155, 511
– 514, 1969. Формула (1.52) учитывает захваты лишь свободных электронов.
Однако в недрах Солнца 7Be ионизован не полностью. Небольшая доля ионов
7Be сохраняет электроны на K–оболочке. Поэтому нужно вводить поправку на
влияние K-захвата. Эта поправка к значению (1.52) составляет около 20%. При
порядковых оценках ее можно не учитывать. Мы так и будем поступать.

Величина λ17 дается обычной формулой (2.51), которая в данном случае
принимает вид

(
S0 = 2.08 · 10−2 кэВ·барн)

λ17 = 4.47 · 10−21 T
−2/3
6 exp

(
− 102.65

T
1/3
6

)
см3 c−1. (1.53)

В частности, при FII = FIII имеем λ17H = λ7e−Ne.
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Рис. VI.1.5:

Зависимость ε/εI от температуры для случая равных весовых

долей водорода и гелия (X = Y ).
(Источник: C. Iliadis, 2007, p. 395.)

Теперь все величины, входящие в формулу (1.37) для полной скорости энер-
говыделения по всем трем pp–цепочкам, нам известны. Эту формулу целесо-
образно переписать в виде

ε =
εI

fI

Φ(α)
(
f

I
F

I
+ f

II
F

II
+ f

III
F

III

)
. (1.54)

На рис. VI.1.5 показана зависимость ε/εI от температуры для случая рав-
ных весовых долей водорода и гелия (X = Y ). При низких температурах фак-
тически работает только pp I, и ε/ε

I
=1. В противоположном пределе высоких

температур главный вклад в выделение энергии дает цепочка pp III (F
III

= 1).
Если бы потери на нейтрино отсутствовали, то отношение ε/εI должно бы-
ло бы равняться 2, так как в этом случае на синтез альфа–частицы требуется
одна протон–протонная реакция, тогда как для цепочки pp I — две. Однако
доля нейтринных потерь в pp III существенно выше, чем в pp I (соответствен-
но 26% и 2%). В итоге при высоких температурах отношение ε/ε

I
выходит

на асимптотическое значение 2 · 0.74/0.98 = 1.51. При температурах T6 ∼ 20
главенствует цепочка pp II (см. рис. VI.1.4, с. 323), для которой нейтринные
потери заметно меньше, чем для pp III (4% вместо 26%), тогда как на синтез
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альфа–частицы, как и в pp III, требуется одна протон–протонная реакция. Это
объясняет максимум на кривой ε/ε

I
вблизи T6 ∼ 20. С уменьшением весовой

доли гелия высота горба на кривой уменьшается, а максимум слегка смещается
в сторону более высоких температур (поймите, почему так происходит).

Заканчивая на этом обсуждение физики горения водорода по протон–
протонным цепочкам, сделаем одно почти очевидное замечание, которое, по-
видимому именно в силу его очевидности, отсутствует во всех известных автору
руководствах по физике звезд и звездному нуклеосинтезу. В звездах населе-
ния I при температурах T6

>∼ 19 горение водорода происходит, как мы увидим
в дальнейшем, в основном за счет CNO–цикла, а не pp–цепочек. Поэтому при-
веденное выше обсуждение относительной роли цепочек pp I, pp II и pp III при
более высоких температурах может показаться излишним: среди звезд населе-
ния I нет таких, у которых горение водорода происходило бы главным образом
по цепочке pp II (и тем более по pp III). Однако у звезд населения II типа из-за
сильно пониженного содержания тяжелых элементов переход от pp–цепочек
к CNO–циклу как главному способу горения водорода происходит при более
высоких температурах, чем у звезд населения I, и для них приведенное об-
суждение является актуальным. Это тем более относится к гипотетическим
звездам первого поколения (так называемое население III), в которых тяже-
лых элементов не было вовсе, и протон–протонные цепочки при всех темпера-
турах служили единственным средством выработки энергии за счет горения
водорода с превращением его в гелий.





2. СОЛНЕЧНЫЕ НЕЙТРИНО

2.1. Общие сведения
о нейтрино

Нейтрино — одна из замечательных по своим
свойствам элементарных частиц. Тем, кто да-
лек от ядерной физики и физики элементарных

частиц — а среди астрофизиков они составляют большинство — известно лишь,
что нейтрино обладают феноменальной проникающей способностью. Действи-
тельно, сечение σν взаимодействия с веществом нейтрино ν с энергией Eν (в
МэВ) составляет примерно

σν ∼ 10−44

(
Eν

me c2

)2

см2, (2.1)

где me c2 = 0.511 МэВ — энергия покоя электрона. Так, при Eν = 1 МэВ мы
имеем σν ∼ 10−43 см2. Это на 18 порядков меньше сечения обычного томсо-
новского рассеяния фотона на электроне (6.55 · 10−25 см2).

Чтобы наглядно представить себе, сколь мало́ сечение (2.1), поучительно
подсчитать длину свободного пробега нейтрино lν в средах разной плотности
ρ. При концентрации частиц N мы имеем, очевидно,

lν =
1

N σν
=

µmp

ρ σν
, (2.2)

где µ —молекулярный вес вещества, в котором распространяются нейтрино.
Если это вещество — обычная вода, то µ = 18 и ρ = 1 г/см3. При Eν = 0.5 Мэв
мы имеем lν ≈ 3 · 1020 см ∼ 100 пк. При плотности ρ ∼ 106 г/см3 (как в белых
карликах) все еще lν ≈ 3000R¯. Лишь при плотностях ρ ∼ 1014 г/см3, кото-
рые развиваются при коллапсе ядер массивных звезд, мы имеем lν ∼ 20 км.
Только при этих экстремальных плотностях, характерных также для нейтрон-
ных звезд, взаимодействие нейтрино с веществом оказывается существенным.
Ясно, что Солнце совершенно прозрачно как для низкоэнергичных нейтри-
но с Eν

<∼ 0.5 МэВ, рождающихся при протон–протонных реакциях, так и для
солнечных нейтрино самых высоких энергий (Eν ∼ 15 МэВ). Нас будут инте-
ресовать нейтрино только из этого интервала энергий.

Представление о существовании нейтрино было введено В.Паули в 1930 г.,
чтобы объяснить непрерывность энергетического спектра электронов, возника-
ющих при β–распадах ядер. Эти гипотетические поначалу частицы, по Паули,
испускаются с разными энергиями, что позволяло обеспечить выполнение зако-
на сохранения энергии при β–распаде. Нейтрино обладают нулевым зарядом,
полуцелым спином и, предположительно, нулевой или очень малой массой.
Они относятся к классу частиц, называемых лептонами. Нейтрино участвуют
только в слабом ядерном (а также гравитационном) взаимодействии.

330
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В настоящее время известно три пары заряженных лептонов:
а) позитрон и электрон e± с энергией покоя 0.511 МэВ. В реакциях с рож-

дением позитрона испускается электронное нейтрино νe, рождение электрона
сопровождается испусканием электронного антинейтрино ν̃e;

б) положительно и отрицательно заряженные мюоны µ± c массой покоя
106 Мэв. При реакциях, сопровождающихся их рождением, испускаются соот-
ветственно мюонное нейтрино νµ и мюонное антинейтрино ν̃µ;

в) положительно и отрицательно заряженные тау–частицы τ±, или таоны,
с массой покоя 1777 МэВ. Их появление сопровождается рождением соответ-
ственно тау-нейтрино ντ и тау-антинейтрино ν̃τ .

Если, как это долгое время предполагалось, массы нейтрино строго рав-
ны нулю, то превращение нейтрино одних видов в другие невозможно. Однако
недавно надежно установлено, в частности в результате измерений потока сол-
нечных нейтрино, что масса нейтрино отлична от нуля. Тогда превращения
одних видов нейтрино в другие, скажем электронных νe в мюонные νµ, оказы-
ваются возможны. Это явление получило название нейтринных осцилляций.
Существенно, что мюонные и тау-нейтрино имеют в несколько раз меньшие
сечения взаимодействия с веществом, чем электронные нейтрино. В принципе
возможны также переходы обычных нейтрино в так называемые стерильные,
не взаимодействующие с веществом.

В ядерных реакциях в недрах Солнца рождаются только электронные ней-
трино. Поэтому для упрощения записи индекс e у символа солнечных нейтрино
мы опускали, и так же будем поступать и далее.

По существу взаимодействие нейтрино с веществом, которое нас сейчас ин-
тересует, состоит в том, что они вызывают в ядрах реакцию n + ν → p + e−,
то есть превращают один из нейтронов в протон. Из-за крайне малого сечения
этой реакции для получения хотя бы одного акта такого взаимодействия за ра-
зумное время необходим детектор, содержащий очень большое число атомов.
Действительно, пусть поток нейтрино с энергией Eν равен φν(Eν) и число тех
атомов в детекторе, взаимодействие с которыми мы хотим зарегистрировать,
равно N . Тогда число актов взаимодействия за единицу времени будет равно,
очевидно,

ξ = N
∫ ∞

0

φν(Eν)σν(Eν) dEν . (2.3)

Предположим, что мы хотим получить одно событие, скажем, раз в три дня,
или ∼ 4 · 10−6 событий в секунду — согласитесь, весьма скромное желание.
Пусть наш детектор чувствителен к нейтрино с энергией Eν ∼ 10 МэВ, а их
поток составляет ∼ 107 ν/(см2· c). Соответствующее сечение взаимодействия
с нейтрино σν согласно (2.1) равно ∼ 4 · 10−42 см2. Тогда из (2.3) немедленно
находим, что число атомов–мишеней в детекторе должно быть огромным —
порядка 1029. На самом деле это число надо увеличить еще в 6 раз, так как в
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Рис. VI.2.1:

Нейтринный спектр Солнца.
Потоки в континуумах даны в см−2с−1МэВ−1,

потоки в линиях — в см−2с−1.

веществе C2Cl4, которое было использовано в эксперименте, лишь один атом
из 6 — это 37Cl, взаимодействие нейтрино с которым только и могло быть за-
регистрировано. (Здесь дело в том, что в природном Cl содержание изотопа
37Cl составляет ∼25%, так что в молекуле C2Cl4 в среднем имеется лишь один
атом 37Cl). Читатель уже, вероятно, догадался, что приводимые числа грубо
соответствуют параметрам первого эксперимента по детектированию солнеч-
ных нейтрино — знаменитого опыта Дэвиса. Вскоре мы подробно его опишем,
сейчас же наша цель состояла в иллюстрации того факта, что нейтринные
детекторы с неизбежностью должны иметь огромные размеры. Как подтвер-
ждение этого упомянем о том, что опыт, в котором впервые были зарегистри-
рованы нейтрино, точнее, антинейтрино от ядерного реактора — знаменитый
опыт Ф.Райнеса и К.Коуэна (1953 – 1956 гг.) — содержал бак объемом око-
ло 1 м3 — и это несмотря на колоссальную величину потока около реактора(∼ 1013 ν̃/(см2 · c)).

2.2. Нейтринный
спектр Солнца

Получить оценку полного потока солнечных
нейтрино на Земле не составляет труда. Счи-
таем для простоты, что все альфа–частицы вы-
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рабатываются по цепочке pp I. При синтезе одной альфа–частицы выделяется
энергия 26.7 МэВ, или ∼ 4 · 10−5 эрг, и испускаются два нейтрино. Свети-
мость Солнца равна 4 · 1033 эрг/с, так что ежесекундно в нем вырабатывается
1038 альфа–частиц и, значит, 2·1038 нейтрино. Их поток на расстоянии 1 астро-
номической единицы (1.5 ·1013 см) составляет поэтому ∼ 2 ·1038/(4π ·2 ·1026) ≈
1011 ν/(см2· с). Мы буквально купаемся в солнечных нейтрино. (Правда, фо-
тонный поток от Солнца еще на 7 порядков больше.) Однако знание полного
потока солнечных нейтрино не сильно продвигает нас вперед, так как все име-
ющиеся детекторы нейтрино селективны и необходимо знать, как эти нейтрино
распределены по энергиям.

На рис. VI.2.1 показан нейтринный спектр Солнца. В чем-то он подобен
спектрам газовых туманностей, что объясняется прозрачностью обоих объек-
тов — Солнца для нейтрино, а газовых туманностей — для оптического из-
лучения. Этот спектр рассчитан по стандартной модели современного Солнца
(версия 2004 г.).

Приведем для справок основные количественные данные о вкладе нейтрино
от различных реакций, идущих в центральных частях Солнца, в поток солнеч-
ных нейтрино на Земле (точнее, на расстоянии одной астрономической еди-
ницы от Солнца). Наибольший поток нейтрино, 6 ·1010 ν/(см2· с), порождают
протон–протонные реакции. Энергетический спектр этих нейтрино непрерыв-
ный. Их максимальная энергия равна 0.420 МэВ. Это число, как мы вско-
ре убедимся, играет существенную роль в опытах по детектированию сол-
нечных нейтрино. Для энергетики Солнца важно другое число, связанное с
протон–протонными нейтрино, — их средняя энергия. Она равна 0.265 МэВ.
На рис. VI.2.1 спектр нейтрино от протон–протонных реакций описывается
сплошной кривой в левой части рисунка (она отмечена символом pp).

Поток от pep реакции p+e−+p→d+ν, дающей нейтринную линию 1.44 МэВ,
как уже упоминалось (с. 310), в 400 раз меньше, чем от протон–протонной реак-
ции: 1.5 · 108 ν/(см2· с). Энергия этой линии превосходит порог чувствительно-
сти хлор–аргонового метода детектирования солнечных нейтрино (0.814 МэВ),
и она им в принципе регистрируется, хотя и дает незначительный вклад в об-
щий итог, так как сечение реакции (2.4) (с. 334) при этой энергии мало.

Суммарный поток от двух нейтринных линий с энергиями 0.363 МэВ и
0.861 МэВ, возникающих при реакции 7Be+e−→7Li+ν цепочки pp II, состав-
ляет 5·109 ν/(см2· с). Поток в первой из этих линий примерно в 9 раз меньше,
чем во второй.

Наконец, так называемые ,,борные" нейтрино от реакции 8B → 8Be∗+e++ν
цепочки pp III (сплошная линия в нижней правой части рис. VI.2.1, отмечен-
ная символом 8B) создают поток 6 · 106 ν/(см2· с), в 104 раз меньший пото-
ка протон–протонных нейтрино. Однако именно эти нейтрино давали главный
вклад в измерения в первом опыте по регистрации солнечных нейтрино — опы-
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те Дэвиса, к описанию которого мы сейчас и перейдем.
Однако перед этим упомянем о том, что самая нижняя сплошная кривая

на рис. VI.2.1, отмеченная символом hep, показывает вклад в нейтринный по-
ток от побочной реакции протон–протонных цепочек 3He+1H→4He+e++ ν. В
энергетике она играет пренебрежимо малую роль. Нейтринный поток от нее
также лежит ниже порога обнаружимости имеющимися методами.

2.3. Опыт Дэвиса Исторически первым методом регистрации
солнечных нейтрино был так называемый хлор

– аргоновый метод. Его идея была высказана в 1946 г. Б.Понтекорво, в то вре-
мя итальянским (а впоследствии советским) физиком. Любопытно, что тогда
ни в одном эксперименте нейтрино еще не были зарегистрированы (это случи-
лось, как мы уже говорили, лишь в 1950-х годах). Предлагалась смелая идея:
в обозримом будущем попытаться зарегистрировать нейтрино, рождающиеся
в ядерных реакциях в недрах Солнца и тем самым напрямую протестировать
условия в его центре. Потребовались десятилетия поистине героических уси-
лий — и это сбылось, дав физике гораздо больше, чем первоначально предпо-
лагалось.

Суть метода очень проста. Под действием потока солнечных нейтрино ато-
мы довольно широко распространенного в природе (∼25%) изотопа хлора 37Cl
могут превращаться в атомы радиоактивного 37Ar:

37Cl + ν →37Ar + e−. (2.4)

Период его полураспада ∼ 35 суток. Захватывая электрон с K–оболочки, месяц
– два спустя после своего образования 37Ar снова превращается в 37Cl :

37Ar + e−→37Cl + ν. (2.5)

Пусть первоначально в емкости c веществом, содержащим в своем составе
37Cl, атомов 37Ar не было вовсе (как этого добиться, об этом речь пойдет чуть
позже). Под действием потока солнечных нейтрино в емкости будут происхо-
дить реакции (2.4) и количество атомов 37Ar будет постепенно увеличиваться.
Одновременно с этим будет увеличиваться и количество распадов (2.5). По про-
шествии полутора – двух месяцев установится равновесное содержание 37Ar —
скорость его синтеза станет равна скорости распада. Если на этом этапе суметь
удалить из емкости все имеющиеся там атомы 37Ar и поместить их в неболь-
шой сосуд (,,колбу"), то в дальнейшем можно будет зафиксировать каждый
акт распада (2.5) в этой ,,колбе" и тем самым определить равновесную концен-
трацию 37Ar. Она же, очевидно, пропорциональна потоку солнечных нейтрино,
вызывающих рождение 37Ar в реакции (2.4).
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Реализация этой идеи оказалась сопряжена со множеством трудностей. В
качестве вещества, содержащего 37Cl, был выбран перхлорэтилен C2Cl4 — де-
шевая жидкость, используемая для химчистки одежды. Был изготовлен бак
емкостью 100 000 американских галлонов (380 000 литров). Вес жидкости со-
ставлял 610 т. Бак был помещен в шахту (в штате Южная Дакота) на глубину
1500 м. Это было необходимо для того, чтобы защититься от действия косми-
ческих лучей. Они рождают протоны, что также вело бы к образованию 37Ar :

p +37Cl→37Ar + n. (2.6)

Чтобы извлечь образовавшийся 37Ar, примерно раз в полтора месяца (в
конце очередной ,,экспозиции") бак продувают гелием, пузырьки которого за-
хватывают с собой аргон (напомним: и гелий, и аргон — инертные газы, и ни в
какие реакции они не вступают). Затем с помощью сложной системы конден-
сационных ловушек и фильтров аргон отделяют от гелия (и других примесей).
Контрольные эксперименты, описывать которые мы не будем, показали, что в
результате такой процедуры удается надежно выделить примерно 90% атомов
аргона. Их помещают в миниатюрный пропорциональный счетчик типа счет-
чика Гейгера с камерой меньше 1 см3 (та самая ,,колба", о которой говорилось
выше) и на самолете его перевозят в осуществляющую эксперимент Брукхей-
венскую лабораторию на Лонг Айленде (около Нью-Йорка). Здесь регистриру-
ют реакции (2.5) — каждый акт индивидуально. При K–захвате электрона яд-
ром 37Ar в 93% случаев на освободившееся место переходит один из электронов
с верхнего уровня, а избыток энергии вызывает автоионизацию атома (эффект
Оже́). Возникший таким путем свободный Оже́–электрон имеет вполне опре-
деленную энергию в 2.8 кэВ, что и позволяет идентифицировать факт распада
именно 37Ar.

В баке с C2Cl4, как легко подсчитать, всего имеется ∼ 2 ·1030 атомов 37Cl.
За время экспозиции в нем образуется ∼ 14 ÷ 17 атомов 37Ar (в среднем по
0.43 атома в сутки!). Поэтому в конце экспозиции примесь аргона составля-
ет ∼10−29 — и эту ничтожнейшую примесь удается не только обнаружить и
выделить, но и точно измерить ее содержание. Заключение, которое мы отсю-
да делаем, звучит парадоксально: разумная жизнь широко распространена во
Вселенной! Действительно, в Галактике имеется ∼1011 звезд, а общее число
галактик во Вселенной никак не больше 1012. Поэтому во всей Вселенной име-
ется ∼1023 звезд. Взяв наудачу какую-нибудь звезду, мы с вероятностью 10−23

обнаружим около нее разумную жизнь, так как эта звезда случайно окажется
нашим Солнцем. Итак, известная нам распространенность разумной жизни во
Вселенной примерно в миллион раз выше надежно измеренной относительной
распространенности атомов 37Ar в описанной выше подземной установке!

Порог реакции (2.4) равен 0.814 МэВ, и это важнейшее ограничение хлор–
аргонового метода. Нейтрино, рождающиеся при протон–протонной реакции,
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Рис. VI.2.2:

Результаты измерений потока солнечных нейтрино различными методами.

как уже не раз говорилось, имеют энергии Eν≤ 0.420 МэВ. Их этим
методом зарегистрировать невозможно. Так как сечение взаимодействия с ней-
трино возрастает ∝E2

ν , то главный вклад в скорость образования 37Ar дают
,,борные" нейтрино, рождающиеся в реакции 8B →8Be∗ + e++ ν. Энергетиче-
ский спектр этих нейтрино непрерывный, с максимальной энергией 14.1 МэВ.
Но рождающая их реакция относится к цепочке pp III, по которой на Солн-
це вырабатывается всего ∼0.02% альфа–частиц. Поэтому поток этих высоко-
энергичных ,,борных" нейтрино составляет всего 10−4 от полного нейтринного
потока, или ∼107 ν/(см2· c).

Скорость образования 37Ar в реакции (2.4) принято выражать в специаль-
ных единицах, выбранных так, чтобы иметь дело с числами порядка единицы.
Это так называемая Солнечная Нейтринная Единица (СНЕ), или по-английски
SNU (Solar Neutrino Unit). Она равна 10−36 захватов нейтрино в секунду одним
атомом (точнее, ядром) мишени (для хлор–аргонового эксперимента это 37Cl).
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На рис. VI.2.2 приведены результаты измерений потоков солнечных ней-
трино различными методами. В дальнейшем, описывая тот или иной метод
измерений, мы всякий раз будем обращаться к этой очень информативной ил-
люстрации.

К хлор–аргоновому методу, о котором сейчас идет речь, относится ле-
вая ,,колонка". Высокий столбик дает результаты теоретических расчетов
по модели Солнца. На нем ясно виден вклад разных составляющих потока.
Бо́льшая часть — около 70% всех реакций (2.4) — вызывается захватами бор-
ных нейтрино. Далее по значимости идут бериллиевые нейтрино (поток в ли-
нии 0.861 МэВ). Совсем небольшой вклад дают нейтрино от pep реакции (уз-
кая полоска в верхней части столбика). Ранее мы не упоминали о том, что
нейтрино непрерывного спектра возникают на Солнце также при реакциях
CN–цикла, причем их энергии таковы, что они в принципе обнаружимы хлор–
аргоновым детектором. Максимальные энергии этих нейтрино составляют 1.20
и 1.74 МэВ для реакций 13N(e+ν)13C и 15O(e+ν)15N соответственно. Однако на
Солнце вклад CN–цикла в скорость образования альфа–частиц незначителен,
да к тому же бо́льшая часть этих нейтрино имеет энергии Eν < 0.814 МэВ
и не регистрируется хлор–аргоновым методом. Поэтому вклад их в скорость
образования аргона невелик (черный квадратик на самом верху).

Описанный эксперимент по измерению потока солнечных нейтрино высо-
ких энергий (последнее уточнение, как мы вскоре увидим, очень важно) был
задуман и осуществлен Р.Дэвисом (Raymond Davis). Несколько лет ушло на
подготовку эксперимента и отработку методики. Полноценные измерения ве-
лись чуть более 30 лет, с 1967 по 1998 год. За это время было выполнено108
экспозиций с последующей экстракцией аргона.

Результаты измерений с самого начала оказались обескураживающими. По
лучшим из моделей современного Солнца, которые непрерывно уточнялись и
улучшались, в частности за счет учета ряда второстепенных эффектов, кото-
рыми ранее пренебрегали, получалось, что теоретический поток, измеренный
в единицах SNU, должен составлять

ξ = 8.1± 1.2 SNU, (2.7)

тогда как измерения за все время наблюдений дали

ξ = 2.56± 0.23 SNU. (2.8)

Хотя здесь приведен конечный результат, усредненный за весь период изме-
рений, уже первые результаты указывали на то, что наблюдаемый поток при-
мерно втрое меньше теоретического. Возникла знаменитая проблема солнечных
нейтрино (теперь уже разрешенная).

Оценивая сложившуюся ситуацию, следует прежде всего помнить, что речь
шла не о дефиците полного потока, а о нехватке потока лишь высокоэнергичных
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борных нейтрино, составляющем в полном потоке ничтожную часть, ∼ 10−4.
Наука тогда была в моде, и журналисты буквально трубили о том, что изме-
ренный поток нейтрино от Солнца оказался втрое ниже того, что ожидалось,
по неведению (или намеренно) опуская вставить слово ,,высокоэнергичных".
Дело доходило до публичных сомнений в правильности основных представле-
ний о термоядерных источниках энергии звезд. В ведущем советском обще-
ственно - литературном журнале того времени ,,Новый Мир" один академик–
астрофизик прямо писал такое... Впрочем, этот сильно раздутый научный
скандал имел и свою положительную сторону, значительно облегчив получение
финансирования для продолжения измерений.

На самом деле положение было хотя и серьезным, но отнюдь не трагиче-
ским. Во-первых, некоторые авторитетные эксперты утверждали, что в столь
тонком эксперименте никто не гарантирован от возможности какой-то ошибки.
Они считали, что определенные выводы можно будет сделать, только когда по-
явятся измерения, выполненные независимо другим методом. Эти осторожные
люди оказались правы, как мы вскоре увидим. Другие считали, что с экспе-
риментом у Дэвиса все в порядке, и надо искать астрофизическое объяснение
полученного расхождения. Было предложено множество вариантов, связанных
с модификацией или даже отказом от стандартной модели Солнца, вплоть до
такой экзотики как предположение о наличии в центре Солнца маломассивной
черной дыры...

Консервативное астрофизическое объяснение состояло в том, что темпера-
тура в центре Солнца примерно на (5 ÷ 6)% ниже, чем дает стандартная мо-
дель. Дело в том, что скорость реакции 7Be(p, γ)8B чрезвычайно чувствительна
к температуре (растет примерно как T20; проверьте!). Поэтому поток борных
нейтрино — это фактически очень чувствительный термометр для измерения
температуры в самом центре Солнца. Уменьшение центральной температуры
Солнца можно вполне согласовать с сохранением полной его светимости — до-
статочно считать, что температура падает с удалением от центра несколько
медленнее, чем по стандартной модели. Однако специалисты по построению
моделей строения Солнца, и первый среди них, Дж.Баколл (John Bahcall), по-
святивший этому не один десяток лет, такое объяснение отвергали, настаивая
на высокой точности своей стандартной модели.

Наконец, существовало третье объяснение, требовавшее отказа от нулевой
массы покоя нейтрино. По этой версии на своем пути из центра Солнца до
Земли за счет так называемых нейтринных осцилляций часть солнечных элек-
тронных нейтрино превращалась в мюонные. Это было весьма радикальным
пересмотром свойств нейтрино, и чтобы его принять, нужны были веские до-
полнительные подтверждения такой возможности. Они вскоре появились —
сначала из ряда измерений потока солнечных нейтрино другими методами, а
потом и из лабораторных измерений.
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2.4. Галлий–
германиевые
эксперименты

В 1965 г. московский физик В.А.Кузьмин пред-
ложил новый метод измерения потока солнеч-
ных нейтрино. Это также радиохимический ме-
тод, в основных чертах тот же, что и хлор–

аргоновый, но обладающий тем громадным преимуществом, что он позволяет
,,увидеть" нейтрино от протон–протонной реакции. В основе его лежит пара
реакций

71Ga + ν → 71Ge + e− (2.9)

и
71Ge + e−→ 71Ga + ν. (2.10)

Первая из них чувствительна к нейтрино с Eν ≥ 0.233 МэВ, так что
способна регистрировать нейтрино от основной энерговыделяющей протон–
протонной реакции, для которых Emax

ν = 0.420 МэВ. Рождающийся при за-
хвате нейтрино 71Ge неустойчив, период его полураспада 11.43 дня. В конце
,,экспозиции" из большой емкости с 71Ga с помощью процедуры, аналогич-
ной продувке гелием в хлор–аргоновом эксперименте, выделяют (почти) все
образовавшиеся за время экспозиции атомы 71Ge в отдельную малую емкость
и в дальнейшем стандартными методами ядерного эксперимента фиксируют
каждый акт распада 71Ge (происходящего в результате K–захвата).

На первых порах препятствием к осуществлению этого эксперимента было
отсутствие в требуемых количествах (десятки тонн) химически чистого галлия.
Его производство потребовало разработки специальной технологии (и, конеч-
но, немалых финансовых вложений). К началу 1990-х годов проблема была
решена, и началось осуществление двух независимых экспериментов, слегка
отличающихся по методике.

Первый из них, SAGE (что расшифровывается так: Soviet–American
Gallium Experiment) проводится в России на Баксанской нейтринной обсер-
ватории на Северном Кавказе, в районе Эльбруса. Установка содержит 60 т
металлического галлия. Его температура плавления ∼ 37 градусов Цельсия.
Во время экспозиции он находится в твердом состоянии, но для ,,продувки"
его слегка подогревают, и он становится жидким. За 1990 — 2007 гг. было осу-
ществлено 116 экспозиций и при этом зарегистрировано около 2000 захватов
нейтрино ядрами 71Ga.

Второй галлий–германиевый эксперимент проводится в Италии, в лабора-
тории LUNA (Laboratory for Underground Nuclear Astrophysics), неподалеку
от Рима. Установка содержит жидкий хлорид галлия GaCl3, в котором около
30 т природного галлия, содержащего ∼40% изотопа 71Ga. Эксперимент, про-
водившийся в 1991 – 1997 гг., назывался GALLEX (расшифровка названия
едва ли требуется), а после модернизации 1997 г. — GNO (Gallium Neutrino
Observatory).
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Галлий–германиевые эксперименты фактически напрямую измеряют (с
некоторым коэффициентом) полный поток солнечных электронных нейтрино.
И здесь результат также сильно разошелся с теоретическим предсказанием по
модели Солнца (см. рис. VI.2.2, средняя группа столбцов). Согласно теории,
измеренный поток должен был бы быть

ξ = 126+9
−7 SNU. (2.11)

В эксперименте SAGE было получено

ξ = 70.8 SNU (2.12)

с погрешностью ±7.5%, тогда как GALLEX+GNO дали

ξ = 74.1 SNU (2.13)

при погрешности ±7.3%.
Прежде всего бросается в глаза полное согласие результатов двух галлий–

германиевых экспериментов. Вопрос о возможности какого-то дефекта в экс-
перименте полностью отпал. Фактически отпали и попытки всех астрофизи-
ческих объяснений серьезного, почти в два раза, расхождения теории и на-
блюдений. Нейтринные осцилляции, требующие отличия от нуля массы покоя
нейтрино, что физики–ядерщики принимали очень неохотно, остались един-
ственным разумным объяснением.

Была, впрочем, еще одна ,,деталь", которую хотелось бы проверить — убе-
диться, что регистрируемые нейтрино действительно прилетают из того на-
правления, где в данный момент находится Солнце. Для этого требовался со-
всем другой, не радиохимический метод, а метод, который позволял бы фик-
сировать непосредственно сам акт взаимодействия нейтрино с веществом. Это
было сделано в эксперименте SuperKamiokande.

2.5.
Суперкамиоканде и

далее

Суперкамиоканде — это название еще одной
знаменитой установки для регистрации солнеч-
ных нейтрино, на этот раз японской. Как и все
описанные до сих пор, для защиты от неже-

лательного фона, создаваемого космическими лучами, установка находится
глубоко под землей, в шахте. Внешне она представляет собой огромный ци-
линдрический бак из нержавеющей стали, диаметром 39 метров и высотой 41
метр (!). Бак наполнен 50 000 тонн сверхчистой воды. На его внутренней по-
верхности размещены 11 146 специально изготовленных фотоумножителей. В
установке происходят рассеяния нейтрино на атомных электронах, которые
можно считать свободными. При каждом таком акте взаимодействия элек-
трон получает значительный импульс в направлении первоначального полета
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Рис. VI.2.3:

Нейтринное изображение Солнца.
Угловой размер показанной на рисунке

области — 90◦× 90◦.

нейтрино и начинает двигаться в воде со сверхсветовой (для воды) скоростью,
рождая летящие в конусе черенковские фотоны. Электрон, рассеянный на ней-
трино с энергией Eν > 5.5 МэВ, испускает в баке с водой ∼1000 черенковских
фотонов. Возникает направленная вспышка света, которая фиксируется фото-
умножителями, лежащими в конусе вокруг оси этой вспышки. В итоге удается
определить (к сожалению, не очень точно) направление прилета нейтрино, вы-
звавшего эти события.

Руководителем международной коллаборации, осуществлявшей этот про-
ект, был профессор Токийского университета М.Кошиба (Masatoshi Koshiba).
Установка Суперкамиоканде вошла в строй в 1993 г., обойдясь в 100 млн долла-
ров. Полноценные измерения начались в апреле 1996 г. В этом эксперименте ре-
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гистрируются только электронные нейтрино высоких энергий, то есть борные,
с Eν

>∼5.5 Мэв. Всего за 5 лет было зарегистрировано 18 464 акта рассеяния ней-
трино. И опять оказалось, что измеренный поток вдвое меньше теоретического
(точнее, составляет 0.48 от теоретического, см. вторую слева группу столбцов
на рис. VI.2.2, отмеченную у основания символом H2O). В этом, впрочем, бы-
ло мало нового. Замечательно, что были зафиксированы сезонные вариации
измеренного потока нейтрино на ∼ 7%, вызванные изменениями расстояния
до Солнца в течение года на 3.4%. Принципиальным же явилось получение
первого нейтринного изображения Солнца (рис. VI.2.3). Оно построено по ре-
зультатам нескольких тысяч индивидуальных событий, зафиксированных по
наблюдениям в течение 500 дней. Угловое разрешение очень низкое: стороне
прямоугольника на рисунке соответствует угол в 90 градусов на небе. Однако
пик яркости в точности совпадает с положением центра Солнца. Мы впервые
непосредственно ,,видим" центр Солнца. Если угодно, это настоящее чудо, о
котором и мечтать никому не приходило в голову каких-то полвека тому на-
зад.

В 2002 г. Раймонд Дэвис и Масатоши Кошиба были удостоены Нобелевской
премии ,,for pioneering contributions to astrophysics, in particular for the detection
of cosmic neutrinos"(см. Приложение III, с. 522). На этом, собственно, можно
было бы поставить точку — астрофизическая часть проблемы солнечных ней-
трино была решена. Оставался, правда, еще один важный вопрос. Сомнений в
том, что масса покоя нейтрино отлична от нуля и часть солнечных электронных
нейтрино по пути от места рождения в центре Солнца до Земли превращает-
ся в мюонные нейтрино, почти ни у кого не оставалось. Однако требовалось
еще экспериментально проверить, что полный поток нейтрино всех трех типов
согласуется с тем, что дает стандартная модель Солнца в предположении об
отсутствии нейтринных осцилляций.

Это было проделано в серии измерений, проведенных международной кол-
лаборацией в 1999 — 2006 гг. в Канаде на установке SNO (Solar Neutrino
Observatory). Установка представляла собой шар диаметром 12 м, наполнен-
ный 1000 тонн сверхчистой тяжелой воды D2O, на поверхности которого были
размещены 9 600 фотоумножителей. По черенковскому излучению фиксирова-
лись рассеяния нейтрино на электронах. Главное же было в фиксации распадов
дейтронов под воздействием потока солнечных нейтрино. Здесь возможны две
реакции. Первая их них

d + νe → p + p + e−

может происходить под действием только электронных нейтрино. (Заметим,
что это, если угодно, вариант о.бычной протон–протонной реакции — поверни-
те стрелку влево и перенесите электрон налево, разумеется, заменив его пози-
троном). Измеренный таким образом поток солнечных электронных нейтрино
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оказался в согласии с измерениями, выполненными ранее другими методами
(30% от теоретического, см. левую группу столбцов, отмеченных снизу D2O на
рис. VI.2.2). Вторая реакция имеет вид

d + νx → p + n + νx,

где νx — нейтрино любого типа (электронное, мюонное или тау). Эта реак-
ция позволяет измерить полный поток всех трех видов нейтрино (с энергией
>2.24 МэВ), приходящих к нам от Солнца. Оказалось, что этот поток полно-
стью согласуется с тем, что дает стандартная модель Солнца (самая правая
гистограмма на рис. VI.2.2). Стоявшая более трех десятилетий ,,проблема сол-
нечных нейтрино" перестала существовать.

Статья, содержащая описанный только что результат, была опубликована в
2003 г. в электронном архиве nucl-eх/0309004 v1. Число ее авторов — 131 чело-
век (такие публикации на жаргоне сейчас называют братскими могилами). С
тех пор дело продвинулось далеко вперед: было введено в действие несколько
экспериментальных установок для измерения параметров нейтринных осцил-
ляций, было установлено, что, скорее всего, превращение электронных солнеч-
ных нейтрино в другие виды происходит пока они еще не вылетели из Солнца
(за счет так называемого эффекта Михеева – Смирнова – Вольфенштейна; что
это такое, объяснять не будем). Наконец, был измерен квадрат разности масс
электронного и мюонного нейтрино (∆m)2 = 6.9·10−5 эВ.

Когда начинался опыт Дэвиса, мало кто оценивал его иначе как дорого-
стоящую попытку напрямую измерить температуру в центре Солнца. Никто
не предполагал, что это породит новую бурно развивающуюся область физики
элементарных частиц — экспериментальную физику ,,тяжелых" нейтрино.



3. УПРАЖНЕНИЯ

1◦ Энергия связи дейтрона равна 2.224 МэВ. Разность энергий нейтро-
на и протона составляет 1.293 МэВ. Найти максимальную энергию нейтрино,
испускаемых при протон–протонной реакции.

2◦ Оценить вклад в общую светимость Солнца, который дает энергия,
выделяющаяся при протон-протонных реакциях.

3◦ Рассчитать отношение He/H в центре современного Солнца, считая,
что ровно половина атомов водорода выгорела. Начальный химический состав:
X=0.75, Y=0.24.

4◦ Написать и решить уравнение, описывающее изменение со временем
содержания дейтерия. Содержание водорода и температуру считать не зави-
сящими от времени. Принять, что ρXH = 100 г/см3, где XH — весовая доля
водорода. Начальное содержание дейтерия (D/H)0 = 10−5. Оценить время вы-
хода содержания дейтерия на равновесное значение (с точностью до, скажем,
50%) при температуре T6 = 15. Почему оно гораздо больше времени выгора-
ния дейтерия, определяемого формулой (2.64), с. 286? Оцените также время
выгорания дейтерия при том же значении ρXH и T6 = 1.5 (когда дейтерий на
самом деле и выгорает при рождении звезд).

5◦ Убедиться, что (1.22) действительно является решением уравнения
(1.19) с начальным условием W (0) = 0.

6◦ Записать полную систему дифференциальных уравнений, описываю-
щих изменение со временем содержания каждого из нуклидов, фигурирующих
в цепочках pp I+pp II+pp III. Упростить ее, принимая, что содержания 2D, 3He
и 8Be∗ равновесные, а также что d( 7Be +7Li)/dt=0 (почему и когда это так?).
Показать, что в итоге мы получим уравнение (1.38) и соотношение

d 4He

dt
= − 1

4
dH

dt
.

7◦ В известном учебнике R.Kippenhahn and A.Weigert ,,Stellar Structure
and Evolution", Springer-Verlag, 1994, на с. 163 имеется следующее утвержде-
ние: ,,The 3He – 4He reaction has a 14% larger reduced mass, a 4.6% larger τ ,

344
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and thus a slightly larger temperature sensitivity ν than the 3He – 3He reaction.
With increasing T , pp2 and pp3 will therefore dominate more and more over pp1
(say above T7 ≈ 1) if 4He is present with appreciable amounts". Верно ли такое
объяснение роста относительной роли pp II+ pp III по сравнению с pp I при
увеличении температуры?

8◦ Показать, что при действии всех трех pp–цепочек и F
I

= 1/2 равновес-

ное содержание 3He составляет
√

2/3 = 0.816 от его содержания при действии
одной только цепочки pp I.

9◦ Поймите, какие формулы п. 1.3 использовались при построении кри-
вых рис. VI.1.4.

10◦ Исходя из очевидной формулы

FI =
R33

R33 + R34
=

λ33
3He

λ33
3He + 2λ34

4He

получить выражение для FI , даваемое формулой (1.47).

11◦ Какова максимальная энергия антинейтрино, испускаемого при бета-
распаде свободного нейтрона?

12◦ В известном учебнике C. J.Hansen and S.D.Kawaler ,,Stellar Interi-
ors. Physical Principles, Structure and Evolution", Springer-Verlag, 1994, на с. 327
утверждается, что hep–реакция имеет вид 3He(pe−, νe)4He и при ней испуска-
ются нейтрино непрерывного спектра с энергией вплоть до 18.8 МэВ. Найти
ошибку.

13◦ При hep реакции 3He+1H→4He+e++ ν испускаются нейтрино непре-
рывного спектра с Emax

ν =18.8 МэВ. Найти энергию нейтринной линии, об-
разующейся при реакции 3He+ e−+1H→4He+ν (которую по аналогии с pep–
реакцией было бы естественно обозначить hep, тогда не возникало бы недора-
зумений вроде указанного в предыдущей задаче).
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1. CNO–ЦИКЛ: СТРУКТУРА И ФУНКЦИОНИРОВАНИЕ

1.1. Простой
CN–цикл

Помимо pp–цепочек, имеется еще один путь
синтеза α–частиц из протонов, работающий
в звездах, — так называемый CNO–цикл. Он
является основным способом производства

энергии у звезд ГП с M>∼1.2. Весьма существенную энергетическую роль он
играет также у красных гигантов. Не менее важен и вопрос о нуклеосинтезе
в CNO–цикле. Подход астрофизика–практика к интерпретации широкого кру-
га наблюдательных данных, касающихся особенностей содержания C, N и O
у различных звезд, базируется на анализе специфики нуклеосинтеза в ходе
CNO–цикла. Сказанное оправдывает большое место, отводимое нами деталь-
ному изучению этого цикла.

CNO–цикл — это совокупность трех (а если быть совсем строгим, то даже
четырех) сцепленных друг с другом или, точнее, частично перекрывающих-
ся циклов. Изучение их мы начнем с наиболее важного из них — простого
CN–цикла. Другие его названия — углеродный цикл, цикл Бете. Так именуют
следующую цепочку реакций:

12C + 1H → 13N + γ
13N → 13C + e+ + ν

13C + 1H → 14N + γ
14N + 1H → 15O + γ

15O → 15N + e+ + ν
15N + 1H → 12C + 4He

?

-

(1.1)

Ее итогом является, очевидно, слияние четырех протонов в α–частицу, а угле-
род, азот и кислород выступают как катализаторы. Впрочем, при всей кажу-
щейся очевидности последнего утверждения оно нуждается в серьезных ого-
ворках (см. ниже).

На первый взгляд последовательность реакций CN–цикла выглядит
довольно-таки замысловатой. Кажется, что ее и запомнить-то нелегко, а уж
как она была придумана — и вовсе непонятно. При беглом взгляде возника-
ет ощущение, что в CN–цикле есть что-то искусственное, что он специально
подобран, и если внимательно поискать, то — как знать? — быть может оты-
щутся еще какие-то сходные, а то и более простые цепочки энерговыделяющих
реакций. Все эти впечатления совершенно обманчивы.

Запомнить последовательность реакций CN–цикла не составляет труда.
Суть его состоит в непрямом синтезе α–частицы из четырех протонов при

348
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их последовательных захватах ядрами, начиная с 12C. Захват первых трех
протонов вызывает однотипные реакции (p,γ), захват последнего, четвертого
протона влечет, естественно, реакцию (p, α) — синтез α–частицы завершает-
ся. Когда-то должны произойти два позитронных β–раcпада — позитронных
потому, что суммарный заряд четырех протонов +4, заряд же α–частицы +2.
При каждом β+–распаде излучается также по одному нейтрино. Собственно,
единственное, что нужно запомнить, — это когда именно, на каких этапах про-
исходят β–распады. В реакциях (p,γ) образуются ядра как с четными, так и с
нечетными A. Последние неустойчивы — они и распадаются.

Вы только что прочли объяснение устройства CN–цикла — а в результате
без всяких усилий его запомнили!

Проверьте себя — выпишите, никуда не заглядывая, цепочку реакций CN–
цикла. Если это вызовет затруднения или если в записи будут ошибки,
внимательно прочтите предыдущий абзац еще раз, сопоставив его с при-
веденной выше последовательностью реакций.

Простой перебор реакций термоядерного синтеза в газе космического хи-
мического состава, постепенно нагреваемого до ∼ 2 · 107 К, с неизбежностью
приводит к обнаружению CN–цикла. Как уже не раз говорилось, из-за необ-
ходимости преодоления высокого кулоновского барьера за счет туннельного
эффекта первыми должны пойти реакции между самыми легкими ядрами —
для них ZiZk мало́. Если бы дело было только в этом, горение начиналось бы
с протон–протонной реакции. Однако при этой реакции, кроме подбарьерного
проникновения, должен произойти еще и β–распад ,,на лету", вероятность чего
крайне низка. В итоге S–фактор для протон–протонной реакции оказывается
рекордно малым: S ∼4·10−22 кэВ· барн. Поэтому выгорание легких элементов
начинается не с водорода, а с дейтерия (Z = 1, A = 2), лития (Z = 3), бериллия
(Z = 4) и бора (Z = 5). Гелия в этом перечне нет, поскольку он на водороде
не горит. Существенно, что захваты протонов ядрами Li, Be и B вызывают
реакции (p, α), так что эти ядра в реакциях с протонами не воспроизводятся,
почему и выгорают практически полностью. Правда, ядра 7Li, 7Be и 8B синте-
зируются в цепочках pp II и pp III, но тут же и разрушаются (см. п. 1.2 Гл. VI).
Поэтому результирующие концентрации D, Li, Be и B при T >∼ 107 К оказыва-
ются совершенно ничтожными.

За бором идут углерод (Z = 6), азот (Z = 7) и кислород (Z = 8).
Они горят в реакциях (p,γ), причем с ,,нормальными" S–факторами: S ∼
(100 ÷ 101) кэВ · барн. Первым должен начать выгорать углерод, так как для
него кулоновский барьер ниже, чем для азота и кислорода. Итак, мы есте-
ственным образом пришли к рассмотрению реакции 12C (p,γ)13N. Из-за силь-
ной β–радиоактивнсти ядра 13N оно за минуты, то есть практически мгновенно,
превращается в 13C. Это ядро, в свою очередь, должно захватывать протон и
превращаться в азот: 13C(p,γ)14N. Проходит некоторое время, и углерод почти
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весь выгорает, преобразуясь в азот. Очередной этап — протонные реакции на
азоте — должен начинаться с реакции 14N(p,γ)15O, за которой сразу же, за ми-
нуты, следует 15O(e+ν)15N. Кулоновский барьер у 15N тот же, что и у 14N, и
поэтому будет захватываться еще один протон. Два возможных исхода этого —
реакции 15N(p, γ)16O и 15N(p, α)12C. Реакция (p, α) происходит здесь в ∼ 103

раз чаще, чем (p,γ), поскольку она идет с сильным взаимодействием, тогда как
(p,γ) — с электромагнитным (излучается γ–квант), а оно слабее.

Реакция 15N(p, α)12C создает качественно новую ситуацию. Ядро 12C, с
разрушения которого начинаются протонные реакции на ядрах углеродно-
кислородной группы, оказывается в ходе этих реакций заново синтезирован-
ным. Иначе говоря, выгорание углерода сменяется его воспроизводством —
CN–цикл заработал.

Как видим, этот цикл отнюдь не является продуктом какого-то хитроум-
ного специального подбора цепочки реакций, а появляется непринужденно,
буквально сам собой.

1.2. Тройной
CNO–цикл

Пренебрежение боковым ответвлением от
CN–цикла, обусловленным радиационным
захватом протона ядром 15N, на первый
взгляд кажется вполне оправданным, так

как одна реакция 15N(p,γ)16O приходится примерно на 103 реакций
15N(p, α)12C. И тем не менее это боковое ответвление играет существенную
роль как в энергетике, так и в нуклеосинтезе элементов CNO–группы.

Долгое время полагали, что CNO–цикл двойной. Считалось, что основной
CN–цикл частично перекрывается со следующим циклом:

14N +1H → 15O + γ
15O → 15N + e+ + ν

15N +1H → 16O + γ
16O +1H → 17F + γ

17F → 17O + e+ + ν
17O +1H → 14N +4He

?

-

(1.2)

Этот второй цикл, который мы будем называть циклом NO I, имеет в точности
ту же структуру, что и CN–цикл. Ясно, что из-за малости сечения реакции
15N(p,γ)16O по сравнению с 15N(p, α)12C скорость синтеза α–частиц по этому
циклу в стационарном режиме должна быть гораздо (в ∼103 раз) ниже, чем по
CN–циклу. Как это ни парадоксально, несмотря на это цикл NO I существен-
но сказывается на энергетике, повышая темп энерговыделения в CN–цикле.
Это происходит потому, что распространенность ядер 16O в газе нормально-
го космического химического состава до начала работы цикла велика, выше
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суммарной концентрации C и N. В реакциях цикла NO I ядра 16O выгорают и
превращаются главным образом в 14N, заметно (раза в два – три) увеличивая
тем самым число ядер-катализаторов CN–цикла и повышая в результате темп
энерговыделения.

Подобно тому как с последней реакцией CN–цикла 15N(p, α)12C может
конкурировать реакция 15N(p,γ)16O, что порождает цикл NO I, последняя
реакция этого второго цикла 17O(p, α)14N имеет своим конкурентом реак-
цию 17O(p,γ)18F. До середины 1970-х годов считали, что скорость этой (p,γ)–
реакции гораздо меньше скорости соответствующей реакции (p, α). Однако
проведенные затем лабораторные измерения сечения реакции 17O(p, α)14N по-
казали, что ранее оно было сильно — по крайней мере в 50 раз — завышено.
Хотя и теперь это сечение известно не очень надежно (заметим, что реакция
17O(p, α)14N — резонансная), можно думать, что реакции (p, α) и (p,γ) на яд-
ре 17O при температурах T6

>∼ 30 имеют скорости одного порядка. Это делает
необходимым учет в составе CNO–цикла третьего подцикла, первые три реак-
ции которого совпадают с тремя последними реакциями цикла NO I:

15N +1H → 16O + γ
16O +1H → 17F + γ

17F → 17O + e+ + ν
17O +1H → 18F + γ

18F → 18O + e+ + ν
18O +1H → 15N +4He

?

-

(1.3)

Эту цепочку реакций будем называть циклом NO II. По-видимому, темпы цик-
лов NO I и NO II одного порядка.

Циклы CN, NO I и NO II образуют тройной CNO–цикл. Концентрации изо-
топов фтора из-за их нестабильности столь малы, что он не ,,удостоился" упо-
минания в названии цикла. При температурах T6

<∼ 100 тройной CNO–цикл
можно считать практически замкнутым.

Имеется еще очень медленный четвертый цикл:

16O(p,γ)17F(e+ν)17O(p,γ)18F(e+ν)18O(p,γ)19F(p, α)16O.

Его роль в нуклеосинтезе изотопов C, N и O, а тем более в выработ-
ке энергии ничтожно мала. В установившемся режиме он работает раз в
10 медленнее NO–циклов (которые, в свою очередь в 103 раз медленнее
основного CN–цикла). Единственное, в чем этот четвертый цикл может
оказаться важным, — это объяснение происхождения 19F.
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Рис. VII.1.1:

Структура тройного CNO–цикла.

В установившемся режиме CN–цикл работает в ∼ 103 раз быстрее име-
ющих примерно одинаковую производительность циклов NO I и NO II.
Несмотря на это, NO–циклы могут заметно сказываться не только на нук-
леосинтезе, но и на скорости выработки энергии в тройном CNO–цикле

(см. текст).
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Структура тройного CNO–цикла иллюстрируется Рис. VII.1.1. Направле-
ния обхода циклов указаны изогнутыми линиями со стрелками. Итог каждого
из циклов — слияние четырех протонов в альфа–частицу. Кружки меньше-
го размера отмечают нестабильные изотопы. Жирная стрелка подчеркивают,
что в установившемся режиме циркуляция в углеродной (CN) ветви тройного
цикла происходит гораздо быстрее, чем в кислородной (NO I + NO II).

В реакциях CNO–цепочек суммарное число ядер углерода, азота и кисло-
рода остается неизменным. Они лишь превращаются друг в друга. Если тем-
пература сохраняется постоянной или изменяется достаточно медленно, спустя
некоторое время должно установиться равновесное, или точнее стационарное
распределение нуклидов углеродно–кислородной группы (C, N, O), определяе-
мое лишь температурой. Как мы вскоре убедимся (см. п. 2.1, с. 360), важнейшая
его черта состоит в том, что в равновесии содержание 14N во много раз пре-
вышает содержание всех остальных нуклидов этой группы. На Рис. VII.1.1
этот факт подчеркивается особым видом кружка у 14N — он тройной. Заметим,
что до достижения равновесия считать ядра C, N и O только катализаторами
нельзя — они служат и топливом.

Рассматриваемый как ядерная фабрика по переработке элементов
углеродно–кислородной группы, CNO–цикл с выходом на равновесный режим
прекращает свою активную жизнь, продолжая, однако, полным ходом рабо-
тать как термоядерная энергетическая установка, сжигающая водородное топ-
ливо. В этом своем энергетическом качестве CNO–цикл конкурирует с pp–
цепочками. Хотя кулоновские барьеры в протонных реакциях CNO–цикла за-
метно выше, чем в реакциях pp–цепочек, а концентрация ядер C, N и O, вме-
сте взятых, на три порядка ниже концентрации протонов, CNO–цикл все же
оказывается вполне конкурентоспособным — в его активе те 22 порядка, на
которые S-факторы (p,γ)–реакций CNO–цикла превышают S-фактор протон–
протонной реакции. Количественное обсуждение см. в п. 4.1, с. 375.

В заключение этого пункта заметим, что при взрывном горении водорода в
поверхностных слоях звезд, например, при вспышках новых, могут развивать-
ся очень высокие температуры. При этом характер CNO–цикла существенно
меняется. При T6

>∼ 100 реакции (p,γ) идут столь быстро, что они способны кон-
курировать с β–распадами нестабильных изотопов N, O и F. Цепочки реакций
учитывающего это обстоятельство так называемого горячего CNO–цикла за-
метно отличаются от тех, которые мы рассматривали выше.

1.3. Основные
параметры реакций

Из всех ядерных реакций, представляющих
интерес для физики звезд, реакции CNO–
цикла изучены едва ли не лучшим образом.

Почти все сечения надежно измерены в ряде лабораторий, из которых в первую
очередь нужно назвать Кэллогскую радиационную лабораторию Калифорний-
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ского технологического института. В ней под руководством Уильяма Фаулера
(Нобелевская премия, 1983 г.; см. Приложение III, с. 522) более полувека велись
измерения сечений астрофизически интересных ядерных реакций.

Любопытные детали истории этих работ приводятся в лекции, прочитан-
ной У.Фаулером при вручении ему Нобелевской премии за исследования
по ядерной астрофизике. Опубликованы два разных ее русских перевода —
один в виде брошюры общества ,,Знание" (серия ,,Космонавтика, астро-
номия", N 3135 за 1985 г.), другой — в ,,Успехах физических наук", 145,
N 3, 441 – 488, 1985. Много интересных сведений исторического характера
и авторитетные обзоры широкого круга вопросов ядерной астрофизики по
состоянию на середину 1980-х годов имеются в сборнике ,,Ядерная астро-
физика", под ред. Ч.Барнса, Д.Клейтона и Д.Шрамма, М.: Мир, 1986.
Мы широко использовали оба этих важных источника информации.

В последние 20 – 30 лет измерения и расчеты важных для астрофизи-
ки сечений ядерных реакций ведутся многими исследовательскими группами.
Исчерпывающие сводки их результатов для реакций, идущих в недрах Солн-
ца, дважды, в 1998 и 2011 гг. публиковались A.E.Adelberger et al. в Rev. Mod.
Phys., 70, 1265, 1998 и 83, 195, 2011.

Прежде всего приведем периоды полураспада t1/2 фигурирующих в CNO–
цикле β–радиоактивных ядер:

13N (e+ν) 13C −−− 9.965 мин
15O (e+ν) 15N −−− 122.24 сек
17F (e+ν) 17O −−− 64.49 сек
18F (e+ν) 18O −−− 109.77 мин

Они столь малы, что каждый из циклов фактически идет в четыре этапа:

CN NOI NO II

12C(p,γ)13N(e+ν)13C 14N(p,γ)15O(e+ν)15N 15N(p,γ)16O
13C(p,γ)14N 15N(p,γ)16O 16O(p,γ)17F(e+ν)17O
14N(p,γ)15O(e+ν)15N 16O(p,γ)17F(e+ν)17O 17O(p,γ)18F(e+ν)18O
15N(p, α)12C 17O(p, α)14N 18O(p, α)15N

Другим следствием малого времени жизни вырабатываемых в CNO–цикле
легких нестабильных изотопов азота, кислорода и фтора должна быть их
крайне низкая распространенность — синтезируются они сравнительно мед-
ленно, распадаются же очень быстро. По этой причине точное знание пери-
одов полураспада в данном случае неважно, все равно надежды обнаружить
13N, 15O, 17F и 18F на звездах пока нет.
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Таблица VII.1.1:
Основные параметры реакций CNO–цикла

(Источник: E.G.Adelberger et al., Rev. Mod. Phys., 83, 195 – 245, 2011)

Реакция S(0) dS(0)/dE d2S(0)/dE2 Q Eν C
кэВ·барн барн барн/кэВ МэВ МэВ

12C(p,γ)13N 1.34± 0.21 2.6 · 10−3 8.3 · 10−5 1.944 — 136.9
13N(e+ν)13C — — — 2.220 0.706 —
13C(p,γ)14N 7.6± 1.0 −7.83 · 10−3 7.29 · 10−4 7.551 — 137.2
14N(p,γ)15O 1.66± 0.12 −3.3 · 10−3 4.4 · 10−5 7.297 — 152.3
15O(e+ν)15N — — — 2.754 0.996 —
15N(p,α)12C (7.3± 0.5) · 104 351 11 4.966 — 152.5
15N(p,γ)16O 36± 6 12.13 — 152.5
16O(p,γ)17F 10.6± 0.8 −0.054 0.600 — 167.0
17F(e+ν)17O — — — 2.761 0.944 —
17O(p, α)14N Резонансная реакция 1.192 — 167.15
17O(p,γ)18F 6.2± 3.1 1.6 · 10−3 −3.4 · 10−7 5.61 — 167.15
18F(e+ν)18O — — — 1.65 0.37 —
18O(p, α)15N Резонансная реакция 3.98 — 167.29

Сводка важнейших величин, характеризующих реакции CNO–цикла, дана
в Табл. VII.1.1. Обсудим ее.

Столбцы S(0) и dS(0)/dE. Для всех (p,γ)–реакций CNO–циклов величины
S(0) одного порядка — несколько кэВ·барн. Идущие с сильным взаимодействи-
ем заключительные реакции (p, α) циклов CN и NO имеют гораздо бо́льшие
S–факторы, S(0) ∼105. На сечение реакций 17O(p, α)14N и 18O(p, α)15N, завер-
шающих циклы NO I и NO II, существенное влияние оказывают близлежащие
резонансы. Поэтому эти сечения нельзя рассчитывать по обычной формуле для
нерезонансных реакций.

Погрешности S(0) даны в таблице по уровню 1σ. Как видим, они во всех
случаях невелики — менее 20%

(
исключение — реакция 17O(p,γ)18F

)
. К чис-

ленным значениям этих погрешностей следует, однако, относиться с известной
осторожностью: они выведены из анализа неоднородного по точности экспе-
риментального материала, полученного в разных лабораториях. Впрочем, уже
тот факт, что известны не только S(0), но и dS(0)/dE, а в ряде случаев даже и



356 Гл.VII. Горение водорода. II

d2S(0)/dE2, свидетельствует о том, что сечения найдены достаточно надежно.
Напомним, что они получаются экстраполяцией сечений, измеренных в обла-
сти Eлаб

>∼(50÷ 100) кэВ, в сторону низких энергий (см. п. 2.1 Гл. V, с. 271).
В оценках сечений рассматриваемых реакций за последние годы произошли

два существенных изменения. Первое касается S–фактора самой медленной ре-
акции CN–цикла — реакции 14N(p,γ)15O. Использовавшееся долгое время зна-
чение 3.32 кэВ· барн существенно уменьшено, до 1.66 кэВ· барн. В результате
оказывается, что синтез альфа–частиц по CN–циклу происходит почти вдвое
медленнее, чем ранее считалось. Второе изменение состоит в уменьшении по-
чти вдвое S–фактора реакции 15N(p,γ)16O: раньше принималось S(0) = 64
кэВ· барн, теперь S(0) = 36 кэВ· барн. Таким образом, ветвление в CNO–цикле
вслед за захватом протона ядром 15N и образованием составного ядра 16O∗

12C +4He
↗

15N +1H → 16O∗

↘
16O + γ

(1.4)

происходит несколько реже, чем считалось прежде. Существенно, что вероят-
ность осуществления реакции по второму каналу очень мала,∼10−3 от перво-
го. Это обстоятельство имеет принципиальное значение для понимания работы
CNO–цикла. Ясно, что в равновесном режиме синтез α–частиц по NO–циклам
должен происходить на три порядка медленнее, чем по CN–циклу. Предостере-
жем, однако, читателя от поспешного вывода, что NO–ветви должны поэтому
мало сказываться на темпе энерговыделения в тройном CNO–цикле. Как уже
упоминалось на с. 350, это не так (подробнее см. в п. 1.4).

Столбец Q. Суммирование приведенных в таблице значений выхода энер-
гии для каждой из реакций циклов CN, NO I и NO II во всех трех случаях дает∑

Q =26.73 МэВ. Таким образом, здесь в Q включена и энергия, уносимая ней-
трино. Чтобы найти выход полезной для звезды энергии, идущей на ее нагрев,
надо из

∑
Q вычесть

∑
Eν (для каждого из циклов по отдельности). В итоге

получим 25.03 МэВ для CN–цикла, 24.79 Мэв для цикла NO I и 25.26 МэВ для
NO II.

Столбец Eν . Нейтрино в CNO–цикле излучаются при β+–распадах неста-
бильных легких изотопов азота, кислорода и фтора. Поэтому во всех случаях
энергетический спектр этих нейтрино непрерывный. Максимальная энергия
испускаемых нейтрино Emax

ν составляет 0.6 ÷ 0.7 от их средней энергии Eν ,
приведенной в таблице. Для ν от распада 13N, 15O, 17F и 18F имеем Emax

ν =
1.20, 1.74, 1.74, и 0.63 МэВ соответственно.

При синтезе одной α–частицы по CN–циклу нейтрино уносят 1.7 МэВ, или
6.4% всей выделяющейся энергии. Это больше, чем для цепочки pp I (∼ 1.9%).
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Столбец C. Как известно (см. с. 280), зависимость скорости протекания
нерезонансной термоядерной реакции от температуры (главный член) опреде-
ляется величиной τ2e−τ, где

τ = τ(T ) = 42.5
(

Z2
i Z2

k M
T6

)1/3

≡ C

T
1/3
6

. (1.5)

Здесь M = MiMk/(Mi + Mk) ≈ A = AiAk/(Ai + Ak). Значения вводимого
этим равенством параметра C приведены в последнем столбце таблицы.

Для реакций захвата протонов разными изотопами того и ли иного элемен-
та значения C различаются мало. При переходе же от захвата протона ядром
с зарядом Z к захвату его ядром с зарядом Z + 1 значение C из-за роста куло-
новского барьера подскакивает заметно. Это важно, так как соответствующие
τ оказываются существенно разными.

1.4. Характерные
времена реакций

До сих пор речь шла о тех параметрах реак-
ций CNO–цикла, которые не зависят от усло-
вий в газе, где эти реакции идут. Важнейший

из параметров, характеризующих термоядерную реакцию, который существен-
но зависит от температуры, плотности и химического состава газа, — это ха-
рактерное время реакции, или время выгорания. Обсудим его применительно к
реакциям CNO–цикла в звездах ГП. Это абсолютно необходимо для понимания
функционирования цикла.

Как говорилось в п. 2.6 Гл. V (см. с. 285), временем жизни ядер типа k
по отношению к реакции с ядрами типа i, или временем выгорания ядер k на
ядрах i, называется величина

τi(k) =
1

Ni <σv>ik
≡ 1

Niλik
, (1.6)

где Ni — концентрация ядер i. Для краткости здесь введено обычное обозна-
чение λik ≡<σv>ik. Подчеркнем, что если Ni 6= Nk, то τi(k) 6= τk(i). Для нере-
зонансных реакций зависимость времени выгорания от температуры в окрест-
ности T0 можно аппроксимировать степенно́й функцией

τi(k) ' τ0
i (k)

(
T

T0

)−ν

(1.7)

с показателем ν = (τ0 − 2)/3, где τ0 определено по (1.5) при T = T0, то есть
τ0 ≡ τ(T0) (см. п. 2.5 Гл. VI, с. 283).

В Табл. VII.1.2 для ряда температур приведено время (в годах) выгорания
основных CNO–изотопов на протонах при Np = 100/mp ≈ 6 · 1025 см−3. Этой
концентрации протонов, по порядку характерной для центральных областей
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Таблица VII.1.2:
Времена выгорания (в годах) стабильных изотопов

C, N и O на протонах (при ρXH = 100 г/см3)

T6
12C 13C 14N 15N 16O

10 3.0+9 5.7+8 3.0+12 7.1+7 4.2+14
15 1.3+6 2.3+5 5.2+8 1.2+4 3.1+10
20 9.5+3 1.7+3 2.2+6 46 7.85+7
25 290 53 4.8+4 0.94 1.15+6
30 21 3.7 2.5+3 4.75−2 4.4+4
40 0.43 0.08 34 410

Таблица VII.1.3:
Времена выгорания стабильных изотопов
CN–цикла в долях времени выгорания 14N

T6
12C 13C 15N

10 1.0 · 10−3 1.9 · 10−4 2.4 · 10−5

20 4.3 · 10−3 7.7 · 10−4 2.1 · 10−5

30 8.4 · 10−3 1.5 · 10−3 1.9 · 10−5

40 1.3 · 10−2 2.4 · 10−3 1.8 · 10−5

звезд ГП, соответствует ρXH = 100 г/см3. Согласно данным таблицы, во всем
рассматриваемом диапазоне температур самой медленной из реакций простого
CN–цикла является реакция 14N(p,γ)15O, причем время жизни 14N существен-
но превосходит времена жизни всех других стабильных ядер, фигурирующих
в CN–цикле (Табл. VII.1.3).

Далее, из-за более высокого кулоновского барьера кислород выгорает зна-
чительно медленнее 14N. При низких температурах, T6

<∼ 15, время выгорания
его основного изотопа 16O превышает 1010 лет, так что ,,подкачки" ядер в CN–
цепь из NO–ветвей фактически нет. Нет и оттока ядер из CN–цикла в циклы
NO, так как из-за малой вероятности ветвления (1.4) для заметного оттока
необходимо, чтобы прошло ∼103 полных CN–циклов, что при T6

<∼ 18 также
занимает не менее 1010 лет. Кроме того — и это даже важнее — CN–цикл успе-
вает при этом выжечь весь водород и должен прекратить свою работу. Таким
образом, при T6

<∼ 15, в частности, в недрах Солнца, NO–циклы практически
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полностью отключены.
При высоких (по масштабам звезд ГП) температурах, T6

>∼ 22, положение
иное: кислород выгорает достаточно быстро, за характерное время <∼ 107 лет,
синтезируется же медленно. В итоге бо́льшая часть ядер кислорода разруша-
ется и уходит в CN–ветвь, где они почти целиком превращаются в 14N. Как
уже упоминалось, это заметно сказывается на энергетике CN–цикла: содер-
жание 14N увеличивается, и вследствие этого темп синтеза α–частиц по CN–
циклу возрастает. Эффект довольно значительный, так как до начала реакций
CNO–цикла в газе солнечного химического состава (характерного для звезд
населения I) содержание O по числу атомов несколько превышает суммарное
содержание C и N. Так, в солнечной атмосфере относительные содержания C,
N и O равны 12C : 14N : 16O = 10 : 3 : 24. В результате выгорания 16O ско-
рость энерговыделения по CN–циклу для этого химического состава должна
возрасти почти в три раза (37:13).

В области промежуточных температур (15 <∼T6
<∼ 22), а также при T6

>∼ 22 на
начальных этапах горения, до завершения выгорания кислорода, аккуратное
рассмотрение энергетики CNO–цикла неотделимо от расчета кинетики соот-
ветствующих ядерных реакций.



2. РАВНОВЕСНЫЙ РЕЖИМ CNO–ЦИКЛА

2.1. Простой
CN–цикл

Рассмотрим сначала работу простого CN–
цикла. Пусть первоначально в газе, состоя-
щем в основном из водорода и гелия, имеется

некоторая примесь углерода и азота с произвольным соотношением содержа-
ния их стабильных изотопов. Представим себе, что мы нагрели газ до достаточ-
но высокой температуры, скажем, до T6 = 15, и в дальнейшем поддерживаем
ее постоянной. Начнутся реакции захвата протонов. Если в первичном газе
имелось заметное количество 15N (обычно это не так), то он выгорит первым,
превратившись в 12C. Характерное время этого процесса — 104 лет (при T6 = 15
и ρXH = 100 г/см3; см. Табл. VII.1.2). Затем за ∼2·105 лет выгорит 13C (если он
был), наконец, ∼106 лет потребуется для выгорания 12C. Подавляющая часть
всех этих ядер превратится в 14N, содержание которого спустя несколько мил-
лионов лет после начала процесса станет почти равным суммарному содержа-
нию всех изотопов C и N в первичном газе. После этого изменение содержаний
12C, 13C и 15N замедлится, а вскоре и вовсе прекратится. Захваты протонов
ядрами 14N, ведущие к появлению 15N в реакциях 14N(p,γ)15O(e+ν)15N, нач-
нут компенсировать выгорание остатков 15N. В свою очередь, выгорание этого
вновь образующегося 15N производит 12C и т. д. — начинает работать цикл.
Время его включения и выхода на стационарный режим определяется време-
нем выгорания 12C, превышая его в несколько раз. Оно существенно меньше
времени выгорания 14N. Так, при T6 = 15 выход на стационарный режим за-
нимает несколько миллионов лет, время же жизни 14N по отношению к выго-
ранию на протонах ∼ 5 · 108 лет. Здесь проявляется следующее общее важное
правило: в произвольном цикле с существенно различающимися временами
протекания отдельных реакций характерное время выхода цикла на стацио-
нарный режим определяется не самой медленной его реакцией, а следующей
за ней по продолжительности. Не правда ли, это кажется противоестествен-
ным, противоречащим тому, что подсказывает ,,интуиция"? И тем не менее это
так!

Чтобы лучше понять, в чем суть дела, рассмотрим такой пример. Пусть
первоначально в газе, кроме водорода, имеется только 12C. При T6 = 15 спустя
∼(6÷7)·106 лет в результате его выгорания с последующим быстрым (формаль-
но — мгновенным) превращением 13N и 13C в 14N станет 14N/12C ≈ 200 : 1.
Выгорание 14N в течение этого периода незначительно, и мы им пренебрегаем.
Начиная с этого момента число реакций 12C+p и 14N+p оказывается практи-
чески равным: λ1,12

12C ≈ λ1,14
14N . Для достижения этого, как только что

360
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говорилось, требуется ∼(6÷ 7)·106 лет,что в 5.3 раза больше времени выгора-
ния 12C. За это время его содержание э убывает в e5.3 ≈ 200 раз. Хотя время
выхода на режим, при котором λ1,12

12C ≈ λ1,14 , и превышает время выгора-
ния 12C в несколько раз, оно все же гораздо меньше времени выгорания 14N,
при T6 = 15 составляющего ∼ 5 · 108 лет (см. Табл.VII.1.2, с. 358).

Количественное описание работы CN–цикла в переходном режиме см. в
разд. 3, с. 369.

Основной итог переходного периода — установление в газе такого относи-
тельного содержания изотопов C и N, которое в дальнейшем не меняется (если
температура остается постоянной). Оно определяется тем очевидным условием,
что в таком установившемся, или, как обычно говорят, равновесном режиме
скорости реакций на всех этапах цикла одинаковы, так что

λ12
12C = λ13

13C = λ14
14N = λα

15
15N. (2.1)

Напомним, что символы 12C, 14N и т. п. означают, как и ранее (например, в
Гл. VI), концентрации ядер 12C, 14N и т. п. Поскольку мы имеем дело толь-
ко с реакциями захвата протонов, здесь и далее до конца этого раздела для
краткости вместо λ1,i будем писать просто λi, i = 12, 13, ... Верхний индекс α
указывает на реакцию (p, α)

(
а не (p,γ)

)
. Условие (2.1) иначе можно записать

так:
12C

τ12
=

13C

τ13
=

14N

τ14
=

15N

τα
15

, (2.2)

где для краткости обозначено, как это принято, τ12 ≡ τp(12C) и т. д. Содержания
нестабильных ядер 13N и 15O ничтожны. Мы ими пренебрегли, приняв, что β–
распады происходят мгновенно и цикл идет в четыре шага.

Пусть CN — суммарная концентрация ядер углерода и азота, то есть

CN = 12C+13C+14N+15N.

При работе цикла она не меняется. Обозначим, далее, через τCN период цикла,
то есть время, которое занимает синтез альфа–частицы, когда цикл работает
в стационарном режиме:

τCN = τ12 + τ13 + τ14 + τα
15

.

Складывая все числители и все знаменатели в (2.2), по свойству пропорции
заключаем, что общая величина отношения в цепочке равенств (2.2) равна
CN/τCN . Поэтому, например,

12C = τ12
CN

τCN

,



362 Гл.VII. Горение водорода. II

и аналогично для 13C и т. д. Таким образом, в равновесном режиме в цепочке
последовательно идущих реакций устанавливаются концентрации ядер, пря-
мо пропорциональные временам их выгорания.

Это достаточно общее правило. Оно применимо и к последовательным ре-
акциям, не образующим цикла. Пример — цепочка идущих в звездах реакций
последовательного захвата нейтронов — важнейший механизм синтеза элемен-
тов тяжелее железа. Поскольку сечения нейтронного захвата хорошо известны,
относительные распространенности возникающих таким путем тяжелых ядер
легко рассчитать.

Работу CN–цикла в равновесном режиме можно уподобить течению ре-
ки. Там, где уклон большой и потому скорость течения велика, река узкая.
Там же, где уклон мал, река течет медленно, но разливается широко. Реак-
ция 14N(p,γ)15O — это место самого ,,широкого разлива": малое сечение этой
реакции влечет высокое равновесное содержание 14N. Напротив, характери-
зующаяся очень большим S–фактором и потому большим сечением реакция
15N(p, α)12C — это как бы речной порог, где бурлящий поток становится со-
всем узким: равновесная концентрация 15N очень мала.

2.2. Равновесные
распространенности
нуклидов CN–цикла

Расчет равновесных концентраций нуклидов
CN–цикла представляет большой астрофи-
зический интерес. Начнем с 14N. Посколь-
ку характерное время реакции 14N(p,γ) 15O
гораздо больше характерных времен всех

остальных реакций CN–цикла (см. Табл. VII.1.2 и Табл. VII.1.3, с. 358), с хоро-
шим приближением можно считать, что τCN ≈ τ14 . Для звезд верхней части ГП
погрешность этого приближения не превышает нескольких процентов. Поэто-
му 14N = (τ14/τCN) CN ≈ CN . Итак, если в газе достаточно долго действовал
CN–цикл, то бо́льшая часть ядер C и N окажется переработанной в один изотоп
азота — 14N. Его содержание будет составлять более 95% общего числа ядер
углерода и азота, имевшихся в газе первоначально. По-видимому, это один из
существенных, а может быть и основной путь синтеза азота в природе. Если
это так, то значительная часть азота является продуктом двукратного звезд-
ного нуклеосинтеза. На первом шаге горение гелия в недрах красных гигантов
производит ядра 12C и 16O (см. Гл. VIII), которые, попав затем в межзвездную
среду и из нее — в звезды следующих поколений, перерабатываются в них в
CNO–цикле в азот. В массивных звездах 16O за счет NO–циклов также почти
целиком превращается в 14N, см. п. 2.3.

Далее, как уже упоминалось, равновесное содержание тяжелого изотопа
азота 15N должно быть очень низким, 15N/14N ≈ 2 ·10−5, поскольку его синтез
из 14N идет медленно, а разрушение — очень быстро

(
в реакции 15N(p, α)12C

)
.

Заметим, что на Земле отношение 15N/14N на два порядка выше: 15N/14N =
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3.7 · 10−3, что требует специального объяснения.
Наконец, практически независимо от температуры (и, разумеется, от

плотности), при которой работает CN–цикл, в равновесном режиме устанав-
ливается специфическое отношение содержаний изотопов углерода 12C и 13C:

12C

13C
≈ 5.7.

На Земле содержание 13C гораздо ниже: 13C/12C ≈ 1.1%, в атмосфере Солнца
оно того же порядка, что и на Земле.

Во всех имеющихся к настоящему времени (2011 г.) астрофизических ру-
ководствах приводится другое значение равновесного отношения 12C/13C,
именно,

12C

13C
≈ 3.8.

Причина того, почему теперь для этого важного изотопного отношения
следует принимать большее значение, именно, 5.7, чем ранее использовав-
шееся число 3.8, состоит в изменении измеренных значений S–факторов
реакций 12C(p,γ)13N и 13C(p,γ)14N. Ранее принималось, что они равны, со-
ответственно, 1.45 и 5.50 кэВ · барн (см. J.N.Bahcall et al., Rev. Mod. Phys.,
54, 736 – 799, 1982). Современные значения S–факторов этих реакций рав-
ны 1.34 и 7.6 кэВ · барн (см. Табл. VII.1.1, с. 355). В равновесном режиме
12C ∝ τ12 = 1/λ12 = 1/ <σv>12 ∝ 1/S12(0) и аналогично для 13C. Поэто-
му отношение 12C/13C ∝ S13(0)/S12(0), а эта величина с 5.50/1.45=3.79
возросла до 7.6/1.34=5.67, то есть увеличилась в полтора раза.

Детальные данные о равновесном содержании изотопов C и N, определяе-
мом условием (2.2), представлены в Табл. VII.2.1. Табл. VII.2.2 (с. 364) сумми-
рует данные о содержании изотопов C, N и O в Солнечной системе (по данным
обзора M.Asplund et al., Ann. Rev. Astron. Astrophys., 47, 481, 2009).

Для интерпретации ряда наблюдательных фактов важно следующее обсто-
ятельство. Отношения содержаний изотопов 13C/12C и 12C/14N становятся
близкими к равновесным спустя существенно разное время после начала ра-
боты цикла, или, как говорят, требуют различной глубины CN–переработки
(CN–processing), или различной длительности CN–экспозиции. В частности,
отношение 13C/12C делается близким к равновесному после очень короткой
экспозиции, texp ∼ 0.5 τ12 . Отношение же 12C/14N приближается к равно-
весному лишь в результате значительно более длительной CN–переработки,
texp ∼ (7 ÷ 10) τ12 . Предлагаем читателю самостоятельно понять, почему это
так.
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Таблица VII.2.1:
Относительные содержания изотопов C и N, устанавливающиеся в

равновесном CN–цикле, в долях полного числа ядер углерода и азота

T6
12C/CN 13C/CN

(
12C +13C

)
/CN 14N/CN 15N/CN

10 1.76 · 10−3 5.22 · 10−4 2.28 · 10−3 0.998 4.42 · 10−5

15 4.19 · 10−3 1.23 · 10−3 5.42 · 10−3 0.995 4.12 · 10−5

20 7.17 · 10−3 2.09 · 10−3 9.26 · 10−3 0.991 3.88 · 10−5

25 1.04 · 10−2 3.03 · 10−3 1.34 · 10−2 0.986 3.67 · 10−5

30 1.38 · 10−2 3.99 · 10−3 1.78 · 10−2 0.982 3.49 · 10−5

Таблица VII.2.2:
Относительные содержания изотопов
C, N и O в Солнечной системе (в %)

12C 98.89 14N 99.77 16O 99.76
17O 0.038

13C 1.11 15N 0.23 18O 0.200

2.3. Равновесный
тройной CNO–цикл

Рассмотрим теперь установившийся режим
тройного CNO–цикла. Ограничимся темпе-
ратурами T6 > 15. При меньших температу-
рах равновесие в кислородной ветви цикла

за время жизни звезды на главной последовательности заведомо не достигает-
ся.

Установившееся, не меняющееся со временем содержание нуклидов, связан-
ных друг с другом любой сколь угодно сложной сетью реакций, определяет-
ся очевидными условиями стационарности: скорость синтеза ядер каждого
данного вида всеми возможными способами должна быть равна суммарной
скорости их разрушения по всем имеющимся каналам.

Выражающие это условие уравнения аналогичны столь привычным для
астрофизиков-оптиков системам уравнений стационарности, которые опреде-
ляют населенности уровней атомов в газе из условия баланса скоростей засе-
ления и опустошения каждого из уровней.

Хотя использование подобного общего подхода для анализа равновесного
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тройного CNO–цикла может показаться стрельбой из пушки по воробьям, оно
поучительно в педагогическом отношении, позволяя на простом примере про-
иллюстрировать общий метод.

Обратимся к структурной схеме цикла (Рис. VII.1.1, с. 352). Она позволяет
написать следующие очевидные условия стационарности (слева в каждой
строке указано то ядро, к которому это условие относится; нестабильными
изотопами по-прежнему пренебрегаем, считая тем самым, что β–распады
происходят мгновенно):

12C : λα
15

15N = λ12
12C a

13C : λ12
12C = λ13

13C b
14N : λ13

13C + λα
17

17O = λ14
14N c

15N : λ14
14N + λα

18
18O = (λα

15 + λ15) 15N d
16O : λ15

15N = λ16
16O e

17O : λ16
16O = (λα

17 + λ17) 17O f
18O : λ17

17O = λα
18

18O g

Эта однородная линейная алгебраическая система имеет ненулевое решение.
Значит, ее определитель равен нулю, то есть одно из уравнений является
следствием остальных.

Проверьте, что мы получим последнее уравнение, если сложим почленно
все остальные.

Таким образом, выписанная система определяет лишь отношения равновес-
ных распространенностей различных изотопов C, N и O друг по отношению
к другу. Если одно из уравнений системы (любое) отбросить, а вместо него
добавить условие

12C +13C +14N +15N +16O +17O +18O = CNO, h

где CNO — (заданная) суммарная концентрация всех ядер C, N и O, то из
полученной таким образом системы можно будет найти абсолютное содержа-
ние различных CNO–нуклидов. Взяв CNO = 1, получим в качестве решения
распространенности различных изотопов катализаторов CNO–цикла в долях
их общего числа.

Казалось бы, все сделано — осталось выбрать температуру, рассчитать по
ней значения коэффициентов λ и решить систему. Однако поступить так —
это значит не быть настоящим физиком. Всегда следует помнить девиз: ,,Цель
расчетов — не числа, а понимание".

Очень часто понимание достигается за счет того, что в задаче удается отыс-
кать малый параметр. В данном случае он очевиден — это отношение скоро-
стей реакций (p,γ) и (p, α) на ядре 15N, то есть эффективность ответвления от
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основного CN–цикла в кислородную ветвь. Этот параметр

ε ≡ λ15/λα
15

имеет порядок 10−3. Малость ε позволяет рассматривать влияние кислородной
ветви методом возмущений.

При ε = 0 (то есть при λ15 = 0) система уравнений стационарности CNO–
цикла переходит в рассматривавшиеся ранее уравнения, описывающие равно-
весный простой CN–цикл

(
формула (2.1), с. 361

)
[проверьте!]. При этом полное

число ядер всех изотопов C и N равно суммарному числу первоначально со-
державшихся в газе ядер C, N и O. Последнее не должно удивлять. При ε = 0
оттока из CN–цикла в кислородную ветвь нет, ,,подкачка" же в CN–ветвь ядер
кислорода за счет их выгорания возможна. Поэтому в процессе выхода трой-
ного цикла на стационарный режим весь кислород выгорает, превращаясь в C
и N (на самом деле главным образом в 14N, как мы знаем из п. 2.2).

Невозмущенное решение (ε = 0) известно в явном виде (см. предыдущий
пункт):

12C = τ12
CNO

τCN

, . . . , 15N = τα
15

CNO

τCN

.

Решения при ε 6= 0 естественно искать в виде рядов по степеням ε вида

15N = 15N (0) + ε 15N (1) + . . .

и аналогично для 12C, 13C и 14N . Для изотопов кислорода разложения должны
начинаться с членов, пропорциональных ε, так как при ε = 0 кислорода в
равновесном режиме нет. Поэтому

16O = ε 16O(1) + . . .

и подобным же образом для 17O и 18O. Так как ε мало́, а скорости реакций
известны не абсолютно точно, удерживать члены с ε2 не имеет смысла.

Подстановка приведенных разложений в уравнение стационарности для 16O
дает (с точностью до членов порядка ε2)

16O = ε · τ16
CNO

τCN

.

Хотя из-за различия в высоте кулоновского барьера для кислорода и азота зна-
чение τ16 на один – два порядка превосходит τ14 , а значит, и τCN , так как τ14 ≈ τCN

(см. Табл. VII.1.2, с. 358), вследствие малости ε равновесное содержание 16O
тем не менее оказывается низким, всего несколько процентов. Так, при T6 = 30
имеем 16O/CNO ≈ 3%. Таким образом, при выходе CNO–цикла на равновес-
ный режим происходит сильное выгорание первоначально имевшегося в газе
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Таблица VII.2.3:
Относительные распространенности нуклидов

в равновесном тройном CNO–цикле∗

T6 C/CNO N/CNO O/CNO 12C/13C

15 4.90 · 10−3 0.899 9.63 · 10−2 3.41??
30 1.73 · 10−3 0.934 2.89 · 10−2 3.45??
50 3.40 · 10−2 0.953 1.34 · 10−2 3.46??

∗ C≡12C+13C; N≡14N+15N ; O≡16O+17O+18O; CNO≡ C+ N+ O.

кислорода. Далее, ясно, что с ростом температуры равновесное содержание 16O
должно убывать, поскольку из-за различия в Z скорость разрушающих кис-
лород протонных реакций зависит от T сильнее, чем темп синтезирующей его
реакции 15N(p,γ)16O.

По найденному содержанию 16O из соответствующих уравнений стацио-
нарности немедленно находятся содержания 17O и 18O. Для 18O содержание
заведомо низкое, хотя из-за неопределенности в сечении реакции 18O(p, α)15N
численное его значение ненадежно. Отношение же 17O/16O оказывается не ма-
лым. Так, при T6 = 30 содержание 17O лишь всего примерно в полтора раза
ниже содержания 16O. Это резко расходится с тем, что есть у нас на Земле,
где изотоп 17O очень редок (см. Табл. VII.2.2, с. 364). Заметим, что отношение
17O/16O заметно меняется с температурой (почему?).

Сравнительно высокое содержание 17O в газе, остающемся после вы-
горания водорода в CNO–цикле, представляет интерес в связи с про-
блемами нуклеосинтеза. На стадии горения гелия может идти реак-
ция 17O(α, n)20Ne. Таким образом, 17O становится на этом этапе по-
ставщиком нейтронов, как и другой продукт CNO–цикла — изотоп
13C

(
за счет реакции 13C(α, n)16O

)
. Появление в звезде свободных ней-

тронов — важное событие в ее жизни. Оно открывает возможность синтеза
тяжелых ядер за счет реакций нейтронного захвата, для которых кулонов-
ские барьеры не являются препятствием.

Очевидно, что вследствие малости ε подключение к быстро циркулирующе-
му CN–циклу кислородных ветвей NO I и NO II с очень малой ,,силой тока" в
них и большим временем циркуляции должно мало сказаться на относитель-
ных распространенностях изотопов CN–цикла. Дальнейшая детализация едва
ли заслуживает внимания. Полезнее просто привести окончательные результа-
ты. Они представлены в Табл. VII.2.3. При расчетах использовались скорости
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реакций из фаулеровских сводок 1975 и 1983 гг. (Ann. Rev. Astron. Astrophys.,
13, 69, 1975; 21, 165, 1983). Поправки на электронное экранирование не вводи-
лись.

Резюме важнейшего результата этого раздела сводится к следующему. В
результате длительной работы CNO–цикла в массивных звездах, помимо вы-
деления энергии и выгорания водорода, происходит превращение почти всех
(∼94% при T6 = 30) ядер C, N и O в азот 14N, а также радикальное измене-
ние изотопного состава сохраняющихся в виде примесей ядер углерода (∼2%)
и кислорода (∼3%): 12C/13C ≈ 5.7, 16O/17O ≈ 3 : 2



3 КИНЕТИКА НУКЛЕОСИНТЕЗА В CNO–ЦИКЛЕ

3.1. Основное
приближение

Вслед за проведенным в предыдущем раз-
деле рассмотрением равновесного режима
CNO–цикла естественно дать количествен-
ное исследование нуклеосинтеза в переход-

ном режиме, до достижения равновесия.
Работа тройного CNO–цикла в неравновесном режиме определяется соот-

ветствующей системой дифференциальных уравнений кинетики нуклеосинте-
за. Они описывают изменение со временем содержания каждого из фигурирую-
щих в цикле нуклидов. Эти дифференциальные уравнения легко составляются
непосредственно по уравнениям реакций (рецепт см. в п. 2.3, с. 364). Действуя
подобным формальным образом, мы получили бы систему одиннадцатого по-
рядка — по одному уравнению первого порядка на каждый из изотопов C, N, O
и F, встречающихся в тройном цикле. Выписывать эту систему едва ли целесо-
образно, так как она допускает значительные упрощения, причем некоторые из
них почти очевидны. Физической причиной этих упрощений служат большие
различия в характерных временах протекания реакций цикла.

Вместо того, чтобы сразу рассматривать конкретные уравнения кинетики
для CNO–цикла, начнем с обсуждения одной общей часто встречающейся ситу-
ации. Пусть некоторое ядро типа A синтезируется из ядра B в реакции, идущей
с характерным временем τB , а разрушается в некоторой другой реакции, име-
ющей характерное время протекания τA . Тогда изменение содержания ядер A
со временем определяется дифференциальным уравнением

dA

dt
=

B

τ
B

− A

τ
A

. (3.1)

Здесь символы A и B — это концентрации соответствующих ядер (так что,
как обычно, A и B означают у нас типы ядер, а A и B — их концентрации).
Предположим, что синтез ядер A идет существенно медленнее их разрушения,
то есть

τA ¿ τB .

Будем, далее, считать, что на временах порядка τ
A

изменениями плотности,
температуры и концентрации ядер B можно пренебречь. Тогда в уравнении
(3.1) τA , τB и B постоянны, и его решение можно записать в виде

A

B
=

(
A

B

)

e

(
1− e−t/τ

A

)
+

(
A

B

)

0

e−t/τ
A , (3.2)
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где (A/B)0 — начальное и (A/B)e — равновесное отношение концентраций:
(

A

B

)

e

=
τ
A

τ
B

.

Так как по предположению скорость синтеза ядер A существенно меньше
скорости их разрушения, то (A/B)e мало́. Важнее, однако, подчеркнуть другое:
согласно (3.2), характерное время достижения равновесия дается значением
τ
A
, то есть меньшим из двух фигурирующих в уравнении (3.1) времен τ

A
и τ

B
.

Поэтому если содержание ядер B меняется со временем, но эти изменения про-
исходят на временны́х масштабах, больших по сравнению с τ

A
, то содержание

быстро разрушающихся ядер A будет успевать ,,следить" за медленно меняю-
щейся концентрацией рождающих их ядер B. В результате в каждый данный
момент отношение A/B можно считать равновесным. Концентрацию ядер A
можно при этом находить по имеющейся в данный момент концентрации B из
условия

A

τ
A

=
B

τ
B

,

получающегося из (3.1) приравниванием производной к нулю.
Что реально означает ,,много меньше" в условии τA ¿ τB , лежащем в осно-

ве всех этих рассуждений? Если требуется точность ∼1% — а в обсуждаемых
задачах почти никогда бо́льшего не нужно, — то достаточно, чтобы τ

B
превы-

шало τ
A
раза в 3÷ 4. Подробнее об этом — немного позже.

3.2. Выход на
равновесный режим

в CN–цикле

Теперь мы готовы к изучению кинетики
CNO–цикла. В основе лежит анализ харак-
терных времен протекания различных реак-
ций. Начнем с рассмотрения простого CN–
цикла. (Учет кислородной ветви, как уже

упоминалось в п. 2.3, мало сказывается на относительных распространенно-
стях ядер CN–цикла). Времена жизни синтезируемых в CN–цикле нестабиль-
ных изотопов 15N и 15O на много порядков меньше характерных времен всех
других реакций — всего минуты. Поэтому, когда речь идет о гидростатических
стадиях эволюции (а не о звездных взрывах), относительное содержание этих
изотопов в любой момент можно с огромной точностью считать равновесным:

12C

τ12
=

13N

τ13
,

14N

τ14
=

15O

τ15
, t À max (τ

β
).

Справа указано, спустя какое время такое относительное содержание изотопов
устанавливается.
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Характерные времена остальных реакций цикла располагаются в порядке
возрастания следующим образом:

τ15 , τ13 , τ12 , τ14 ,

причем они значительно отличаются друг от друга (см. Табл. VII.1.2, с. 358).
Следствием этого являются существенные упрощения в кинетике нуклеосин-
теза в CN–цикле.

Начнем с рассмотрения содержания 15N. Из-за очень большого сечения иду-
щей с сильным взаимодействием реакции 15N(p, α)12C время выгорания 15N
очень мало (порядка 104 лет при T6 = 15 и ρXH = 100, см. Табл. VII.1.2).
Так как распад 15O можно считать происходящим мгновенно, то изменение
содержания 15N со временем должно определяться уравнением

d 15N

dt
=

14N

τ14
−

15N

τ15
,

вытекающим непосредственно из цепочки реакций цикла. Время выгорания
14N велико, ∼ 2 ·108 лет при T6 = 15 и ρXH = 100. Поэтому это уравнение
принадлежит к обсуждавшемуся выше общему типу (3.1) с τA ¿ τB. Вывод —
при T6 > 15 спустя достаточно короткое время (<∼105 лет) должно устанав-
ливаться равновесное (очень низкое) относительное содержание 15N/14N . Оно
определяется условием

14N

τ14
=

15N

τ15
, t À τ15 ,

получающимся приравниванием производной к нулю в приведенном только
что уравнении. Заметим, что при высоких температурах такое относительное
содержание изотопов азота устанавливается очень быстро, поскольку τ15 в этом
случае мало. Так, при T6 = 20 имеем τ15∼ 102 лет, а при T6 = 25 значение τ15
всего порядка года.

Итак, при t À τ15 система уравнений нуклеосинтеза в простом CN–цикле
очень сильно упрощается. Заметно отличаться от равновесных могут лишь
концентрации 12C, 13C и 14N, содержания же всех других ядер подстроены
равновесным образом под имеющиеся в каждый данный момент концентрации
этих ядер. Изменение содержания со временем этих трех в некотором смысле
основных ядер определяется следующей системой уравнений:

d 13C

dt
=

12C

τ12
−

13C

τ13
,

d 12C

dt
=

14N

τ14
−

12C

τ12
, (3.3)
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d 14N

dt
=

13C

τ13
−

14N

τ14
.

Они непосредственно следуют из цепочки реакций CN–цикла (считаем β–
распады происходящими мгновенно).

Если не требовать высокой точности, то эта система допускает дальней-
шее, и существенное упрощение. Дело в том, что время выгорания 12C хотя
и не на порядки, но все же довольно значительно, почти в шесть раз, превос-
ходит время выгорания 13C (отсюда равновесное отношение 12C/13C ≈ 5.7).
Поэтому первое из трех выписанных уравнений можно приближенно тракто-
вать по нашей схеме, то есть как уравнение (3.1) с τ

A
¿ τ

B
и постоянными

B, τA и τB . В результате приходим к заключению, что спустя время порядка
нескольких τ13 должно установиться равновесное отношение содержаний 12C
и 13C, определяемое условием

12C

τ12
=

13C

τ13
, t À τ13 .

Подчеркнем, что пока в цикле не достигнуто полного равновесия, абсолютные
содержания 12C и 13C будут продолжать меняться (убывать) и при t > τ13.

По достижении равновесного отношения 12C/13C наступает последний, са-
мый медленный этап релаксации — выгорание углерода с превращением его в
азот. Характерное время этого процесса равно, очевидно, τ12 . Это видно и из
(3.3). По истечении времени в несколько τ12 достигается полное равновесие, то
есть

14N

τ14
=

12C

τ12
, t À τ12 .

Разумеется, это лишь приближенное рассмотрение. Более строгий анализ
требует аккуратного решения системы (3.3). На Рис. VII.3.1 приведены в каче-
стве иллюстрации результаты, полученные таким путем для следующих зна-
чений параметров: T6 = 25, ρ = 100 г/см3, начальный химический состав —
ХH = 0.70, X4He = 0.28, X12C = 0.02. Обратите внимание, в частности, на то,
что отношение 12C/13C становится близким к равновесному (равному ≈ 5.7)
задолго до того, как абсолютные содержания 12C и 13C стабилизируются. Этот
вывод был сделан у нас выше из анализа структуры уравнений кинетики, без
их решения.

Количественные результаты типа тех, которые представлены на приведен-
ном только что рисунке, следует рассматривать с некоторой осторожностью.
Дело в том, что в реальных звездах исходные предположения о постоянстве
во времени температуры и концентрации протонов не выполняются. Поэтому,
строго говоря, система уравнений нуклеосинтеза должна решаться совместно
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Рис. VII.3.1:
Выход CNO–цикла на равновесный режим. Подробности см. в тексте.

Источник: Ch.Iliadis, 2007, p. 407.

с остальными уравнениями, описывающими строение и эволюцию звезды. В
современных расчетах звездной эволюции так и поступают.

Есть еще одно обстоятельство, которое следовало бы принимать во внима-
ние при обсуждении работы CNO–цикла и, в частности, при расчете времен
выгорания нуклидов CNO–группы и выхода цикла на равновесный режим. У
звезд главной последовательности, энергетика которых обеспечивается CNO–
циклом, имеются конвективные ядра. Конвективное перемешивание постоян-
но доставляет в центральную область, где активно идут реакции CNO–цикла,
вещество из более холодных областей конвективной зоны. Поэтому время вы-
горания, скажем, 12C, время выхода цикла на стационарный режим и т. п. в
действительности оказываются величинами, которые определяются не локаль-
ными условиями в центре звезды (как это молчаливо предполагалось до сих
пор), а существенно зависят от массы вещества во всем конвективном ядре.
Конвекция будет непрерывно доставлять в центр звезды вещество, подвергше-
еся меньшей CN–экспозиции. Поэтому выход нуклидов цикла на равновесные
значения будет происходить сразу по всему конвективному ядру, что, есте-
ственно, занимает гораздо большее время, чем те оценки, которые были полу-
чены выше. Несомненно, что это обстоятельство будет сказываться не мень-
ше, а скорее всего больше, чем изменение центральной температуры по мере
выгорания водорода. Количественные оценки влияния указанного только что



374 Гл.VII. Горение водорода. II

эффекта требуют детального эволюционного расчета модели звезды. Стран-
но, но факт: ни в одном из известных автору руководств по физике звезд, в
том числе тех, где детально рассматривается функционирование CNO–цикла
(D.Clayton, 1983; Ch. Iliadis, 2007), нет ни слова о влиянии конвекции на его
работу.

Резюмируем два важнейших заключения качественного характера, ко-
торые выявило проведенное рассмотрение. Во-первых, время выхода CN–цикла
на стационарный режим дается не наибольшим из фигурирующих в нем ха-
рактерных времен τ14 , а следующим за ним по величине (τ12). Во-вторых,
равновесные отношения содержаний изотопов азота и углерода 15N/14N и
13C/12C устанавливаются задолго до наступления равновесного режима.



4. ЭНЕРГЕТИКА CNO–ЦИКЛА

4.1. Равновесный
режим

Энергия, вырабатываемая в равновесном
простом CN–цикле в расчете на синтез од-
ной альфа–частицы и остающаяся в звезде,
составляет 25.03 МэВ, что несколько мень-

ше тех 26.20 МэВ, которые дает цепочка pp I. Причина, разумеется, в том,
что в CN–цикле нейтрино уносят заметно бо́льшую энергию (0.706 МэВ при
бета-распаде 13N и 0.996 МэВ при распаде 15O, итого 1.702 МэВ). Два нейтри-
но, испускаемые в цепочке pp I при протон–протонных реакциях, уносят всего
2× 0.265 = 0.530 МэВ.

Итак, энергии, достающиеся звезде при синтезе альфа–частицы по це-
почке pp I и по CNO–циклу, одного порядка. Поэтому чтобы CNO–цикл мог
энергетически конкурировать с протон–протонными цепочками, скорость син-
теза альфа–частиц этими двумя способами должна быть одного порядка. Од-
нако в реакции 14N(p,γ)15O протону приходится преодолевать гораздо более
высокий кулоновский барьер, чем при протон–протонной реакции. Так, при
T6 = 20 вероятность подбарьерного проникновения e−τ для протон–протонной
реакции составляет ∼ e−12.4, а для реакции 14N(p,γ)15O — порядка e−54.8, то
есть в e42.4 раз, или более чем на 18 порядков меньше. Есть и еще одно обсто-
ятельство, снижающее эффективность CNO–цикла по сравнению с протон–
протонными цепочками. Скорость реакции, как мы знаем, пропорциональ-
на произведению концентраций NiNk реагирующих ядер, точнее, N2

p /2 для
протон–протонной реакции и NpNCN для равновесного CN–цикла. Суммарная
концентрация всех ядер C и N у звезд населения I составляет ∼10−3 от концен-
трации протонов. По достижении равновесия в CN–цикле практически все эти
ядра перерабатываются в 14N, так что NCN ∼ 10−3Np. Казалось бы, скорость
энерговыделения в CN–цикле должна быть совершенно ничтожной, на 21 поря-
док меньшей, чем по цепочке pp I. Однако колоссальное различие в S-факторах
pp–реакции и реакции 14N(p,γ)15O, соответственно ∼ 10−22 и ∼ 100 кэВ·барн,
вполне компенсирует и различие в вероятности туннельного проникновения
через кулоновский барьер, и различие в концентрациях реагирующих ядер.

От качественного обсуждения перейдем к количественному рассмотрению.
В равновесном режиме число реакций каждого из шагов CN–цикла в единицу
времени одно и то же. Поэтому, чтобы получить энерговыделение в расчете на
синтез одной альфа–частицы, можно просуммировать энергии, выделяющиеся
на каждом из шагов CN–цикла (за вычетом потерь на нейтрино), и результат
умножить на скорость протекания реакции 14N(p,γ)15O. Приведем сначала для
справок энерговыделение Q на отдельных шагах цикла (эти данные понадобят-

375
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ся нам позже):

Q12C(p,γ)13N(e+ν) − Eν = (1.944 + 2.220− 0.706) МэВ = 3.858 МэВ;

Q13C(p,γ) = 7.551 МэВ;

Q14N(p,γ)15O(e+ν) − Eν = (7.297 + 2.754− 0.996) МэВ = 9.055 МэВ;

Q15N(p,α) = 4.966 МэВ.

Обращаем внимание на то, что на первых шагах цикла, при выгорании углеро-
да с превращением его в 14N, выделяется 3.858+7.551=11.409 МэВ, что состав-
ляет более 45% всей энергии, достающейся звезде при синтезе альфа–частицы
по CN–циклу

( ∑
Q = 25.03 МэВ

)
.

Окончательное выражение для темпа выделения энергии в равновесном
простом CN–цикле имеет вид

ρεCN =
(∑

Q

)
Rp,14N = 1.8 · 1027ρ2XHXCNT

−2/3
6 exp

(
−152.31

T
1/3
6

)
эрг/(см3с).

(4.1)
Степенная аппроксимация темпа энерговыделения в CN–цикле имеет обыч-

ный вид

εCN(T ) ≈ εCN(T0)
(

T

T0

)ν

.

Температурный показатель ν определяется реакцией 14N(p,γ)15O и равен
(см. п. 2.5 Гл. V, с. 284)

ν =
50.8

T
1/3
6

− 2
3

.

В окрестности T6 = 20 мы имеем ν = 18.0.
При какой температуре темп выделения энергии по CN–циклу сравнивается

с энерговыделением по цепочке pp I? Приравнивая ρεI

(
формула (1.27), с. 317)

)
и ρεCN

(
формула (4.1)

)
, производя очевидные сокращения и логарифмируя

полученное равенство, приходим к следующему уравнению для определения
этой температуры:

51.46

T
1/3
6

= 20.9− lg
XCN

XH
. (4.2)

При солнечном значении отношения XCN/XH=0.02 находим отсюда T6≈19. В
литературе обычно приводится несколько меньшее значение (T6≈18). Причина
расхождения в том, что современное значение S–фактора реакции 14N(p,γ)15O(
S(0)=1.66 кэВ · барн, см. Табл. VII.1.1, с. 355) вдвое меньше использовавше-
гося прежде значения

(
S(0)=3.32 кэВ · барн)

. Итак, за счет pp-цепочек светят
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Рис. VII.4.1:

Изменение энерговыделения при выходе CNO–цикла на равновесный режим.
Подробности см. в тексте.

(Источник: Ch. Iliadis, 2007, p. 407.)

все звезды населения I с M <∼ 2 (находящиеся на начальной главной последова-
тельности). Как следует из последней формулы, по мере выгорания водорода
температура, при которой εI = εCN, должна возрастать (поймите, почему).

Поскольку темпы энерговыделения по pp–цепочкам и по CN–циклу равны
при T6 = 19 (для солнечного содержания CN–нуклидов), обычно думают, что
CN–цикл и pp–цепочки дают равный вклад в общее энерговыделение в звез-
дах с центральной температурой T = 19 · 106 К. Это неверно. Из-за гораздо
более сильной температурной чувствительности CN–цикла по сравнению с pp–
цепочками проинтегрированное по всему объему звезды выделение энергии за
счет pp–цепочек будет при этом больше, чем то, которое дают реакции CN–
цикла.

Интуитивно кажется, что до наступления равновесия в CN–цикле энер-
говыделение должно быть меньше, чем в равновесном режиме — цикл как
бы ,,разгорается". На самом деле при обычном солнечном содержании CNO–
нуклидов положение прямо противоположное. Рис. VII.4.1 иллюстрирует ис-
тинное положение дел. Этот рисунок является парным к Рис. VII.3.1 (с. 373).
Значения параметров, для которых производился расчет, те же, что и для
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Рис. VII.3.1. Мы видим, что в начале работы CNO–цикла, в течение ∼103 лет,
темп выработки энергии значительно выше, чем после выхода цикла на равно-
весный режим. Основным источником энергии на этом начальном этапе слу-
жит выгорание 12С.

Стоит также отметить, что, как уже упоминалось, даже если температура
остается постоянной, относительный вклад в энерговыделение pp–цепочек и
CNO–цикла по мере выгорания водорода меняется — вклад pp–цепочек умень-
шается (см. Упр. 3◦, с. 379).



5. УПРАЖНЕНИЯ

1◦ В учебнике А.В. Засова и К.А.Постнова ,,Общая астрофизи-
ка"(Фрязино, 2011) на стр. 174 приводится цепочка шести реакций простого
CN–цикла и говорится, что ,,ключевыми реакциями, определяющими скорость
всей цепочки, являются реакции 2 и 5, которые идут по каналу слабого взаи-
модействия с испусканием нейтрино". Верно ли это утверждение?

2◦ Покажите, пользуясь (2.2) и данными Табл. VII.1.1 (с. 355), что тем-
пературную зависимость равновесного отношения 12C/14N вблизи T0 можно
аппроксимировать выражением

12C
14N

∣∣∣∣
T

=
12C
14N

∣∣∣∣
T0

(
T

T0

)µ

,

где

µ = − 5.1
(T0)1/3

,

причем, как обычно, T0 — температура в миллионах кельвинов. В окрестности
T0 = 27 имеем поэтому 12C/14N ∝ T−1.7.

3◦ Пусть в начале горения водорода локальные темпы энерговыделения
по pp–цепочкам εpp и по CNO-циклу εCN равны: εpp=εCN. Чему станет равно
отношение εpp/εCN, когда 75% водорода выгорит? Считать, что температура
во время горения остается постоянной.

379



Глава VIII

ГЕЛИЕВЫЕ РЕАКЦИИ

Мы — отдаленные потомки красных гигантов.

Астрономический фольклор





1 . ТРОЙНОЙ АЛЬФА–ПРОЦЕСС

1.1. Качественная
картина

Следующими по распространенности в кос-
мосе после водорода и гелия являются кис-
лород 16O и углерод 12C (соответственно
0.85% и 0.39% по массе). Тело человека со-

стоит (по массе) на 65% из кислорода и на 18% — из углерода. Как и где синте-
зируются эти ядра? Столкновения протонов с альфа–частицами должны были
бы порождать ядра с А=5, но таких ядер в природе не существует. Столкнове-
ния двух α–частиц могут рождать крайне неустойчивое ядро 8Ве. Оно живет
всего ∼10−16 с и распадается обратно на две альфа–частицы. Так как ядра
12C и 16O состоят, соответственно, из трех и четырех α–частиц, а следующее
за ними по распространенности ядро 20Ne — из пяти α–частиц, напрашивается
мысль, что они все же каким-то образом синтезируются из альфа–частиц в
гелиевых ядрах звезд, в которых водород уже выгорел.

Ясно, что тройное столкновение α–частиц крайне маловероятно. В начале
1950-х годов Э.Солпитер осознал, что этот процесс в ядрах красных гигантов
может идти в два этапа. По окончании горения водорода лишенное ядерного ис-
точника энергии гелиевое ядро звезды сжимается и разогревается до темпера-
тур ∼108 К. При этом в газе появляется небольшая доля альфа–частиц с доста-
точными кинетическими энергиями, чтобы стала возможна реакция α+α→8Be,
что требует затраты энергии в ∼ 92 кэВ, поскольку (m8Be

−2mα) c2 = 91.84 кэВ.
(Проверьте, что 92 кэВ — это гамовская энергия для столкновения двух альфа–
частиц при T6≈116) (см. с. 383, рис. VIII.1.1, левая сторона). Хотя время жизни
компаунд–ядра 8Be, как уже говорилось, крайне мало

(
t1/2 = 6.7 · 10−17 с

)
, оно

все же на пять порядков больше того времени, которое занимает прямой пролет
двумя альфа–частицами расстояния, где действуют ядерные силы

(∼10−21 с
)
.

В итоге вероятность подлета третьей альфа–частицы возрастает на пять по-
рядков по сравнению с прямым тройным столкновением. По прошествии време-
ни ∼10−16 с ядро 8Be распадается обратно на две альфа–частицы. В результате
реакций α + α →8Be и 8Be→ α + α в газе появляется ничтожная, но очень для
нас с вами важная примесь 8Be. Таков первый этап синтеза углерода из гелия.

Второй этап состоит в том, что 8Be захватывает третью альфа–частицу с
образованием ядра 12C в возбужденном состоянии. Чтобы эта реакция шла до-
статочно быстро, во-первых, необходима высокая плотность, ∼104÷ 106 г/см3.
Но этого мало. Ф.Хойл в 1954 г. указал, что эта реакция должна быть ре-
зонансной, то есть у ядра 12C должен существовать возбужденный уровень с
энергией

(
m8Be

+ mα − m12C

)
c2 + ∆E, где ∆E порядка E0 ± ∆/2. Здесь E0 —

энергия гамовского максимума и ∆ — его ширина для реакции α+8Be
(
см.

382
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Рис. VIII.1.1:

Энергетические диаграммы для двух этапов реакций при тройном
альфа–процессе

(Источник: C.J.Hansen & S.D.Kawaler, 1994, p. 244.)

формулы (2.39), с. 277, и (2.45), с. 279
)
. Если принять T6 = 200, это дает

E0 = 146 T
2/3
8 = 232 кэВ. Полуширина этого гамовского максимума составляет

∆/2 = 41 T
5/6
8 =73 кэВ. Исходя из этого, Хойл предсказал, что у 12C должен

существовать уровень, для которого ∆E ≈ 300 кэВ. Измерения, произведенные
вскоре по его инициативе в группе У.Фаулера, установили, что такой уровень у
ядра 12C действительно существует, причем оказалось, что ∆E = 287 кэВ. Это
удивительный пример того, как астрономические данные о высокой распро-
страненности 12C во Вселенной привели к предсказанию существования ранее
неизвестного уровня у ядра 12C с энергией E = 7.654 МэВ. Ядро 12C в этом
возбужденном состоянии мы будем обозначать 12C∗ (см. рис. VIII.1.1, правая
сторона).

В результате описанного двухступенчатого процесса в газе с температурой
∼ (1 ÷ 2) ·108 К появляется ничтожная примесь ядер 12C∗. Как правило, они
тут же разваливаются назад на три альфа–частицы. Однако изредка, с веро-
ятностью, примерно в 2200 раз меньшей этого, ядро 12C∗ переходит в основное
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состояние (либо излучая два гамма–кванта, либо – гораздо реже – испуская
электрон–позитронную пару). Выделившаяся при этом энергия возбуждения
уровня 12C∗, составляющая E = 7.654 МэВ, превращается в тепло. Однако
энергия, которую газ получает в результате этого так называемого тройного
альфа–процесса, меньше этой величины на 92 + 287 = 379 кэВ, которые были
затрачены из теплового резервуара при двухступенчатом синтезе ядра 12C∗.
Она составляет, таким образом, 7654 − 379 = 7275 кэВ, что в точности равно
Q3α =

(
3mα −m12C

)
c2 = 7.275 МэВ, как это и должно быть.

1.2. 3α–процесс:
количественное
рассмотрение

Процесс 4He+4H⇔8Be аналогичен атомному
процессу ионизации и последующей реком-
бинации, с той разницей, что энергия связи
здесь отрицательна (− 92 кэВ). При этом 8Be
выступает в роли ,,нейтральной" частицы, а

4He и 4He служат аналогами электрона и иона. Выпишем для удобства обыч-
ную формулу Саха, не поясняя общепринятых обозначений:

ne
n+

n1

=
2g+

g1

(2π me kT )3/2

h3
e−χ1/kT . (1.1)

Адаптируем эту формулу к рассматриваемому случаю реакции 4He+4He⇔8Be.
Нам следует произвести очевидные замены ne⇒Nα, n+⇒Nα, n1⇒N8Be

, на-
конец, −χ1⇒E′

r =
(
m8Be

− 2mα

)
c2 = 92 кэВ. Не столь очевидно, что me нуж-

но заменить на mα/2. На самом деле me в формуле Саха (1.1) — это при-
веденная масса сталкивающихся частиц, me и m+. Поскольку m+À me, то
mem

+/(me + m+)≈me. Приведенная масса двух воссоединяющихся α–частиц
mαmα/(mα + mα) = mα/2. В итоге ядерный аналог формулы Саха для рас-
сматриваемой реакции принимает вид

N2
α

N8Be

= ω
(π mα kT )3/2

h3
eE′r/kT . (1.2)

Здесь ω — множитель, учитывающий статистические веса реагирующих ча-
стиц (аналог множителя 2g+/g1 в формуле Саха). Так как у ядер 4He и 8Be,
находящихся в основных состояниях, их спины J равны нулю, то в нашем слу-
чае

ω =
(2Jα + 1)(2Jα + 1)

2J8Be
+ 1

= 1. (1.3)

Для концентрации N8Be
из (1.2) находим

N8Be
= 1.87 · 10−33 N2

α T
−3/2
8 10−4.64/T8 . (1.4)
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Так, при T8 = 1 и ρ = 105 г/см3
(
что соответствует концентрации Nα =

1.5 · 1029 см−3
)
мы имеем N8Be

/Nα ∼ 10−9. Эта примесь 8Be кажется совер-
шенно ничтожной, но ее присутствие обеспечивает синтез практически всего
имеющегося в природе углерода!

Второй шаг тройного α–процесса состоит в захвате бериллием третьей α–
частицы с образованием ядра 12C. Однако, как указал Ф.Хойл, скорость син-
теза углерода в реакции прямого захвата 4He+8Be⇒12C+γ была бы слишком
мала для того, чтобы обеспечить имеющуюся во Вселенной высокую распро-
страненность углерода. Поэтому, как уже говорилось в предыдущем пункте,
Хойл постулировал существование у ядра 12C возбужденного уровня с энерги-
ей

(
mα + m8Be

−m12C

)
c2 + E0 + ∆/2, где E0 — гамовская энергия для реакции

4He+8Be. Образующееся при захвате на этот уровень возбужденное ядро угле-
рода 12С∗ неустойчиво и, как правило, тут же распадается назад на 4He и 8Be.
Далее, Хойл предсказал, что поскольку сталкивающиеся ядра обладают ну-
левым спином и положительной четностью

(
Jπ=0+

)
, возникающее связанное

состояние, то есть возбужденный уровень ядра углерода, также должен быть
состоянием с Jπ = 0+. Измерения показали, что такой уровень действитель-
но существует. Он отстоит от основного состояния 12C на 7.654 МэВ и имеет
Jπ = 0+.

Равновесную концентрацию ядер 12C∗, устанавливающуюся в газе с тем-
пературой T в результате реакции 4He+8Be⇔12C∗, можно найти по формуле,
аналогичной (1.2), именно

Nα

N8Be

N12C∗
= ω

(
(4π/3)mα kT

)3/2

h3
eE′′r /kT , (1.5)

где E′′
r =

(
m12C∗

− mα − m8Be

)
c2 = 287 кэВ и, как и в предыдущем случае,

ω = 1, так как спины всех трех фигурирующих здесь ядер равны нулю. Из
(1.2) и (1.5) окончательно находим

N12C∗
= N3

α

3
√

3 h6

(2π mα kT )3
e−Er/kT , (1.6)

где Er = E′
r + E′′

r =
(
m12C∗

− 3mα

)
c2 = 92 + 287 = 379 кэВ. В последней

формуле справа должен еще стоять множитель f3α, учитывающий электронное
экранирование. Чтобы не загромождать изложение, явного выражения f3α мы
здесь не приводим, отнеся его получение в Упражнения (см. с. 394).

Последний этап тройного альфа–процесса состоит в переходе 12C∗ с возбуж-
денного уровня с энергией 7.65 МэВ в основное состояние 12C, что и завершает
синтез углерода. Эти переходы вниз, как уже упоминалось, происходят гораздо
(примерно в 2200 раз) реже, чем обратный распад 12C∗ на исходные ядра 4He
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и 8Be. Поэтому они практически не сказываются на равновесной концентра-
ции 12C∗. При переходе с уровня 7.65 МэВ в основное состояние 12C изредка
испускается электрон–позитронная пара, но гораздо (примерно в 160 раз) ча-
ще — два гамма–кванта. Последний переход происходит через промежуточный
уровень с энергией 4.43 МэВ, так как прямой радиативный переход с уровня
7.65 МэВ с Jπ= 0+ в основное состояние запрещен правилами отбора, посколь-
ку основное состояние 12C также имеет Jπ= 0+.

1.3. Энергетика
3α–процесса

Энерговыделение в расчете на синтез одного
ядра углерода в основном состоянии состав-
ляет 7.654−0.092−0.287 = 7.275 МэВ. В рас-
чете на нуклон это дает 7.275/12=0.606 МэВ,

что на порядок меньше, чем при синтезе альфа–частицы за счет цепочки pp I:
(26.73 · 0.98)/4=6.67 MэВ/нуклон. Поэтому энергетически 3α–процесс не очень
эффективен. Продолжительность фазы горения гелия за счет тройного альфа–
процесса в звездах промежуточных и больших масс составляет от ∼1/4 (при
M = 5) до ∼1/10 (при M = 25) от времени жизни звезды на главной после-
довательности. Стоит также отметить, что основной вклад в общее энерговы-
деление в таких звездах на фазе горения гелия в их ядрах за счет тройного
альфа–процесса дает не это, а горение водорода в слоевом источнике, окружа-
ющем их постепенно выгорающие гелиевые ядра.

Чтобы найти скорость синтеза 12C за счет тройного альфа–процесса, нам
надо число ядер углерода на уровне 7.654 МэВ, то есть 12C∗, умножить на темп
их переходов в основное состояние. Парциальная ширина уровня относитель-
но этого процесса, как показали измерения, составляет Γrad = Γγ + Γpair =
3.7 · 10−3 эВ, что гораздо меньше ширины, обусловленной распадом на α–
частицу и 8Be, равной Γα = 8.5 эВ. Отношение этих ширин Γα/Γrad =
8.3/(3.7 · 10−3) ≈ 2200 показывает, что ,,утечка" в основное состояние происхо-
дит настолько редко, что практически не сказывается на населенности возбуж-
денного уровня. Это, собственно, и позволило нам пользоваться при расчете
этой населенности формулами, справедливыми при статистическом равнове-
сии. Скорость образования атомов C в основном состоянии за счет тройного
α–процесса равна поэтому

R3α = N12C∗
Γrad

~
. (1.7)

Величина Γrad/~ — аналог эйнштейновского коэффициента спонтанного пере-
хода c возбужденного уровня 12C∗ в основное состояние 12C.

Для получения энергетического выхода 3α–процесса ε3α
надо скорость пе-

реходов 12С∗→12С умножить на энергию Q3α=
(
3mα−m12C

)
c2 = 7.275 МэВ,
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высвобождающуюся при синтезе одного ядра углерода (в основном состоянии):

ε3α
= Q3α N12C∗

Γrad

~
. (1.8)

В числах мы имеем

ε3α
= 5.09 · 1011 ρ2Y 3

T 3
8

exp
(
− 44.03

T8

)
эрг/(г·с). (1.9)

Эта формула заслуживает обсуждения. Во-первых, обратим внимание на по-
казатель степени у экспоненты, равный

(
m12C∗

− 3mα

)
c2/(kT ) = 44/T8 (со зна-

ком минус). При T8 = 1 в формуле (1.9) мы имеем, таким образом, множи-
тель exp(− 44). Происхождение его следующее. Поскольку

(
m12C∗

− 3mα

)
c2 =

379 кэВ, а тепловые энергии частиц при T = 108 К порядка 10 кэВ, это при
аккуратном расчете и дает 44 в показателе экспоненты (напомним, что 1 эВ
соответствует температура 11605 К, так что 379 · 0.11605 = 43.98 ≈ 44). При
увеличении температуры вдвое, с T8 = 1 до T8 = 2, в формуле (1.9) множитель
exp(− 44) заменяется на exp(− 22), так что темп энерговыделения возрастает
в exp(22)/8 ∼ 4 · 108 раз (дополнительный множитель 1/8 — от T−3 перед
экспонентой).

Для общей ориентировки полезно привести значения ε3α

(
в эрг/(г·c)) для

нескольких характерных значений температуры. Эти числа, найденные по
формуле (1.9), относятся к ρ = 105 г/см3 и Y = 1 (чистый гелий).

T8 1.00 1.50 2.00 2.50
ε3α

3.8+2 2.7+8 1.8+11 7.5+12

Другой способ наглядно представить себе сильнейшую зависимость скоро-
сти тройного альфа–процесса от температуры — воспользоваться степенно́й
аппроксимацией

ε3α
(T )= ε3α

(T0)
(

T

T0

)ν

, (1.10)

в которой (проверьте!)

ν =
∂ lnε3α(T )

∂ ln T

∣∣∣∣
T=T0

=
44
T8,0

− 3. (1.11)

В частности, при T8,0 = 1, то есть при T0 = 108 K, мы имеем ε3α
(T ) ∝ T 41. Ап-

проксимация (1.10) работает лишь в малой окрестности T0. Поэтому не нужно
удивляться, что при T8 = 2 энерговыделение согласно этой формуле возрастает
в 241 = 2 ·1012 раз по сравнению с T8 = 1. Различие с полученным ранее числом
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5 ·108 (см таблицу)— наглядное проявление того, что степенна́я аппроксимация
дает правильные результаты лишь при T , близком к T0.

Заметим, что в случае нерезонансных реакций, как мы знаем, выражение
для температурного показателя ν скорости реакции не содержит никаких ядер-
ных констант, характеризующих реакцию, кроме, разумеется, зарядов и масс
реагирующих ядер

(
см. формулы (2.59), с. 283, и (2.52), с. 281

)
. Для резо-

нансных реакций, в частности, для 3α–процесса положение иное — значение ν
определяется энергией резонансов. Так, число 44 в формуле (1.11) порождается
величиной E = E′

r + E′′
r .

Для наших целей точности, обеспeчиваемой формулой (1.9), было вполне
достаточно. Однако при аккуратных расчетах звездных моделей теперь ча-
ще пользуются более точными аппроксимациями. Чтобы дать представление о
том, насколько далеко продвинулось это дело, а заодно и напугать читателя,
приведем выражение для ε3α

, даваемое в одной из часто используемых в на-
ши дни (сейчас 2016 г.) сводки данных о скоростях термоядерных реакций в
звездах (C.Angulo et al., Nucl. Phys. A, 656, 3, 1999):

ε3α
= 6.272 · ρ2 Y 3 · (1 + 0.0158 T−0.65

9

)×

×
[
2.43 · 109 T

−2/3
9 exp

(
−13.490 T

−1/3
9 − (

T9/0.15
)2

)
(1 + 74.5 T9)+

+6.09 · 105 T
−3/2
9 exp

(
−1.054/T9

)]
×

×
[
2.76 · 107 T

−2/3
9 exp

(
−23.570 T

−1/3
9 − (T9/0.4)2

)
×

×(
1 + 5.47 T9 + 326 T 2

9

)
+ 130.7 T

−3/2
9 exp

(
−3.338/T9

)
+

+2.51 · 104 T
−3/2
9 exp

(
−20.307/T9

)]
.

Важной особенностью 3α–процесса, существенно отличающей его от водо-
родных термоядерных реакций, является возможность взрыва при начале го-
рения гелия. Если при начале 3α–процесса соотношение между температурой
и плотностью вещества таково, что электронный газ в гелиевом ядре звезды
сильно вырожден

(
критерий этого: ρÀ5 ·104 T

3/2
8 , см. формулу (4.14), с. 145

)
,

то давление создается почти целиком электронным газом. Энергия, выделя-
ющаяся при 3α–процессе, ведет к повышению температуры невырожденного
газа ядер и как следствие — к лавинообразному нарастанию скорости выделе-
ния энергии. Давление же, создаваемое вырожденными электронами, остается
почти неизменным. Это продолжается до тех пор, пока температура не возрас-
тет настолько, что вырождение снимется. Последнее происходит, как следует
из приведенного только что критерия, при T8 ∼ 7.4 · 10−4ρ2/3, или, например,
если ρ = 106 г/см3 — то при T8 = 7.4. Как только вырождение снято, с ростом
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температуры давление возрастает, гелиевое ядро расширяется и охлаждается.
Начинает действовать обычная для невырожденных звезд регулировка тем-
пературы, а тем самым и темпа выделения энергии, за счет охлаждения при
расширении из-за роста давления. Взрыв прекращается и сменяется спокой-
ным термоядерным горением, когда в центре звезды выгорает всего ∼ 5% ге-
лия. Описанный сейчас термоядерный взрыв, происходящий в ядре звезды,
называется гелиевой вспышкой. Она происходит лишь у звезд небольших масс,
M<∼(2.0÷2.5), когда масса их гелиевого ядра достигает M ∼ 0.5, и знаменует со-
бой конец восхождения звезды по ветви гигантов. Звезда быстро перемещается
на горизонтальную ветвь диаграммы ГР, где плавное горение гелия продолжа-
ется в невырожденном ядре звезды. У звезд бо́льших масс из-за более высокой
температуры и меньшей плотности в их ядрах вырождения нет, и загорание
гелия начинается плавно, без взрыва.



2. ГЕЛИЕВЫЕ РЕАКЦИИ И НУКЛЕОСИНТЕЗ

2.1. Синтез и
выгорание углерода

Тройной альфа–процесс важен не только как
поставщик энергии, но и как процесс, веду-
щий к постепенному выгоранию гелия в ядре

звезды. Поскольку на синтез каждого ядра углерода в 3α–процессе расходу-
ются три альфа–частицы, скорость выгорания гелия в начале процесса оказы-
вается равна

d 4He

dt
= − 3R3α, (2.1)

где R3α дается формулами (1.7) и (1.6). Подчеркнем, что согласно (1.6) она
пропорциональна кубу концентрации альфа–частиц.

По мере выгорания гелия за счет тройного альфа–процесса концентрация
12C в газе возрастает. Поэтому должны начаться реакции выгорания 4He также
на только что образовавшихся ядрах углерода:

4He +12C →16O + γ (Q = 7.162 МэВ), (2.2)

а в дальнейшем, по мере нагорания 16O, также и в реакции

4He +16O →20 Ne + γ (Q = 4.730 МэВ). (2.3)

В конце концов реакция выгорания углерода, синтезированного в тройном
альфа–процессе, за счет захвата оставшихся альфа–частиц 12C(α, γ)16O берет
верх над синтезом 12С. Содержание 12С проходит через максимум и начинает
убывать, содержание же 16O монотонно растет. Существенно, что зависимость
скоростей этих двух процессов, конкурирующих в конце выгорания гелия, как
от плотности, так и от температуры разная. Скорость первого процесса про-
порциональна кубу содержания альфа–частиц, а второго — первой степени.
Зависимость обоих процессов от температуры также сильно отличается. За-
метим, что реакция 12C(α, γ)16O не является резонансной. Ее скорость можно
рассчитать по стандартным формулам для нерезонансных реакций. Трудность
лишь в том, что S–фактор этой реакции известен плохо (S0 ∼ 300 кэВ · барн).
Корректный расчет окончательного значения относительного содержания уг-
лерода и кислорода в конце выгорания гелия — непростая задача. Фактически
требуется детальный расчет изменения со временем температуры и плотности
в ядре звезды заданной массы (и химического состава), то есть расчет эволю-
ции звезды.

Общее представление о ходе изменений содержаний углерода и кислорода
при выгорании 4Не можно получить, рассчитав его для простейшего случая,

390
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Рис. VIII.2.1:

Изменение содержаний углерода и кислорода по мере выгорания гелия.
(Источник: Ch. Iliadis, 2007, p. 448.)

когда температура и плотность сохраняются постоянными. В реальности так не
бывает, хотя бы потому, что при полном выгорании гелия из четырех альфа–
частиц образуются два ядра — 12С и 16O, так что давление должно умень-
шиться вдвое (если бы температура и плотность оставались постоянными, как
это предполагается при расчете). Расчет сводится к численному решению си-
стемы дифференциальных уравнений для d(4He)/dt и d(12C)/dt. Синтез 20Ne
согласно реакции (2.3) из-за высокого кулоновского барьера происходит лишь
в весьма незначительных количествах, так что для получения общей картины
им вполне можно пренебречь.

На Рис.VIII.2.1 сплошные линии показывают изменения весовых долей уг-
лерода и кислорода по мере выгорания 4Не, весовая доля которого отложена
по горизонтальной оси, от Y=1 слева (начало горения гелия) до Y=0 у правого
края рисунка. Пунктирные и точечные кривые соответствуют принятию соот-
ветственно верхнего и нижнего пределов для ненадежно известного сечения
реакции 12C(α, γ)16O. Рисунок относится к следующим значениям парамет-
ров: T8 = 1.5, ρ = 5·103 г/см3. В начале горения преобладает 3α–процесс, и
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содержание 12C линейно возрастает с 1−Y , то есть с долей выгоревшего гелия.
Когда выгорело ≈ 75% имевшегося первоначально гелия, содержание углерода
начинает убывать за счет захвата оставшихся альфа–частиц синтезированны-
ми к этому моменту многочисленными ядрами углерода с образованием ядер
кислорода 16O. В конце выгорания гелия содержание кислорода быстро возрас-
тает, содержание же углерода, наоборот, быстро убывает. Наибольший интерес
представляет вопрос, в каком соотношении оказываются содержания углерода
и кислорода при полном выгорании гелия. При T = 1.5 · 108 K, ρ = 5000 г/см3

отношение 12C/16O по числу атомов оказывается равным 0.89. При T = 2 · 108

K, ρ = 800 г/см3 горение происходит при более высокой температуре и меньшей
плотности. В результате производится больше кислорода и меньше углерода:
12C/16O = 0.57. Первый случай соответствует, грубо говоря, горению гелия
в ядрах звезд с начальной массой M = 5, второй относится к гораздо более
массивным звездам (M = 20). Как видим, в обоих случаях окончательные
распространенности ядер углерода и кислорода оказываются одного порядка.
Общая тенденция состоит в том, что с ростом начальной массы звезды отно-
шение C/O в ядре звезды после полного выгорания гелия убывает. Заметим
еще, что ядра звезд с M <∼ 8 превращаются в конце концов в белые карлики с
углеродно–кислородными ядрами. Для таких звезд выгорание гелия с образо-
ванием CO–ядра — это финальный этап их ядерной эволюции.

Подсчет энерговыделения при выгорании гелия в принципе не составля-
ет труда: при тройном альфа–процессе синтез одного ядра углерода дает
7.275 МэВ, при последующей реакции 12C(α, γ)16O дополнительно выделяет-
ся 7.162 МэВ. Проблема, однако, в том, что подсчитать изменение долей 3α–
реакций и реакций синтеза 16O, происходящих при полном выгорании гелия,
без эволюционного расчета звездной модели невозможно.

Отметим в заключение, что основным источником кислорода во Вселен-
ной — третьего по распространенности элемента — являются, по-видимому,
массивные звезды, в которых он синтезируется из четырех альфа–частиц в
описанном выше процессе (3α →12C и затем α+12C→16O). Углерод — элемент,
четвертый по распространенности — синтезируется за счет 3α–процесса при-
мерно в равных количествах в массивных звездах и в звездах, находящихся на
асимптотической ветви гигантов.

2.2. Выгорание азота В гелиевом ядре, образующемся после вы-
горания водорода, присутствует также при-

месь ядер 14N, в который еще на фазе горения водорода превратились первона-
чально имевшиеся ядра углерода и кислорода. Когда при сжатии и нагревании
гелиевого ядра с примесью 14N достигаются температуры ∼108 K, происходит
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следующая цепочка реакций:

14N(α, γ)18F(e+ν)18O(α, γ)22Ne. (2.4)

Оказывается, что в дальнейшем ядра 22Ne захватывают альфа–частицы и рож-
дают ядра 25Mg и свободные нейтроны в реакции 22Ne(α, n)25Mg. Эти ней-
троны захватываются ядрами железного пика, что дает начало реакциям s-
процесса, рождающего ядра с А=60÷ 90. В итоге оказывается, что ядра CNO-
элементов, присутствовавшие в газе, из которого возникла звезда, после многих
превращений рождают значительную часть ядер элементов тяжелее железа.
Реакция 22Ne(α, n)25Mg является не единственным источником нейтронов, по-
являющихся в звездах на продвинутых стадиях их эволюции. Другой их источ-
ник — реакция 13C(α, n)16O, которая оказывается возможной в довольно-таки
экзотических процессах, происходящих в наружных слоях звезд асимптотиче-
ской ветви гигантов.

В заключение заметим, что в результате горения гелия сразу появляются
ядра 12C и 16O со сравнительно большими массовыми числами А=12 и A=16.
Ядра же с A от 6 до 11 — это 6Li, 8Be, 10B и 11B — оказываются ,,обойденными".
Это объясняет их малую распространенность в Солнечной системе. Считает-
ся, что они рождаются не в звездах, а в межзвездной среде в результате так
называемых реакций скалывания, происходящих при столкновениях протонов
космических лучей с тяжелыми ядрами.

Последнее замечание. Синтез в недрах красных гигантов ядер углерода и
кислорода — это первый шаг, необходимый для того, чтобы во Вселенной могла
появиться жизнь. Можно сказать и иначе: ядро 12С имеет уровни, энергии
которых подходят для того, чтобы кислородно–углеродная жизнь во Вселенной
могла появиться. Это есть частное проявление так называемого антропного
принципа, согласно которому мир устроен так, чтобы мы могли в нем жить.



3. УПРАЖНЕНИЯ

1◦ В учебнике А.В. Засова и К.А.Постнова ,,Общая астрофизи-
ка"(Фрязино, 2011) на стр. 216 при начале обсуждения тройного альфа–
процесса приводится следующая строка:

4He+4He→8Li→8Be+e−+ν̃e; 8Be→2 4He.
Все ли здесь верно?

2◦ Процесс 4He+4H⇔8Be является резонансной реакцией. Получить
формулу для N2

α /N8Be

(
формула (1.2), с. 384

)
, исходя из общего выражения для

скоростей резонансных реакций (NaNX)∗ < σv >, где < σv > дается формулой
(3.11), с. 299

3◦ Пользуясь формулой (1.4), получить степенну́ю аппроксимацию от-
ношения N8Be

/Nα в окрестности T8 = 1.

4◦ Множитель f3α, учитывающий электронное экранирование в тройном
альфа–процессе, есть, очевидно, произведение множителей fαα и f

α8Be
, учиты-

вающих электронное экранирование на первом и на втором этапе 3α–процесса,
соответственно. Пользуясь результатами разд. 2.8 Гл. V, показать, что

f3α = exp
(
2.76 · 10−3ρ1/2T

−3/2
8

)
.

Очевидно, что дело сводится к нахождению численного коэффициента в этой
формуле.

5◦ Рассчитать энерговыделение на единицу массы в первоначально чисто
гелиевом ядре звезды при полном выгорании гелия, если конечное отношение
12C/16O = 0.7.
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Глава IX

ПОЗДНИЕ СТАДИИ
ЭВОЛЮЦИИ





1. ПОЗДНИЕ СТАДИИ ТЕРМОЯДЕРНОГО ГОРЕНИЯ

1.1. Горение
углерода

В звездах с массами M>∼8 ядерное горение не
заканчивается на гелиевых реакциях. В них
возможно горение и более тяжелых ядер. В
результате выгорания 4He в массивной звез-

де образуется ядро из C и O, причем электронный газ в нем не вырожден.
Ядерные реакции здесь более не идут. Начинается гравитационное сжатие яд-
ра, что, согласно теореме вириала, должно приводить к его разогреву. Из всех
реакций, возможных в углеродно–кислородной смеси, — 12C +12C, 12C +16O
и 16O +16O — наименьший кулоновский барьер имеет первая из этих реакций.
Поэтому именно с нее и должно начинаться горение. Это происходит, когда
температура достигает

T ∼ (6÷ 8) · 108 К.

Процесс горения 12C на самом себе заметно отличается от того, что мы име-
ли при столкновениях протонов и альфа–частиц с легкими ядрами. Здесь мы
имеем дело с реакцией между двумя тяжелыми ядрами. В результате столк-
новения двух таких ядер (в данном случае — 12C) образуется так называемое
составное, или компаунд-ядро в возбужденном состоянии. В нашем случае это
24Mg∗ c энергией возбуждения ∼ 14 МэВ. Составное ядро тут же распадается
по одному из нескольких возможных вариантов, или, как говорят, каналов:

12C + 12C →24 Mg∗ −→ 20Ne + α 4.62 МэВ
−→ 23Na + p 2.24
−→ 23Mg + n −2.61
−→ 24Mg + γ 13.93
−→ 16O + 2α −0.11

Справа указан энергетический выход каждого из каналов распада. В резуль-
тате в газе появляются ядра Ne, Na и Mg. Наиболее вероятными являются два
первых канала (осуществляющиеся соответственно в ∼44% и ∼56% случаев).
Рождающиеся при этом протоны и альфа–частицы из-за высокой температуры
легко преодолевают кулоновские барьеры и тут же захватываются имеющими-
ся ядрами, что ведет к появлению довольно разветвленной системы реакций.
Результатом этого становится почти полное превращение 23Na в 20Ne в реак-
ции 23Na(p, α)20Ne. Поэтому основным продуктом горения 12C на самом себе
оказывается 20Ne, с примесью ∼ 10% 24Mg и небольших количеств других
нуклидов вплоть до 28Si. (Последний возникает в реакции 24Mg+α →28 Si+γ).
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Основное выделение энергии при горении углерода (примерно 2/3) проис-
ходит не при распаде составного ядра 24Mg∗ по указанным выше каналам, а
в результате возникающих затем цепочек захватов легких ядер — протонов и
альфа–частиц. В итоге в расчете на одну реакцию 12C +12C выделяется око-
ло 13 МэВ, или 0.54 МэВ/нуклон, что немного меньше, чем при 3α–процессе.
Зависимость скорости энерговыделения от температуры очень сильная. Так, в
окрестности T = 109 K скорость реакции 12C +12C растет примерно как T 27.
При практически полном выгорании ядер 12C, как уже говорилось, бо́льшая
их часть превращается в 20Ne. Главной составляющей газа является, однако,
не 20Ne, а синтезированный еще на фазе гелиевых реакций 16O.

На фазе горения углерода (и на всех последующих фазах) важнейшую
роль в энергетике звезды играют процессы рождения в ее недрах нейтринно–
антинейтринных пар. Из-за высокой температуры, при которой горит углерод,
в высокоэнергичном хвосте равновесного планковского излучения появляются
фотоны с энергией >∼1 МэВ, способные рождать электрон–позитронные пары.
Как правило, аннигиляция такой злектрон–позитронной пары порождает два
фотона, но изредка, с вероятностью ∼10−19, рождается пара νe + ν̃e:

e− + e+ → νe + ν̃e. (1.1)

Аккуратный расчет сечения этого процесса основан на использовании теории
слабого взаимодействия и выходит за рамки нашего курса. Так как для ней-
трино звезда прозрачна, указанный сейчас процесс является мощным механиз-
мом оттока энергии непосредственно из недр звезды. Оказывается, что уже
на обсуждаемой стадии эволюции, то есть при горении углерода, нейтринная
светимость звезды примерно на порядок превышает ее обычную фотонную
светимость. Для звезд с массами >∼30M¯ последняя, впрочем, тоже колос-
сальна, достигая (105 ÷ 106)L¯ — как у самого богатого шарового скопления
нашей Галактики ω Центавра! Любопытно, что концентрация позитронов n+,
появление которых фактически вызывает колоссальные нейтринные энергети-
ческие потери, совершенно ничтожна. Так, при T = 9 · 108 К и ρ ∼ 105 г/см3

отношение n+/n
Z
, где n

Z
— полная концентрация электронов, порожденных

ионизацией атомов, составляет всего 6·10−5. Кроме (1.1) имеются и другие про-
цессы слабого взаимодействия, рождающие нейтринно–антинейтринные пары.
Они оказываются доминирующими на последующих этапах термоядерного вы-
горания вещества ядер массивных звезд.

В звездах с массами до ∼10M¯ из-за сильных нейтринных потерь темпера-
тура их частично вырожденных ядер оказывается ниже, чем в окружающих их
слоях. Поэтому углерод первоначально загорается не в центре, а в окружаю-
щих его частично вырожденных слоях, что сопровождается слабой вспышкой
(аналогичной гораздо более мощной гелиевой вспышке у звезд малой массы).
После таких углеродных вспышек (возможно, их происходит несколько) фронт
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горения перемещается к центру. Устанавливается монотонно спадающий нару-
жу ход температуры и начинается стационарное горение углерода во всем ядре.

В звездах с массами примерно от 8 до (10 ÷ 11)M¯ горение углерода ока-
зывается последним этапом их ядерной эволюции. У них формируется изотер-
мическое ядро из смеси 20Ne, синтезированного при горении углерода, и 16O,
возникшего еще раньше, при выгорании гелия. Электронный газ в этом ядре
сильно вырожден. После сбрасывания наружных слоев, что происходит, ко-
гда звезда находится на асимптотической ветви гигантов, обнажившееся ядро
звезды быстро охлаждается и образует экзотический белый карлик, состоящий
из смеси O и Ne. Массы таких белых карликов, возможно, близки к пределу
Чандрасекара.

Существование этого редкого класса белых карликов подтверждается тем,
что есть новые звезды, у которых при их взрывах выбрасываются оболочки,
сильно обогащенные неоном. Новые звезды, напомним, представляют собой
двойные системы, в которых происходит аккреция вещества с обычной (невы-
рожденной) звезды на белый карлик. При накоплении аккрецированного ве-
щества на поверхности белого карлика происходит термоядерный взрыв. При
этом в выбрасываемую при таком взрыве оболочку попадает и вещество бе-
лого карлика. Поэтому обычно эти оболочки сильно обогащены углеродом и
кислородом, поскольку большинство белых карликов состоят из смеси C и O.
Наличие новых с оболочками, обогащенными неоном и кислородом — веское
наблюдательное свидетельство существования ONe белых карликов.

В заключение упомянем о том, что нуклеосинтез, происходящий на ста-
дии горения углерода, как считается, порождает бо́льшую часть имеющихся в
Солнечной системе ядер целого ряда элементов (20Ne, 23Na, 24Mg и др.)

1.2. Горение неона После полного выгорания 12C ядро звезды с
M >∼ 10, лишенное ядерного источника энергии,

но продолжающее терять энергию за счет нейтринных потерь, быстро сжима-
ется и разогревается за счет выделяющейся при этом гравитационной энергии.
Когда температура достигает

T ∼ (1.2÷ 1.5) · 109 К,

включается новый источник ядерной энергии — горение неона. Как мы помним,
ядра неона родились из 12C при его выгорании.

Выделение энергии при горении неона происходит за счет процесса, с ко-
торым мы до сих пор не сталкивались, — так называемого фоторасщепления,
или фотодезинтеграции ядер. Этот процесс вполне аналогичен обычной фото-
ионизации атомов и состоит в отрыве от тяжелых ядер протонов, нейтронов
и альфа–частиц при поглощении ими фотонов, обладающих достаточной для
этого энергией.
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При T9∼1 тепловые энергии составляют ∼0.1 МэВ, и в высокоэнергичном
хвосте планковского распределения имеются фотоны с энергией, в десятки раз
бо́льшей этой. Ядро звезды после полного выгорания 12С состоит из 16O, 20Ne,
23Na и 24Mg. Для отрыва протонов, нейтронов и альфа–частиц от всех этих
ядер, кроме 20Ne, требуются фотоны с энергиями не менее 7 МэВ, тогда как
энергия, которая нужна для отделения альфа–частицы от ядра 20Ne, состав-
ляет всего 4.73 МэВ.

С этого и начинается двухступенчатый процесс горения неона. Первый
этап — это фоторасщепление 20Ne за счет эндотермической реакции, требу-
ющей затраты энергии в 4.730 МэВ:

20Ne + γ →16O +4He (Q = − 4.730 МэВ). (1.2)

Второй этап состоит в том, что высвобождающиеся при фоторасщеплении
альфа–частицы реагируют с оставшимися недиссоцироанными ядрами 20Ne,
рождая 24Mg и выделяя значительную энергию:

20Ne +4He →24 Mg + γ (Q = 9.316 МэВ). (1.3)

Суммарный эффект этих двух реакций сводится к следующему:

20Ne +20Ne →16O +24Mg (Q = 4.586 МэВ). (1.4)

Выделение энергии при этом процессе выгорания неона можно найти либо как
сумму значений Q реакций (1.2) и (1.3), либо как разность масс ядер, стоящих
в (1.4) слева и справа, умноженную на c2. Заметим, что альфа-частицы, высво-
бождающиеся при фоторасщеплении неона, могут присоединяться не только к
20Ne

(
реакция (1.3)

)
, но и к другим имеющимся тяжелым ядрам, что ведет

к дополнительному выделению энергии. В итоге оказывается, что при сгора-
нии двух ядер 20Ne выделяется ∼ 6.2 Мэв. Калорийность ,,неонового топлива"
невелика. Так, при синтезе одного ядра 12C за счет тройного альфа–процесса
выделяется 7.162 МэВ, или в расчете на атомную единицу массы 0.60 МэВ. При
горении же неона энерговыделение в расчете на атомную единицу массы, как
легко сосчитать, составляет всего ∼ 0.16 МэВ. Темп энерговыделения растет с
температурой очень быстро (при T9 = 1.5 примерно ∝ T 49).

Условия, при которых горение неона происходит наиболее интенсивно, тако-
вы: Tc∼1.5·109 К, ρc∼5·106 г/см3. Время, за которое в ядре массивной звезды
(M > 10) сгорает практически весь неон, составляет всего несколько месяцев.
Столь краткое время жизни неоновых ядер массивных звезд объясняется не
столько низким выходом энергии при выгорании неона, но главным образом
тем, что при повышении температуры ядра звезды примерно вдвое по сравне-
нию с тем, что было при горении углерода, темп нейтринных потерь возрастает
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многократно (примерно на три порядка). При этом кроме упоминавшегося вы-
ше аннигиляционного механизма рождения нейтринно–антинейтринных пар
здесь работают и несколько других механизмов, рассматривать которые мы не
будем.

1.3. Горение
кислорода

В результате выгорания 20Ne ядро звезды
оказывается состоящим в основном из 16O
(примерно 85% по числу ядер) и 24Mg (око-
ло 8%) с примесью 28Si (∼ 5%). После того,

как неон полностью выгорел, происходит очередное сжатие ядра звезды, при-
водящее к повышению его температуры. Когда она достигает

T ∼ (1.9÷ 2.2) · 109 K,

начинается горение кислорода. Общий итог этого процесса таков:

16O +16O →28 Si +4He, (1.5)

что сопровождается выделением энергии Q = 17.2 МэВ. В расчете на еди-
ницу массы это составляет 0.54 МэВ/а.е.м., то есть почти столько же, что
и при горении углерода (0.52 МэВ/а.е.м.) и при тройном альфа–процессе
(0.60 МэВ/а.е.м.), но в три с половиной раза больше, чем при горении нео-
на (0.16 МэВ/а.е.м.). В окрестности T9 = 2 темп энерговыделения растет с
температурой ∝ T 33. Время полного выгорания кислорода в ядре звезды с
M ∼ 25 составляет около 160 дней. В звездах меньших масс время выгорания
кислорода больше. Так, при M ∼ 15 оно составляет около двух с половиной
лет.

Изложенное только что представляет собой краткую сводку — можно ска-
зать, резюме тех сложных событий, которые происходят при горении кисло-
рода. В общих чертах этот процесс подобен тому, что происходит при горе-
нии углерода. Однако возникающее в результате первичной реакции 16O +16O
компаунд–ядро 32S∗ обладает энергией ∼ 16.5 МэВ и может поэтому распа-
даться по гораздо бо́льшему числу каналов, чем это было в случае реакции
12C +12C. Основные из них следующие:

16O
(16O, p

)31P (Q = 7678 кэВ) (1.6)

16O
(16O, 2p

)30Si (Q = 381 кэВ) (1.7)

16O
(16O, α

)28Si (Q = 9594 кэВ) (1.8)

16O
(16O, 2α

)24Mg (Q = − 390 кэВ) (1.9)

16O
(16O, d

)30P (Q = − 2409 кэВ) (1.10)



IX.1. Поздние стадии термоядерного горения 403

16O
(16O, n

)31S (Q = 1499 кэВ) (1.11)

Вероятности распада по различным каналам и сечения отдельных реакций
известны ненадежно.

Легкие частицы — протоны, альфа–частицы и нейтроны, образующиеся при
приведенных только что первичных реакциях горения кислорода, тут же при-
соединяются к имеющимся тяжелым ядрам — как тем, которые возникают при
реакциях (1.6) — (1.11), так и тем, которые остались после горения неона. Эти
вторичные реакции порождают сложную систему уравнений нуклеосинтеза,
решение которой может быть получено только численно. Вторичные реакции
при горении кислорода дают существенный вклад в общее энерговыделение. В
итоге при T = 2.2 · 109 К в расчете на каждую реакцию 16O +16O выделяется,
как уже говорилось, Q≈17.2 МэВ. В конце горения кислорода возникает смесь,
состоящая в основном из кремния 28Si (∼54%) и серы 32S (∼28%) с примесью
аргона и кальция. Впрочем, числа эти не очень надежны. По другим расчетам
кремния оказывается не вдвое, а втрое больше, чем серы.

Нейтринные потери на фазе горения кислорода велики и очень сильно за-
висят от температуры, так что бо́льшая часть термоядерной энергии, выраба-
тываемой при превращении кислорода 16O в 28Si и 32S, уносится нейтрино. В
этом основная причина малого времени выгорания кислорода. И все же оно за-
метно больше (порядка одного–двух лет), чем время горения неона (несколько
месяцев). Причин две: бо́льшее энерговыделение в расчете на атомную единицу
массы в первом случае (∼ 0.54 МэВ)), чем во втором (∼ 0.16 МэВ) и бо́льшая
весовая доля кислорода (∼ 0.7). Отметим также, что в результате горения кис-
лорода кроме основных его продуктов — 28Si и 32S — возникает также ряд ядер,
богатых нейтронами (30Si, 35S, 37Cl и др.). Поэтому в итоге горения кислорода
оказывается, что число нейтронов в возникающем Si–S ядре превышает число
протонов (так называемый нейтронный избыток).

1.4. Горение
кремния

Горение кремния — это последний этап ядер-
ной эволюции недр массивных звезд (M >
10 ÷ 11). Весьма схематически этот процесс

можно представить так:

28Si +28Si →56 Fe + Q. (1.12)

Физический процесс, за счет которого кремний 28Si и сера 32S — основные
продукты горения кислорода 16O — в конечном итоге перерабатываются в ядра
железного пика — это фоторасщепление ядер. Процесс происходит при

T >∼ 3 · 109 K.
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Рис. IX.1.1:

Качественная картина строения массивной звезды в конце эволюции.
Звезда подобна луковице со слоями разного химического состава,

на границах которых горят слоевые источники.

Горение кремния — это сложная комбинация реакций фоторасщепления
ядер и захвата альфа-частиц. Большинство этих реакций находятся в равно-
весии друг с другом. Результирующие распространенности ядер можно рас-
считать по ядерным аналогам формулы Саха. При T > 4 · 109 K достигается
состояние ядерного статистического равновесия. При этом распространенно-
сти ядер определяются энергиями их связи. Самыми распространенными ока-
зываются ядра с наибольшими энергиями связи — ядра железа и близкие к
ним. Относительные распространенности ядер группы железа, помимо темпе-
ратуры, зависят от имеющихся относительных концентраций нейтронов и про-
тонов. В ядерной смеси, возникающей в результате горении кислорода, общее
число нейтронов в ядрах оказывается несколько больше числа протонов (уже
упоминавшийся нейтронный избыток). В итоге при ядерном статистическом
равновесии наиболее распространенными оказываются 56Fe и 52Cr.

Хотя сложную совокупность реакций, приводящих в итоге к превращению
ядер кремния в ядра железа, и принято называть горением кремния, пожалуй
правильнее говорить, что происходит переплавка кремния в железо.

Горение кремния происходит в центральном конвективном ядре с массой
∼ 1 M¯, значение которой зависит в первую очередь от начальной массы
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Таблица IX.1.1:

Основные этапы ядерной эволюции недр звезды населения I с M = 15 M¯

Этап ρc (г/см3) Tc (K) L/L¯ Lν/Lν¯ Время выгор.
H→He 5.8 35 · 106 2.8 · 104 1.8 · 103 1.1 · 107 лет
He→C,O 1.4 · 103 1.8 · 108 4.4 · 104 1.9 · 103 2.0 · 106 лет
C→Ne 2.8 · 105 8.1 · 108 7.2 · 104 3.7 · 105 2.0 · 103 лет
Ne→O,Mg 1.2 · 107 1.6 · 109 7.5 · 104 1.4 · 108 0.7 года
O→Si, S 8.8 · 106 1.9 · 109 7.5 · 104 9.1 · 108 2.6 года
Si→Fe,Ni 4.8 · 107 3.3 · 109 7.5 · 104 1.3 · 1011 0.6 мес
Fe,Ni→n > 7.3 · 109 ∼ 7.1 · 109 7.5 · 104 > 3.6 · 1011 1 сек

звезды Minit, возрастая от ∼ 1.5 M¯ при Minit = 15 M¯ до ∼ 2.6 M¯ при
Minit = 40 M¯. Итогом полного выгорания кремния в этом центральном кон-
вективном ядре является образование в центре звезды железного ядра. Это
финал ядерной эволюции вещества центральных частей всех массивных звезд.
Дальнейшее выделение ядерной энергии в таком железном ядре невозможно.
Как мы увидим в следующем разделе, существуют причины, по которым с
неизбежностью должен происходить гравитационный коллапс этого железно-
го ядра — грандиозное событие, оптическим проявлением которого является
взрыв сверхновой.

1.5. Сводка
результатов

В заключение этого раздела приводим для
справок в Табл. IX.1.1 сводку основных па-
раметров ядерной эволюции центральных

частей звезды населения I с M = 15 (согласно расчетам S.E.Woosley and
Th. Janka, Nat. Phys., 1, 147, 2005). Числа, приводимые для поздних этапов эво-
люции (начиная с горения углерода), следует рассматривать скорее как оценки,
чем как надежно рассчитанные величины. Так, расчеты других авторов для
времени выгорания углерода в звездах с M = 15 дают как меньшие значения
(300 лет вместо 2000 лет), так и бо́льшие (4000 лет). Заметно различаются и
параметры нейтринного излучения.

На конечном этапе ядерной эволюции массивные звезды имеют строение,
подобное луковице (рис. IX.1.1). Оно возникает следующим образом. По исчер-
пании очередного ядерного топлива в центре (например, углерода), ядро сжи-
мается и горение продолжается в окружающем его слоевом источнике. Сжатие
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и разогрев возникшего углеродного ядра существенно ускоряется нейтринны-
ми потерями. В конце концов в его центре загорается неон. На всех последу-
ющих этапах горения слоевые источники постепенно продвигаются наружу, а
нейтринное излучение становится все более эффективным. В результате мас-
са ядра, в котором горит очередное топливо, оказывается меньше, чем мас-
са слоя, сформировавшегося на предыдущем этапе горения. Образно говоря,
,,луковица" растет изнутри, постепенно увеличивая число слоев разного ядер-
ного состава до тех пор, пока в ее центре не сформируется ядро из железа.

Существенной особенностью поздних этапов эволюции, начиная с горения
углерода, является их малая продолжительность. Это объясняется как низкой
калориийностью ядерного топлива, так и — в первую очередь — колоссальны-
ми нейтринными потерями. Во всей Галактике сегодня имеется лишь пара –
другая десятков звезд, находящихся на стадии горения углерода и не более од-
ной, а скорее всего ни одной звезды, находящихся на еще более продвинутых
этапах ядерной эволюции их ядер (горение неона и далее). Об этом свидетель-
ствуют данные о частоте вспышек сверхновых в Галактике — в среднем раз в
∼ 30 лет. Впрочем, к этому обычно приводимому числу следует относиться с
осторожностью. За мою жизнь — более 80 лет — ни одна сверхновая в нашей
Галактике так и не вспыхнула.

Процессы, идущие на поздних этапах ядерной эволюции в недрах массив-
ных звезд, практически не сказываются на их внешних характеристиках. Звез-
ды на последних этапах ядерной эволюции их центральных областей не пере-
мещаются по диаграмме ГР (см., в частности, столбец L/L¯ в Табл. IX.1.1).
Их масса, радиус и светимость остаются постоянными. Надежды отождествить
эти звезды — фактически предсверхновые – пока нет.



2. КОЛЛАПС ЖЕЛЕЗНОГО ЯДРА

2.1. Качественная
картина

В конце выгорания кремния в центральных
частях звезд с M>∼10 образуется ядро с мас-
сой (1÷ 2) M¯, состоящее в основном из же-
леза 56Fe, ядра которого, как уже не раз го-

ворилось, обладают наибольшей энергией связи на нуклон. Поэтому дальней-
шее выделение термоядерной энергии за счет реакций синтеза здесь невозмож-
но. Электронный газ в этом ядре сильно вырожден, главным образом из-за
огромных нейтринных потерь на поздних стадиях ядерного горения. При тем-
пературах ∼ (2 ÷ 4) · 109 К и плотностях ∼ 109 г/см3, типичных для только
что родившихся железных ядер звезд, электроны являются релятивистскими
(проверьте!).

Существуют две главные причины, ведущие к превращению обычного мед-
ленного гравитационного сжатия в гравитационный коллапс, то есть в сжатие,
происходящее практически в режиме свободного падения. Одна из них – фото-
диссоциация ядер железа. Вторая причина — поглощение высокоэнергичных
свободных электронов протонами ядер с превращением их в нейтроны — так
называемая нейтронизация вещества. Оба этих процесса, как мы вскоре убе-
димся, ведут к поглощению колоссальной энергии. Давление газа резко падает,
что и вызывает коллапс. Прежде чем переходить в описанию этих процессов,
укажем в самых общих чертах, что происходит при гравитационном коллапсе
железного ядра звезды. Количественное описание указанных только что про-
цессов, вызывающих коллапс, дадим чуть позже.

Ввиду огромных плотностей железных ядер звезд время их коллапса, опре-
деляемое обычной формулой для времени свободного падения (см. с. 45)

tG =
( 3π

32 Gρ

)1/2

, (2.13)

оказывается совершенно ничтожным:

tG ∼ 1 миллисекунда. (2.14)

Разумеется, наружные слои звезды довольно долгое время ,,не ведают" о той
катастрофе, которая произошла в ее центре.

В результате коллапса в центре звезды возникает нейтронная звезда с плот-
ностью ρ ∼ (1014 ÷ 1015) г/см3, массой M ∼ 1M¯ и радиусом R ∼ 10 км. Ее
гравитационная энергия связи составляет

|EG| ≈ GM2

R
∼ 3 · 1053 эрг. (2.15)

407
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Это колоссальная энергия. Она превосходит энергию E¯, излученную Солнцем
за все время его жизни, примерно в 500 раз.

Коллапс ядра звезды порождает сверхновую (так называемая core collaps
supernova; соответствующего термина в русском языке нет). Гравитационная
энергия, выделяющаяся при коллапсе, уносится по большей части нейтрино и
антинейтрино всех трех ароматов (электронные, мюонные и тау). Они рожда-
ются за счет различных нейтринных процессов при сжатии и нагреве вещества
бывшего железного ядра в ходе превращения его в рождающуюся нейтронную
звезду. В кинетическую энергию оболочки, сбрасываемой сверхновой, перехо-
дит всего ∼1% энергии, выделяющейся при коллапсе. Наконец, на электромаг-
нитное излучение всех диапазонов, от радио до гамма, которое и наблюдается
астрономами как вспышка сверхновой и до недавнего времени считалось од-
ним из самых грандиозных природных явлений, приходится лишь ничтожная
доля всей выделившейся при коллапсе энергии — ∼10−4.

Каким образом коллапс (как иногда говорят, имплозия) порождает взрыв
(эксплозию), приводящий к выбросу массивной оболочки со скоростями раз-
лета ∼ 10 000 км/сек, до сих пор является предметом активных исследований.
Это составляет основной вопрос теории вспышек сверхновых, порождаемых
коллапсом ядра звезды. Соответствующая теория в различных ее вариантах
выходит за рамки нашего курса.

Если масса звезды при рождении была особенно велика — скажем, порядка
(30 ÷ 50)M¯ или более (сколько-нибудь точное значение этого предела неиз-
вестно), коллапс происходит неограниченно и в итоге возникает черная ды-
ра звездной массы с M ∼ (3 ÷ 20)M¯. При этом для самых массивных звезд,
M > 120, если такие звезды действительно существуют, причиной срыва в кол-
лапс, по-видимому, является начало бурного рождения электрон-позитронных
пар за счет реакции γ+γ ­ e+ +e−. Этот процесс идет при T ≥ 6 ·109 K, когда
энергии заметной доли фотонов становятся больше энергии покоя электрона.

2.2.
Фоторасщеплние

железа

Сжатие ядра звезды сопровождается его на-
гревом. По достижении температуры поряд-
ка 1010 К в хвосте планковского распределе-
ния появляются фотоны с энергией порядка
10 МэВ, достаточной для выбивания альфа–

частицы из ядра 56Fe. Рассмотрение кинетики этого процесса, известного как
фотодиссоциация, выходит за рамки нашего схематического анализа. Если бы
конечный этап сводился к тому, что все ядра железа оказывались бы расщеп-
ленными:

γ +56Fe → 134He + 4n, (2.16)
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то возникла бы смесь из альфа–частиц и нейтронов. Этот эндотермический
процесс сопровождался бы поглощением колоссальной энергии. Затраты энер-
гии на расщепление одного ядра 56Fe на 13 альфа–частиц+4 нейтрона состав-
ляют

Q = (13m4 + 4m1 −m56) c2 = 124.4МэВ. (2.17)

Эта энергия изымается из внутренней энергии газа, что вызывает резкое па-
дение давления и приводит к коллапсу ядра, происходящему практически в
режиме свободного падения.

В ходе коллапса температура и плотность растут, но не настолько, чтобы
остановить коллапс и вызвать разлет вещества. До ∼1950 г. считали, что фо-
тодиссоциация ядер железа не завершается их распадом на альфа–частицы, а
продолжается затем диссоциацией альфа–частиц на протоны и нейтроны (4He
+γ → 2p+2n). Затраты энергии на этот процесс (в расчете на нуклон) пример-
но в 2.5 раза больше, чем при фотодиссоциации 56Fe. Более поздние расчеты
показали, что при коллапсе железного ядра звезды распада альфа-частиц не
происходит.

На самом деле одновременно с фоторасщеплением железа на альфа–
частицы происходят и другие ядерные реакции, в частности фоторасщепления
ядер, возникающих после отделения альфа–частиц от 56Fe. Эти ядра облада-
ют меньшими энергиями связи, чем 56Fe, и поэтому процесс их развала идет
быстро.

Будем считать, что фотодиссоциация 56Fe, описываемая формулой (2.16), —
определяющий процесс, причем он происходит в условиях термодинамического
равновесия (последнее далеко не очевидно). Тогда относительные концентра-
ции альфа–частиц N4, ядер железа N56 и свободных нейтронов N1 должны
даваться ядерным аналогом обычной ионизационной формулы Саха

(N4)13(N1)4

N56
=

(g4)13(g1)4

g56

(NQ4)
13(NQ1)

4

NQ56

exp (−Q/kT ), (2.18)

где

NQi =
(2πmi kT

h2

)3/2

. (2.19)

Статистические веса g определяются угловыми моментами частиц. Для ней-
трона (спин 1/2) мы имеем g1 = 2, спины же 4He и 56Fe равны нулю, так что
g4 = g56 = 1.

Численный расчет по формуле (2.18) показывает, что в ядре звезды с T =
1010 К и ρ = 109 г/см3 полностью диссоциированными оказываются около 3/4
ядер железа.

2.3. Нейтронизация
Масса нейтрона на 1.29 Мэв превосходит
массу протона, и поэтому в нормальных
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Таблица IX.2.2:

Пороги нейтронизации

Реакция Порог Eβ , МэВ Плотность ρ
β
, г/см3

1H→ n 0.782 1.22 · 107

4He→3H+n→4n 20.596 1.37 · 1011

12C→12B→12Be 13.370 3.90 · 1010

16O→16N→16C 10.419 1.90 · 1010

20Ne→20F→20O 7.026 6.21 · 109

24Mg→24Na→24Ne 5.513 3.16 · 109

28Si→28Al→28Mg 4.643 1.97 · 109

32S→32P→32Si 1.710 1.47 · 108

56Fe→56Mn→56Cr 3.695 1.14 · 109

условиях нейтрон неустойчив, распадаясь на протон, электрон и (электронное)
антинейтрино. Период полураспада свободного нейтрона всего около 10.5 ми-
нут. В железном ядре массивной звезды электронный газ сильно вырожден и в
нем есть электроны со значительно большей энергией, чем эти 1.29 МэВ. Они
способны вызвать превращение протонов в нейтроны. Однако свободных про-
тонов в железном ядре проэволюционировавшей массивной звезды нет. Что-
бы протон, находящийся в ядре, мог захватить свободный электрон и превра-
титься в нейтрон, энергии свободных электронов должны быть существенно
бо́льшими, чем 1.29 МэВ. При очень высоких плотностях в вырожденном газе
такие электроны присутствуют (Табл. IX.2.2; энергетические пороги, приве-
денные в таблице, даны за вычетом энергии покоя электрона 0.511 МэВ).

Пороговые энергии начала нейтронизации ядер, приведенные в Табл. IX.2.2,
легко рассчитываются по известным массам ядра, захватывающего электрон,
и получающегося в результате этого. Так, при реакции 16O+e−→16N+νe мас-
сы ядер 16O и 16N (в атомных единицах массы mu) равны, соответственно,
15.994915 и 16.006102. Разность их энергий покоя 16.0061− 15.9949 = 0.011187,
домноженная на muc2 = 931.49 МэВ, дает приведенный в таблице порог ней-
тронизации Eβ = 10.419 Мэв. Что касается плотностей ρ

β
, при которых начи-

нается нейтронизация, то они даются формулой

ρ
β

= µe
8π

3
mu

(hc)3
(
E2

β + 2mec
2Eβ

)3/2
.

Она легко получается из обычного релятивистского выражения для кинетиче-
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ской энергии свободного электрона через импульс

E = mec
2

(√
1 +

( p

mec

)2

− 1

)
,

если в нем положить E = Eβ и скомбинировать результат с формулой, дающей
связь плотности с предельным импульсом Ферми электронов pF в полностью
вырожденном газе (см. с. 419):

ρ
β

= µe
8π

3

(mec

h

)3

mu

( pF

mec

)3

.

Захват ядрами 56Fe электронов, имеющих наибольшие из присутствующих
в вырожденном газе энергий, которые, напомним, гораздо больше тепловых
энергий ядер, ведет к колоссальным потерям энергии. Она уносится нейтрино,
возникающими при реакции e−+56Fe →56Ni+νe. Согласно данным Табл. IX.2.2
эта реакция становится возможной, когда плотность сжимающегося ядра звез-
ды достигает 1.14 · 109 г/см3. Ферми-энергия вырожденных электронов (с уче-
том их энергии покоя) равна при этом 3.695+0.511=4.206 МэВ. Из-за уменьше-
ния концентрации электронов происходит резкое падение давления. Это ничем
не компенсируемое падение давления в ядре звезды вызывает нарушение ме-
ханического равновесия, и происходит коллапс.



Глава X

БЕЛЫЕ КАРЛИКИ

Any fool can make a white dwarf.

Icko Iben Jr. (1985)





Эпиграф к этой главе ,,позаимствован”, или попросту говоря, украден из
учебника Hansen et al. (см. #6 в Списке Литературы). Удержаться было просто
невозможно — настолько он хорош. Несмотря на то, что, по Iben’у, построить
модель белого карлика может любой fool, сам он посвятил этому не одну ста-
тью.

Мы начинаем эту главу с очень краткого обзора — правильнее даже ска-
зать не обзора, а простой сводки важнейших наблюдательных данных о белых
карликах. Далее подробно излагается ставшая классикой астрофизики чанд-
расекаровская теория механического равновесия белых карликов, не раз уже
кратко упоминавшаяся ранее. Затем обсуждаются границы применимости этой
теории и различные поправки к ней. Следующий раздел — теория остывания
белых карликов Каплана–Местела. Это тоже классика теоретической астро-
физики. Нейтронным звездам посвящена не одна монография. У нас же им
отведен всего один небольшой раздел — нельзя же уж совсем ничего о них не
сказать. А где же черные дыры? О них я писать не решаюсь, не потому что
не верю в их существование — совсем наоборот — а просто боюсь показать
полную свою некомпетентность.

1. БЕЛЫЕ КАРЛИКИ – СВОДКА ДАННЫХ

1.1. Основные
факты

Первый белый карлик был открыт в 1914 г.
Десять лет спустя, когда был введен термин
,,белый карлик", их было известно всего три,

четверть века спустя, в 1939 г., —18, сейчас же — уже более 30 000. В север-
ном полушарии неба (δ > 0) обнаружено 492 белых карлика, находящихся на
расстоянии до 40 пк от Солнца и ∼ 120 — не далее 20 пк (данные 2017 г.).
Считается, что в северной полусфере радиусом 20 пк выявлены практически
все имеющиеся в ней белые карлики. Если так, то их объемная концентра-
ция в окрестности Солнца составляет 4.8 · 10−3 пк−3. По массе это примерно
7% от той массы, которая сосредоточена здесь в обычных звездах. Однако в
далеком будущем ситуация радикально изменится: 95 ÷ 97% звезд Галактики
превратятся в белые карлики.

(to be continued)
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1.2. Спектры белых
карликов

По химическому составу атмосферы белых
карликов сильно отличаются от атмосфер
обычных звезд. У большинства белых кар-

ликов (около 80%) они состоят из чистого водорода, без какой-либо примеси
гелия и тяжелых элементов (NHe/NH < 10−4) . Это спектральый тип DA, с
делением его в зависимости от температуры на подклассы, как и у звезд глав-
ной последовательности. Линии водорода, которые удается надежно измерить,
имеются только при Teff

>∼5500 K.
У примерно 16% белых карликов атмосферы состоят из чистого гелия, без

каких-либо примесей. Им отвечает несколько спектральных типов. При Teff от
12 500 до ∼ 30 000 K в спектре видны линии нейтрального гелия. Это белые
карлики типа DB. Белые карлики с интенсивными линиями He II и эффектив-
ными температурами от ∼ 45 000 K вплоть до 100 000K и более относят к типу
DO. Если, наоборот, температура гелиевой атмосферы низкая (Teff

<∼12500), то
линий гелия нет (как, скажем, и в спектре солнечной фотосферы). Спектр бе-
лого карлика в этом случае чисто непрерывный. Это спектр типа DC. Впрочем,
атмосферы всех белых карликов с Teff

<∼5500 имеют непрерывный спектр, даже
если они чисто водородные или состоят из произвольной смеси H и He. Иногда
в последнем случае говорят о спектрах типа DAB. Внимательный читатель
заметил, что белые карлики с гелиевыми атмосферами и Teff от ∼ 30 000 до
∼ 45 000 K в описанной классификации отсутствуют. Это не ошибка — таких
белых карликов нет, и непонятно, почему.

Если атмосфера состоит из гелия, но в ней есть примеси тяжелых элемен-
тов, то спектр может обозначаться как DQ, DZ или даже DQZ. Здесь буква Q
свидетельствует о наличии линий углерода, а Z указывает, что в спектре есть
линии и более тяжелых элементов, скажем, магния и железа (как в случае
Проциона В). Считается, что эти тяжелые элементы попадают в атмосферы
белых карликов скорее всего при поглощении ими вращающихся вокруг них
планетозималей, малых планет и/или даже планет земного типа. Некоторые
белые карлики c Teff

>∼15 000 К имеют спектры DQ и атмосферы, состоящие из
чистого углерода. Входить в дальнейшие подробности классификации спектров
белых карликов мы не будем.

Такой необычный для нормальных звезд состав атмосфер белых карли-
ков — либо чистый водород, либо чистый гелий — объясняется имеющимся у
белых карликов колоссальным ускорениям силы тяжести g ∼ 108 см/с2. Это
приводит к эффективному гравитационному разделению элементов — наверху,
то есть в атмосфере, оказываются самые легкие их имеющихся атомов. Если
у белого карлика есть хоть ничтожное количество водорода, его спектр — DA.
Если же водорода нет совсем и самыми легкими из имеющихся атомов явля-
ются атомы гелия, то у такого карлика спектр DB. На самом деле не все так
просто — в атмосфере может происходить конвекция, вызывающая эффектив-
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ное перемешивание. В итоге возникают спектры типа DAB. Входить в детали
мы не будем.

1.3. Определение
масс и радиусов

У белых карликов, являющихся компонента-
ми визуальных и спектрально-двойных, их
массы находятся стандартными методами,

общими для всех таких двойных (см. любой учебник астрофизики). Массы,
найденные таким образом, называются динамическими. Обычный метод на-
хождения масс и радиусов белых карликов, не обязательно компонентов двой-
ных, — так называемый спектроскопический — состоит в следующем. Стро-
ится сетка моделей атмосфер (в зависимости от обстоятельств как правило
либо чисто водородных, либо чисто гелиевых) с различными более или менее
близкими к ожидаемым Teff и lg g. По этим моделям рассчитываются результи-
рующие спектры выходящего излучения. Сравнением их со спектрами иссле-
дуемых звезд (в частности, сравниваются профили бальмеровских линий для
DA спектров и профили линий нейтрального гелия для DB) добиваются наи-
лучшего согласия. Тем самым находятся Teff и lg g. В благоприятных случаях
для DA звезд ошибки определения Teff составляют всего ∼ 1.5%, а lg g — при-
мерно 0.042 dex. По определению Teff , светимость звезды, в частности и белого
карлика, равна L = 4π R2 σT 4

eff . Зная параллакс (а для близких белых карликов
он надежно известен), по наблюдаемой болометрической звездной величине на-
ходим светимость, а тем самым и радиус, поскольку Teff уже известно. После
этого масса определяется (в дополнение к динамически найденной) по полу-
ченному значению lg g, поскольку g = GM/R2.

Вариант описанного только что метода, называемый фотометрическим,
применяется тогда, когда известен не спектр белого карлика, а лишь его
блеск в полосах той или иной фотометрической системы. Для звезд из об-
зора SDSS (Sloan Digital Sky Survey), который охватывает все северноe небо
и часть южного, это пятиполосная фотометрическая система ugriz, в обзоре
2MASS (2-Micron All Sky Survey) — это полосы J (1.25 мк), H (1.65 мк) и
K2 (2.17 мк). (Именно по этим обзорам выявлено ∼30 000 белых карликов —
число, указывавшееся выше). Полученные из расчетов моделей атмосфер спек-
тры ,,сворачивают" с кривыми фильтров всех фотометрических полос, для
которых имеются измерения блеска, и за счет подбора Teff и lg g добиваются
наилучшего согласия с наблюдениями. Далее все так же, как в спектроскопи-
ческом методе.

Для ряда белых карликов, входящих в двойные системы, удается измерить
эйнштейновское гравитационное красное смещение спектральных линий MλЭ :

MλЭ

λ
=

GM

R c2
.
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Наблюдаемое гравитационное красное смещение принято выражать как экви-
валентное доплеровское смещение MλЭ/λ = vЭ/c, так что

vЭ =
GM

R c
= 0.6365

M

R
км/с.

Если масса и радиус уже определены описанными выше методами, то это дает
возможность независимо еще раз получить либо массу, взяв уже полученный
радиус, либо наоборот — по найденному радиусу заново получить массу. Ес-
ли, однако, белый карлик входит в состав широкой пары, принадлежность к
которой устанавливается совпадением собственных движений белого карлика
и расположенной неподалеку нормальной звезды (и по величине, и по направ-
лению), то гравитационное красное смещение находится как разность лучевых
скоростей компонент такой широкой пары. Динамически определенных масс
для широких пар, разумеется, нет. Заметим между прочим, что в англоязыч-
ной литературе вместо термина ,,широкая пара" говорят о common proper
motion pair.

Добавить про ELM WD



2. ТЕОРИЯ ЧАНДРАСЕКАРА

2.1. Исходные
предположения

В основе классической теории механическо-
го равновесия белых карликов, развитой
Чандрасекаром, лежит несколько простых,

легко обосновываемых предположений. Они сводятся к следующему.
Во-первых, принимается, что электронный газ в недрах белых карликов

полностью вырожден, так что формально его температуру можно считать рав-
ной нулю. Далее, этот газ считается идеальным, так что кулоновские поправки
к уравнению состояния не учитываются. Наконец, предполагается, что толщи-
на поверхностных слоев, где вырождения нет, пренебрежимо мала, так что
электронный газ считается вырожденным вплоть до самой поверхности.

Во-вторых, принимается, что давление электронной компоненты полностью
ионизованного газа Pe сильно превосходит давление его ионной составляющей
Pi, и ее вклад в давление не учитывается, то есть формально полагают Pi = 0.

Наконец, в-третьих, считается, что белый карлик химически однороден.
Разумеется, ни одно из этих предположений не является строгим. Детальное

обсуждение их точности и границ применимости будет дано позже. Пока же
ограничимся краткими предварительными замечаниями.

Как уже не раз говорилось, типичный белый карлик имеет массу ∼ 1M¯
и радиус ∼ 0.01R¯, так что средняя плотность его вещества ρ̄ ∼ 106 г/см3.
Большинство белых карликов состоит из смеси углерода 12C и кислорода 16O,
хотя есть небольшое количество и таких, недра которых состоят из смеси кис-
лорода 16O и неона 20Ne (см. с. 400). Существуют и чисто гелиевые белые
карлики малых масс. Во всех случаях из-за высоких плотностей атомы в нед-
рах белых карликов полностью ионизованы давлением. Поэтому концентрация
свободных электронов в них в несколько раз превышает концентрацию ионов
(скажем, в белом карлике, состоящем из равных долей C и O, — в семь раз).
Уже только поэтому, даже если бы не было вырождения, электронное давление
в несколько раз превышало бы давление, создаваемое ионами. Главное, одна-
ко, не в этом. В сильно вырожденном газе кинетические энергии электронов
значительно превосходят тепловые энергии ионов, оставляющие (3/2)kT , или
∼ 1 кэВ при T ∼ 107 К. Так, при плотности порядка 2 ·106 г/см3 средняя энер-
гия поступательного движения электрона составляет 133 кэВ. Учитывая,что в
СО-белом карлике число электронов в 7 раз больше числа ионов, заключаем,
что при T ∼ 107 К ионы дают в ∼ 103 раз меньший вклад в давление, чем
электроны, так что действительно с высокой точностью можно считать, что
давление создается только электронами.

Следует подчеркнуть, что в теории Чандрасекара расчет механического

418



X.2. Теория Чандрасекара 419

равновесия белого карлика полностью отделен от расчета его тепловой струк-
туры и ее эволюции.

Часто встречается утверждение, что чандрасекаровский белый карлик —
это конечный продукт эволюции звезд с начальными массами <∼(10 ÷ 11)M¯.
В этом утверждении одно слово лишнее — чандрасекаровский. Реальные белые
карлики медленно остывают и на некотором этапе их недра сначала становят-
ся жидкими, а затем затвердевают. И хотя такие объекты также считаются
белыми карликами, но они уже отнюдь не являются чандрасекаровскими!

2.2. Полностью
вырожденный газ

Обозначим через n(p) dp число электронов с
импульсами из интервала (p, p + dp). Объ-
ем шарового слоя (p, p + dp) в пространстве

импульсов есть, очевидно, 4π p2 dp, число квантовых ячеек объема h3 в этом
слое — 4π p2 dp/h3. В каждой ячейке может находиться не более 2 электронов.
При T = 0 электроны занимают все нижние квантовые состояния. В этом слу-
чае говорят, что электронный газ полностью вырожден. Мы имеем, очевидно,

n(p) =





2
h3 4πp2, p 6 pF ,

0, p > pF ,
(2.1)

где предельный импульс pF — так называемый импульс Ферми — определяется
электронной концентрацией Ne:

Ne =
∫ p

F

0

n(p) dp =
8π

3
p3

F

h3
. (2.2)

Обозначим, далее,

x =
pF

mec
(2.3)

и введем средний электронный молекулярный вес µe, то есть число атомных
единиц массы mu, приходящихся на один свободный электрон:

ρ = µemuNe. (2.4)

Пользуясь (2.2) и (2.3), можем представить (2.4) в виде

ρ = µeρ1x
3, (2.5)

где обозначено

ρ1 =
8π

3

(mec

h

)3

mu = 9.7393 · 105 ≈ 106 г/см3 (2.6)
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и µe — электронный молекулярный вес (см. с. 142)

µe =
2

1 + X
. (2.7)

Здесь X – весовая доля водорода в веществе.
Характерная плотность ρ1 и безразмерный параметр x играют в теории

полностью вырожденного газа важную роль. Отметим, что

ρ1 =
8π

3
mu

λ3
C

, (2.8)

где λ
C

= h/(mec) — комптоновская длина волны электрона.
Уравнение состояния полностью вырожденного газа — это зависимость дав-

ления от плотности (температура в нем не фигурирует, так как она формаль-
но считается равной нулю). Чтобы его найти, будем исходить из стандартной
формулы для давления в идеальном газе. Применительно к рассматриваемому
случаю она записывается так:

P =
1
3

∫ p
F

0

n(p)p v(p) dp. (2.9)

Поскольку
p =

mev√
1− v2/c2

, (2.10)

то
v(p) =

p

me

√
1 + (p/mec)2

, (2.11)

и (2.9) принимает вид

P =
8π

3
1

meh3

∫ p
F

0

p4 dp√
1 + (p/mec)2

. (2.12)

Положив y = p/(mec), можем переписать (2.12) в виде

P = P1 F (x), (2.13)

где

F (x) =
∫ x

0

y4 dy√
1 + y2

(2.14)

и
P1 =

8π

3

(mec

h

)3

mec
2 = 4.8019 · 1023 дин

см2
. (2.15)
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Формулы (2.5) и (2.13) – (2.14) и задают (в параметрической форме) искомое
уравнение состояния, то есть зависимость P = P (ρ). Входящие в них величины
ρ1 и P1 даются формулами (2.6) и (2.15).

Заметим, что

P1 =
8π

3
mec

2

λ3
C

. (2.16)

Далее, сопоставление (2.6) и (2.15) дает

P1 =
mec

2

mu
ρ1 . (2.17)

Безразмерный параметр x — это граничный импульс Ферми, выраженный
в долях mec. Его часто называют параметром релятивизации. При x ¿ 1
электронный газ нерелятивистский, при x ∼ 1 — умеренно релятивистский,
наконец, при x À 1 — ультрарелятивистский. Функция F (x), задаваемая инте-
гралом (2.14), выражается через элементарные функции. Как это ни странно,
само это выражение нам в дальнейшем не понадобится. При исследовании
функции F (x) гораздо проще исходить из ее представления в виде интеграла,
чем из довольно громоздкого явного выражения. Тем не менее, отдавая дань
традиции обязательно приводить это выражение, дадим его и мы:

F (x) =
x

8
(2x2 − 3)

√
1 + x2 +

3
8

ln
(
x +

√
1 + x2

)
. (2.18)

В разд. 4 Гл. IV мы уже кратко обсуждали предельные формы зависи-
мости P = P (ρ), соответствующие случаям нерелятивистского (x ¿ 1, или
ρ ¿ µe106 г/см3) и ультрарелятивистского (x À 1, или ρ À µe106 г/см3) элек-
тронного газа. Получим теперь эти результаты из общего уравнения состояния
полностью вырожденного газа, справедливого при любых x.

При x ¿ 1 (низкие плотности) у всех электронов импульсы p¿mec. Это
нерелятивистский (НР) полностью вырожденный электронный газ. Разлагая
(1 + y2)−1/2 в подынтегральном выражении в (2.14) в ряд и почленно интегри-
руя, немедленно находим

F (x) =
x5

5
− x7

2 · 7 + . . . , x ¿ 1. (2.19)

Удерживая здесь только первый член разложения, подставляя это и x из (2.5)
в (2.13), получаем

НР : P = K1

(
ρ

µe

)5/3

, (2.20)
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где

K1 =
P1

5 ρ
5/3
1

=
1
20

(
3
π

)2/3
h2

mem
5/3
u

= 1.004 · 1013 дин · см−2(г·см−3)−5/3. (2.21)

С точностью до множителя порядка единицы
(
именно, 1.914, см. формулу

(III.4.10), с. 144
)
этот предельный случай уравнения состояния полностью вы-

рожденного электронного газа уже был найден нами ранее, причем можно
сказать ,,из ничего” — из простейшего анализа размерностей. Теперь мы по-
лучили и точное значение коэффициента пропорциональности в соотношении
P ∝ ρ5/3.

Задание.Получите разложение (2.19) из явного выражения F (x) в форме (2.18).
Наберитесь терпения — из-за взаимного сокращения нескольких членов низших
порядков потребуются длинные выкладки.

В противоположном предельном случае x À 1 у большинства электронов
импульсы p À mec, то есть они релятивистские. В этом случае говорят, что
электронный газ ультрарелятивистский (УР). (Что означает здесь приставка
ультра, непонятно — ведь скорости большинства электронов вовсе не À c —
это невозможно — а всего лишь очень близки к c). Главный вклад в интеграл
в (2.15) при xÀ1 дает область вблизи верхнего предела интегрирования. Мы
имеем

y4

√
1 + y2

=
y3

√
1 + y−2

= y3 − y

2
+ . . . ,

и поэтому

F (x) =
x4

4
− x2

4
+ . . . , x À 1. (2.22)

Поступая как и в случае НР–газа, то есть удерживая в (2.22) только глав-
ный член разложения и подставляя это и x из (2.5) в (2.13), получаем

УР : P = K2

(
ρ

µe

)4/3

. (2.23)

Здесь

K2 =
1
8

(
3
π

)1/3
c h

m
4/3
u

= 1.243 · 1015 ≈ 1015 дин · см−2(г·см−3)−4/3. (2.24)

Зависимость P ∝ ρ4/3 для ультрарелятивистского электронного газа также
была найдена нами ранее, в разд. 4 Гл. IV, из анализа размерностей фигури-
рующих в этом случае характерных величин. Коэффициент пропорционально-
сти был получен при этом с точностью до множителя C2, близкого к единице,
именно C2 = 0.773 (см. формулу (III.4.17), с. 146).
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Мелкое замечание. Области применимости нерелятивистского и ультраре-
лятивистского уравнений состояния традиционно указывают как x¿1 и xÀ1.
Что реально означают эти ¿ 1 и À 1? В нерелятивистском случае уже при
x = 1/2, как следует из (2.19), учет второго члена разложения дает поправ-
ку всего ∼ 10%. Плотность же при x = 1/2 равна 1/8 граничного значения
µeρ1 = µe 106 г/см3. Далее, из (2.22) можно заключить, что в ультрареляти-
вистском случае при x = 2 главный член разложения обеспечивает точность
∼ 25%. Плотность при этом составляет 8 µe 106 г/см3. Эти числа дают пред-
ставление о реальной области применимости и точности предельных уравнений
состояния (2.20) и (2.21).

Получим также выражение для средней кинетической энергии Ee электро-
нов в полностью вырожденном газе. Мы имеем, очевидно,

Ee =

∫ p
F

0
ε(p)n(p) dp∫ p
F

0
n(p) dp

, (2.25)

где ε(p) — кинетическая энергия электрона с импульсом p:

ε(p) = mec
2

(√
1 +

(
p/(mec)

)2 − 1

)
(2.26)

и n(p) дается (2.1). Перeйдя в (2.25) к интегрированию по безразмерным им-
пульсам y = p/(mec), получим

Ee = mec
2

[
3
x3

∫ x

0

√
1 + y2 y2 dy − 1

]
, (2.27)

где, как и ранее, x — безразмерный граничный импульс Ферми: x = pF /(mec).
Из (2.27) находим, что в нерелятивистском случае (при ρ ¿ µe106 г/см3)

Ee = mec
2

(
3
10

x2 + . . .

)
, x ¿ 1, (2.28)

тогда как в ультрарелятивистском пределе (при ρ À µe106 г/см3)

Ee = mec
2

(
3
4

x− 1 +
3
4

1
x

+ . . .

)
, x À 1. (2.29)

Вычисление интеграла в (2.27) дает следующее явное выражение для Ee, спра-
ведливое при произвольном x:

Ee = mec
2

(
3

8x3

(
x(1 + 2x2)

√
1 + x2 − ln

(
x +

√
1 + x2

))− 1
)

. (2.30)
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При µe = 2 и x = 1, то есть при ρ = 2 · 106 г/см3, согласно (2.30) имеем
Ee = 0.260 mec

2, или 133 кэв — число, уже приводившееся на с. 418 без каких-
либо пояснений.

В заключение получим выражение для показателя адиабаты γ полностью
вырожденного идеального электронного газа. Мы имеем по определению

γ =
d ln P

d ln ρ
=

ρ

P

(
dP

dx

/
dρ

dx

)
. (2.31)

Введя сюда выражения для ρ из (2.5) – (2.6) и для P из (2.13) – (2.15), получим

γ =
x3

F (x)
x4

√
1 + x2

1
3x2

. (2.32)

Здесь первый сомножитель в правой части порожден множителем ρ/P в (2.31),
второй — это dP/dx, а третий — (dρ/dx)−1. Пользуясь разложениями F (x) при
x ¿ 1 и при x À 1, даваемыми соответственно (2.19) и (2.22), находим отсюда

γ =
5
3

(
1− x2

7
+ . . .

)
, x ¿ 1, (2.33)

и

γ =
4
3

(
1 +

1
2x2

+ . . .

)
, x À 1. (2.34)

Тот факт, что в ультрарелятивистском пределе показатель адиабаты вырож-
денного электронного газа приближается к 4/3, имеет важные последствия, по
сути дела определяя значение верхнего предела масс белых карликов. Подроб-
нее см. п. 4.1.

2.3. Гравитационный
потенциал белых

карликов

Расчет механического равновесия полно-
стью вырожденной самогравитирующей
конфигурации сводится к совместному
решению уравнения гидростатического

равновесия
∇P = − ρ∇ϕ,

где ϕ — гравитационный потенциал, и уравнения Пуассона

∆ϕ = 4π Gρ

в комбинации с баротропным уравнением состояния P = P (ρ). Это позволяет
найти давление, плотность и гравитационный потенциал.
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Баротропность уравнения состояния следует из предположения о том, что
имеется полное вырождение, то есть формально T = 0. Явный вид зависимо-
сти P = P (ρ) определяется тем, какие факторы учитываются. В классической
теории белых карликов Чандрасекара в качестве P = P (ρ) берется уравнение
состояния идеального полностью вырожденного электронного газа. О том, ка-
кова для вещества белых карликов реальная физическая точность этого урав-
нения состояния, речь пойдет позже. Коротко говоря, в большинстве случаев
это вполне удовлетворительное приближение (погрешность <∼10%).

Наша тактика будет следующей. В качестве первого шага из уравнения
гидростатики в комбинации с уравнением состояния в параметрической форме
(см. п. 2.2)

P = P1 F (x), ρ = µe ρ1 x3

мы найдем ϕ в функции параметра релятивизации x. Тем самым фактически
будет получена связь между потенциалом и плотностью. На втором шаге из
уравнения Пуассона получим зависимость параметра x от расстояния от цен-
тра звезды r, что и даст полное решение задачи.

Для сферически-симметричного случая уравнение гидростатического рав-
новесия принимает вид

dP

dr
= − ρ

dϕ

dr
, (2.35)

так что для нахождения потенциала достаточно иметь производную от давле-
ния. Поэтому нам фактически понадобится не сама функция F (x), а имеющая
гораздо более простое явное выражение ее производная. Мы имеем (см. п. 2.2)

P = P1 F (x) = P1

∫ x

0

y4 dy√
1 + y2

,

так что
dP

dr
= P1

x4

√
1 + x2

dx

dr
.

Вводя это и выражение для плотности ρ = µe ρ1x
3 в уравнение гидростатики,

получаем после сокращений

dϕ

dx
= − P1

µe ρ1

x√
1 + x2

,

откуда

ϕ = − P1

µe ρ1

√
1 + x2 + C.

Постоянную интегрирования C находим из условия на поверхности звезды,
где, с одной стороны, ϕ = −GM/R, а с другой ρ = 0, так что x = 0. Учитывая
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также, что, как было установлено в п. 2.2,

P1

ρ1

=
me c2

mu
,

получаем окончательно

µemuϕ + me c2
(√

1 + x2 − 1
)

= −µemu
GM

R
. (2.36)

Далее, обозначим через Φ абсолютную величину потенциала, отсчитываемого
от поверхности. Мы имеем, очевидно,

Φ = −ϕ− GM

R
. (2.37)

Поэтому соотношение (2.36) можно переписать в виде

µemuΦ = me c2
(√

1 + x2 − 1
)

. (2.38)

Первый шаг тем самым завершен — гравитационный потенциал найден в
функции параметра x. Прежде чем переходить ко второму шагу, обсудим по-
лученный результат — он того заслуживает.

2.4.
Обсуждение

1) Термодинамическое рассмотрение.
Обозначим через H энтальпию газа (в расче-
те на 1 г): H = U + PV, где U — внутренняя

энергия, V — удельный объем: V = 1/ρ. Привлекая основное термодинамиче-
ское соотношение T dS = dU + P dV, находим, что при постоянной энтропии
dH

∣∣
S
= V dP , или

dH =
dP

ρ
, S = const.

С учетом этого для любой изэнтропичной звезды уравнение гидростатического
равновесия (2.35) можно переписать в виде:

d(H + ϕ)
dr

= 0.

Так как на поверхности звезды ϕ =−GM/R, P = 0, ρ = 0 и H = 0, то отсюда

H + ϕ = − GM

R
. (2.39)

Очевидно, что формула (2.36) — это частный случай (2.39) для холодного
(T = 0) белого карлика. Сопоставление (2.36) и (2.39) показывает, что для
полностью вырожденного электронного газа

µemu H = me c2
(√

1 + x2 − 1
)

.
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Величина, стоящая справа, есть кинетическая энергия εF электрона с импуль-
сом, равным граничному импульсу Ферми pF (напомним, что x ≡ pF /mec):

εF = me c2
(√

1 + x2 − 1
)

,

тогда как µemuH есть, очевидно, энтальпия в расчете на свободный электрон.
Итак, мы пришли к следующему красивому результату: для идеального газа с
T = 0 (полное вырождение электронного газа; вклада во внутреннюю энергию
и давление от атомных ядер нет; вклад в массу — только от ядер) энтальпия
равна

H =
εF

µemu
.

Если полученное для H выражение ввести в определение энтальпии H =
U + PV и воспользоваться тем, что согласно уравнению состояния

PV ≡ P

ρ
=

P1

µeρ1

F (x)
x3

=
me c2

µemu

F (x)
x3

,

то для внутренней энергии полностью вырожденного электронного газа мы
получим

U =
me c2

µemu

(√
1 + x2 − 1− F (x)

x3

)
.

Среди читателей наверняка найдутся такие, которым вывод выражений для
H и U с привлечением уравнения гидростатического равновесия покажется
слишком экзотическим. Им можно рекомендовать стандартный путь — вычис-
ление внутренней энергии по очевидной формуле

U ρ =
∫ p

F

0

n(p) ε(p) dp,

где pF — граничный импульс Ферми, ε(p) — энергия электрона с импульсом p
за вычетом энергии покоя:

ε(p) = me c2
(√

1 + (p/mec)2 − 1
)

,

наконец, n(p) — функция распределения электронов по импульсам (2.1). Ре-
зультат, разумеется, получается тот же, но требуются вычисления (проделайте
их!).

2) Внутренняя энергия. Для любой изэнтропичной звезды, в том чис-
ле и для холодного белого карлика, ее внутренняя энергия EU весьма просто
выражается через гравитационную энергию связи EG, именно

EU = − 5
3

EG − GM2

R
. (2.40)
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Этот красивый результат легко получить из найденного только что условия
равновесия в форме ϕ + H = −GM/R. Так как H = U + P/ρ, то

ϕ + U +
P

ρ
= − GM

R
.

Умножая на ρ и интегрируя по всему объему звезды, находим
∫

V

ρϕ dV +
∫

V

U ρ dV +
∫

V

P dV = − GM2

R
.

Первый интеграл есть, очевидно, 2EG (см. п. 2.1 Гл. II), второй — это внут-
ренняя энергия конфигурации EU , наконец, третий согласно теореме вириала
равен −EG/3 (см. п. 2.2 Гл. II). Отсюда и следует искомое выражение для EU .

Полная энергия E = EU + EG изэнтропичной звезды согласно (2.40) оказы-
вается равной

E = − 2
3

EG − GM2

R
. (2.41)

3) Замечание о политропах. Пусть уравнение состояния вещества имеет
вид P = Kρ1+1/n. Звезда из такого вещества есть, очевидно, политропа индекса
n. Из закона сохранения энергии dQ = dU + P d(1/ρ) при адиабатическом из-
менении состояния (S = const) имеем dU = −P d(1/ρ), так что dU =

(
P/ρ2

)
dρ,

или dU = Kρ(1/n)−1 dρ, откуда U = nP/ρ. Поэтому внутренняя энергия звезды
из такого вещества равна

EU = n

∫

V

P dV = − n

3
EG.

Второе равенство написано здесь по теореме вириала. Комбинируя последнее
выражение с формулой (2.40), получаем хорошо известный из теории политроп
результат (см. п. 2.1 Гл. IV)

EG = − 3
5− n

GM2

R
,

а (2.41) дает

E = −3− n

5− n

GM2

R
.

Обращаем внимание на то, что в п. IV.2.1 при выводе приведенной только что
формулы для EG предположения о постоянстве энтропии вдоль радиуса не
делалось. Она справедлива для любой, не обязательно изэнтропичной полит-
ропы. Последнее же выражение для E верно лишь при S = const.
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4) Релятивистские эффекты. Звезда создает гравитационную потенци-
альную яму. Чтобы можно было пользоваться ньютоновской теорией, глубина
этой ямы не должна быть слишком большой. Если ϕc — потенциал на дне ямы,
то есть в центре звезды, то должно быть

|ϕc| ¿ c2.

Возникает вопрос: не вытекает ли из этого требования, что релятивистские
эффекты несущественны также и в уравнении состояния, то есть xc ¿ 1, или
ρc ¿ 2 ·106 г/см3? Ответ, как мы сейчас убедимся, отрицателен: имеются такие
xc À 1, при которых все еще |ϕc| ¿ c2. Иначе говоря, возможно существование
белых карликов, сильно релятивистских по уравнению состояния, но класси-
ческих по полю тяготения.

Действительно, положим

ϕc = − (φc + 1)
GM

R
,

так что (φc+1) — это потенциал в центре конфигурации в единицах потенциала
на поверхности. Для политроп с n = 3/2 и n = 3 имеем φc =1.35 и 3.42,
соответственно (см. Табл. IV.2.2, с. 189). Значения φc для чандрасекаровских
белых карликов заключены между этими пределами, монотонно возрастая с
массой. Применяя (2.36) к центру конфигурации, для которой ρc À 2·106 г/см3,
так что xc À 1, находим

φc
GM

R
=

me c2

µemu
xc.

Неравенство |ϕc| ¿ c2 принимает поэтому вид

xc ¿ φc

φc + 1
µemu

me
.

Но φc/(φc + 1) ≈ 3/4 при xc À 1 (впрочем, нам вполне достаточно было бы и
более грубой оценки φc/(φc + 1) ∼ 1). Поэтому при

xc ¿ µe · 1.4 · 103,

чему при µe = 2 соответствует ρc ¿ 4 · 1016 г/см3, имеем |ϕc| ¿ c2, и поправки
на ОТО должны быть малы. Итак, мы убедились, что существует очень широ-
кий диапазон плотностей, при которых в уравнении состояния релятивистские
эффекты существенны, поле же тяготения близко к ньютонову.

Фактически для белых карликов поправки на ОТО заведомо не могут быть
большими. Однако при использовании того уравнения состояния, которое при-
менялось выше, уже малые поправки на ОТО делают невозможным существо-
вание гидростатически равновесных белых карликов с ρc

>∼ 109 г/см3. На самом
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деле неустойчивость должна возникать даже при несколько меньших плотно-
стях. Причина этого в том, что при ρc

>∼ 108 становятся существенными про-
цессы обратного β-распада (нейтронизация ядер). Это ведет к резкому замед-
лению роста давления с плотностью, что и порождает неустойчивость.

Итак, со стороны высоких плотностей теория Чандрасекара ограничивает-
ся совместным действием двух причин — эффектов ОТО и (в большей мере)
неприменимостью используемого в ней уравнения состояния.

2.5. Уравнение
Чандрасекара

Обратимся теперь ко второму шагу в рас-
смотрении гидростатики белых карликов —
получению физических переменных P , ρ и ϕ
в функции расстояния от центра r. Сделать

это в явном виде, выразив эти величины через элементарные функции или хо-
тя бы в виде интегралов, не удается. Нахождение зависимости от r включает
в себя решение задачи Коши для некоторого нелинейного дифференциального
уравнения второго порядка. Впрочем, каких-либо трудностей при численном
решении здесь не возникает. Излагаемая далее теория строится ,,по образу и
подобию" теории политроп. Настоятельно рекомендуем читателю шаг за ша-
гом сопоставлять чандрасекаровскую теорию белых карликов с эмденовской
теорией политроп (см. разд. IV.1 и IV.2).

Оставим пока физику в стороне и будем действовать формально. Приме-
няя к (2.36) оператор Лапласа и пользуясь уравнением Пуассона ∆ϕ = 4π Gρ,
получаем, учитывая, что у нас ρ = µeρ1x

3,

1
r2

d

dr

(
r2 d

√
1 + x2

dr

)
= −µ2

e

mu

me c2
4πG ρ1x

3. (2.42)

Теперь естественно сделать три вещи:
1) Ввести в качестве искомой функции

z =
√

1 + x2 ; (2.43)

2) Произвести масштабирование решения, добившись того, чтобы оно не
выходило из промежутка [0, 1]. Для этого следует положить

z = zc ψ, (2.44)

где zc — значение z в центре конфигурации (при r = 0);
3) Перейти от r к безразмерному расстоянию ζ:

r = r1 ζ, (2.45)
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выбрав линейный масштаб r1 так, чтобы все размерные множители в урав-
нении сократились и вид его стал настолько простым, насколько это только
возможно.

Осуществляя эту программу, найдем, что r1 следует взять равным

r1 =
1
zc

(
me c2

µ2
emu 4π Gρ1

)1/2

=
1
zc

1
µe

7.7691 · 108 см. (2.46)

Тогда уравнение для ψ примет вид

1
ζ2

d

dζ

(
ζ2 dψ

dζ

)
= −

(
ψ2 − 1

z2
c

)3/2

. (2.47)

Оно должно решаться при следующих начальных условиях:

ψ(0) = 1, ψ′(0) = 0. (2.48)

Первое из них есть следствие определения ψ, второе в силу (2.36) выражает
равенство нулю силы тяжести в центре звезды.

Уравнение (2.47) — основное уравнение теории Чандрасекара в ее наиболее
полной форме (1935 г.). Следует подчеркнуть, что это уравнение содержит
параметр zc. Поэтому его решения образуют однопараметрическое семейство.

Когда задача Коши (2.47) – (2.48) решена, тем самым фактически най-
дена зависимость параметра релятивизации x (а вместе с тем — давления и
плотности) от расстояния от центра r. Действительно, согласно определению
безразмерных чандрасекаровских переменных ζ, ψ мы имеем

√
1 + x2 = zcψ(ζ), (2.49)

так что
x =

√
z2
cψ2(ζ)− 1. (2.50)

Здесь ζ = r/r1. Что же касается потенциала Φ, то он, согласно (2.38) и (2.49),
связан с ψ совсем просто:

µemuΦ(ζ) = me c2
(
zcψ(ζ)− 1

)
. (2.51)

Выражения важнейших глобальных параметров белых карликов — радиу-
са, массы и т. п. — через решения уравнения (2.47) подробно обсуждаются в
следующем разделе.
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2.6. Белые карлики
малых масс

Поучительно рассмотреть решения уравне-
ния Чандрасекара (2.47) для двух предель-
ных случаев. Первый — это белые карлики

малых масс, у которых даже центральная плотность ρc ¿ 2 · 106 г/см3, так
что электронный газ в них хоть и вырожденный, но нерелятивистский. Такие
белые карлики, как мы уже знаем, представляют собой политропы индекса
n = 3/2 (см. с. 158). Второй предельный случай — это белый карлик с массой,
равной M♦. Он является политропой n = 3 (см. с. 159). Как это ни стран-
но, первый результат получить из уравнения (2.47) не так просто, как второй.
Обратимся сейчас к этому первому случаю, отложив рассмотрение второго до
п. 3.7.

Можно показать, что при xc ¿ 1 решение уравнения Чандрасекара, удо-
влетворяющее начальным условиям (2.48), с точностью до членов порядка x2

c

имеет вид

ψ(ζ) = 1− x2
c

2

(
1− θ

(√
2xc ζ

))
+ O(x4

c ), (2.52)

где θ — функция Эмдена индекса n = 3/2. Получение этого результата не
вполне тривиально, в частности, требуется использовать гомологичность ре-
шений уравнения Эмдена (см. Упр. 8◦ Гл. IV, с. 249). Однако проверка того,
что (2.52) удовлетворяет уравнению (2.47) и начальным условиям (2.48), не
составляет труда. Действительно, подставляя (2.52) в правую часть (2.47), по-
лучаем

(
ψ2 − 1

z2
c

)3/2

=

(
1− x2

c

(
1− θ

(√
2xc ζ

))− 1 + x2
c

)3/2

= x3
c θ3/2

(√
2xc ζ

)
. (2.53)

Здесь мы воспользовались тем, что с точностью до членов порядка x2
c мы имеем

1/z2
c = 1 − x2

c . Далее, подставив (2.52) в левую часть (2.47) и введя вместо ζ
новую переменную ξ =

√
2xc ζ, получим

x3
c

1
ξ2

d

dξ

(
ξ2 dθ

dξ

)
, (2.54)

что в комбинации с (2.53) приводит к уравнению Эмдена индекса n = 3/2 для
θ(ξ). Нам осталось проверить, что решение (2.52) удовлетворяет начальным
условиям (2.48). Полагая ζ = 0 в (2.52), убеждаемся, что условие ψ(0) = 1 будет
удовлетворено, если θ(0) = 1. Аналогичным образом, продифференцировав
(2.52) и приравняв производную нулю, заключаем, что условие ψ′(0) = 0 влечет
θ′(0) = 0. Таким образом, мы пришли к заключению, что (2.52) есть решение
(2.47) — (2.48), если θ(ξ) — это решение уравнения Эмдена

1
ξ2

d

dξ

(
ξ2 dθ

dξ

)
= − θ3/2(ξ), (2.55)
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удовлетворяющее начальным условиям θ(0) = 1, θ′(0) = 0, то есть если θ(ξ) —
это функция Эмдена индекса n = 3/2.

Поскольку правая часть в уравнении (2.47) пропорциональна плотности,
она обращается в 0 на границе звезды. Поэтому из (2.53) мы видим, что граница
достигается при ζ = ζ1 таком, что θ

(√
2xc ζ1

)
= 0, так что

ζ1 =
ξ1√
2xc

= 2.5836 x−1/2
c . (2.56)

Здесь ξ1 = 3.6538 — корень функции Эмдена θ(ξ) индекса 3/2 (см. Табл. IV.2.1,
с. 184). Так как радиус модели равен R = ζ1r1, из последней формулы видим,
что с уменьшением центральной плотности ρc ∝ x3

c радиус звезды неограни-
ченно возрастает. Однако на самом деле при низких плотностях электронный
газ нельзя считать идеальным из-за кулоновского взаимодействия частиц, так
что здесь модель Чандрасекара становится неприменима. Подробнее об этом
см. в пп. 4.2 и 4.3.



3. ЧАНДРАСЕКАРОВСКИЕ МОДЕЛИ

В этом разделе мы приведем и обсудим выражения для ряда глобальных па-
раметров чандрасекаровских белых карликов — радиуса, массы, степени кон-
центрации вещества к центру, гравитационного потенциала и гравитационной
энергии. Они будут найдены в функции параметра zc. В эти выражения входят
две зависящие от zc числовые постоянные, ζ1 и µ̃1 (см. Табл. X.3.1). Они по-
лучены численным решением уравнения Чандрасекара (2.47). Для 1/zc > 0.01
оно было выполнено еще самим Чандрасекаром в 1935 г. и воспроизведено в
его ,,Введении в учение о строении звезд" (см. Список Литературы, #3), для
1/zc 6 0.01 численные результаты получил Рейц (A.Reiz, Ap. J., 109, 303, 1949).

Большое — возможно, даже слишком большое — внимание будет уделено
обсуждению предельных случаев чандрасекаровских моделей — с очень ма-
лыми и с очень большими (по масштабам белых карликов) плотностями. На
самом деле такие модели далеки от того, что реально существует в природе, но
их исследование полезно педагогически, позволяя разобраться в существе де-
ла. Приводимые в этом разделе численные данные были получены по просьбе
автора А.В.Дементьевым (СПбГУ).

Рекомендуем сопоставлять то, что говорится в этом разделе, с обсуждением
тех же вопросов для политроп, дававшимся в п. 2.2 Гл. IV, с. 182.

3.1. Радиус и масса
Радиус. Радиус белого карлика равен, оче-
видно, R = r1ζ1, где ζ1 определяется услови-

ем обращения в нуль правой части уравнения Чандрасекара:

ψ(ζ1) =
1
zc

. (3.1)

Эта правая часть уравнения (2.47) пропорциональна плотности. Поэтому по-
следнее условие означает, что при ζ = ζ1 плотность обращается в нуль, то есть
мы достигли поверхности звезды.

Формула R = ζ1r1 при использовании численного значения r1 из (2.46) дает

R =
1
µe

ζ1

zc
7.7691 · 108 см =

1
µe

ζ1

zc
1.1170 · 10−2R¯ =

1
µe

ζ1

zc
1.2181R⊕. (3.2)

Здесь R⊕ —радиус Земли (R⊕ = 6378.1 км=6.3781·108 см). Значения ζ1 в функ-
ции параметра zc, то есть фактически в функции центральной плотности, при-
ведены в Табл. X.3.1. Как уже говорилось, они получены путем численного
решения уравнения Чандрасекара.

Белые карлики малых масс имеют низкие плотности, так что у них xc ¿ 1.
Ранее мы установили

(
см. п. 2.6, с. 432, и, в частности, формулу (2.56), с. 433

)
,

434
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Таблица X.3.1:
Две важнейшие числовые константы, ζ1 и µ̃1,

порождаемые уравнением Чандрасекара

z−2
c ζ1 µ̃1

0.0000 6.8968 2.0182
0.0001 6.6733 2.0171
0.0005 6.4268 2.0129
0.001 6.2603 2.0078
0.005 5.6875 1.9713
0.01 5.3571 1.9321
0.02 4.9857 1.8652
0.05 4.4601 1.7097
0.1 4.0690 1.5186

0.14371 3.8804 1.3863
0.2 3.7271 1.2430
0.3 3.5803 1.0339
0.4 3.5245 0.8598

0.41752 3.5216 0.8318
0.5 3.5330 0.7071
0.6 3.6038 0.5680
0.8 4.0446 0.3091
→ 1 2.5836x

−1/2
c 0.9596x

3/2
c

1.0 ∞ 0.0000

Примечания. 1) В двух строках, напечатанных жирным шрифтом,
приводятся данные, относящиеся к белым карликам с массами 1 M¯ и
0.6 M¯, соответственно.
2) В предпоследней строке таблицы xc = (z2

c − 1)1/2.

что в этом случае белый карлик по своему строению близок к политропе ин-
декса n = 3/2 и ζ1 имеет вид ζ1 = ξ1/

√
2xc = 3.6538/

√
2xc. С учетом этого (3.2)

при µe = 2 дает

R/R¯ = 1.443 · 10−2 x−1/2
c при xc ¿ 1. (3.3)

Отсюда следует, что радиус белого карлика стремится к бесконечности, когда
его плотность стремится к нулю. Этот результат, конечно, отношения к дей-
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ствительности не имеет, так как при низких плотностях уравнение состояния
идеального полностью вырожденного электронного газа не работает (подроб-
нее см. п. 4.3, с. 475). Впрочем, реальная область применимости приведенного
выше выражения для ζ1 гораздо шире, чем можно думать. Используя данные,
приведенные в Табл. X.3.2, можно убедиться, что она неплохо работает уже
при xc = 0.5, обеспечивая точность ∼ 10%.

Как показывает детальный анализ численных данных высокой точности (8
значащих цифр), полученных для больших z2

c (вплоть до 1010), в противопо-
ложном предельном случае xc À 1 оказывается, что

ζ1 = 6.8968− 23.57 x−1
c , xc →∞. (3.4)

С учетом этого (3.2) дает (при µe = 2)

R/R¯ =
3.852 · 10−2

xc

(
1− 3.417

xc

)
+ O(x−3

c ), xc →∞. (3.5)

Численные данные о радиусах белых карликов разных масс, найденные по
формуле (3.2), приводятся в Табл. X.3.2, с. 442. См. также Рис. X.3.1. Допол-
нительные сведения имеются в пп. 3.5 (с. 445) и 3.8 (с. 459).

Масса. Масса белого карлика дается очевидной формулой

M = 4π

∫ R

0

ρ r′2 dr′ = 4π r3
1

∫ ζ1

0

ρ(ζ ′)ζ ′2 dζ ′. (3.6)

Поскольку уравнение Чандрасекара (2.47) есть записанное применительно к
рассматриваемому случаю уравнение Пуассона, то его правая часть должна
быть пропорциональна плотности. Поэтому можно написать (ψ2 − 1/z2

c )3/2 =
Aρ. Коэффициент пропорциональности A легко находится, если это равенство
применить к центру звезды (ζ = 0), где по определению ψ(0) = 1 и ρ = ρc. В
результате оказывается, что

ρ(ζ) = ρc
z3
c

(z2
c − 1)3/2

(
ψ2(ζ)− 1

z2
c

)3/2

. (3.7)

Далее, согласно (2.5) и (2.43) мы имеем ρc = µeρ1x
3
c = µeρ1(z2

c − 1)3/2, так что
последнее выражение можно переписать так:

ρ(ζ) = µeρ1z
3
c

(
ψ2(ζ)− 1

z2
c

)3/2

. (3.8)

По известному ψ(ζ) эта формула, между прочим, позволяет находить распре-
деление плотности вдоль радиуса. Сейчас нас, однако, интересует другое. Под-
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Рис. X.3.1:
Зависимость радиуса (точнее, R/R¯) от ρc (в г/см3) для чандрасекаровских

белых карликов с µe = 2 (сплошная кривая). Штриховые прямые —
асимптоты, описываемые формулами (3.3) и (3.5) (главный член).

ставим найденное ρ(ζ) под интеграл в (3.6) и учтем, что согласно (2.47)

∫ ζ

0

(
ψ2(ζ ′)− 1

z2
c

)3/2

ζ ′2 dζ ′ = −ζ2ψ′(ζ). (3.9)

Положив здесь ζ = ζ1, из (3.6), (3.7) и (3.9) находим, что

M = µ̃1 µe 4π ρ1 r3
1 z3

c , (3.10)

где обозначено
µ̃1 = −ζ2

1 ψ′(ζ1). (3.11)

Значения µ̃1, найденные численным решением уравнения (2.47), приведены в
Табл. X.3.1. Параметр µ̃1 снабжен тильдой, чтобы подчеркнуть его отличие от
сходной величины µ1, используемой в теории политроп; см. с. 185.
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Наконец, вводя в (3.10) численные значения ρ1 и r1zc из (2.6) и (2.46), окон-
чательно находим, что

M = µ̃1

1
µ2

e

5.7394 · 1033 г = µ̃1

2.8854
µ2

e

M¯. (3.12)

Строение белых карликов малых масс тем ближе к политропе с n = 3/2, чем
меньше их масса (см. п. 2.6, с. 432). Пользуясь тем, что µ1 ≡ −ξ1θ

′(ξ1) = 2.7141
при n = 3/2 (см. Табл. IV.2.1, с. 184), из (2.53) нетрудно получить, что при
малых xc

µ̃1 =
µ1

2
√

2
x3/2

c = 0.9596 x3/2
c , (3.13)

так что (при µe = 2)

M/M¯ = 0.6924 x3/2
c при xc ¿ 1, (3.14)

или
M/M¯ = 4.9611 · 10−4ρ1/2

c при ρc ¿ 2 · 106 г/см3
. (3.15)

Необходимую выкладку предоставляем читателю в качестве (нетрудного)
упражнения. Подчеркнем, что две последние формулы, как и (2.56), справедли-
вы только для ,,легких" белых карликов, у которых ρc ¿ 2·106 г/см3. Впрочем,
уже при xc = 0.5 (чему соответствует 1/z2

c = 0.8) формула (3.13) дает µ̃1, а тем
самым и массу белого карлика с ошибкой ∼10%. С уменьшением xc точность,
обеспечиваемая этой формулой (в рамках чандрасекаровской модели), быстро
возрастает, но сама эта модель при малых xc — увы! — становится все менее
точной (см. пп. 3.5, с. 445, и 3.8, с. 459).

В противоположном предельном случае больших xc, как следует из вни-
мательного анализа численных данных высокой точности для xc/10 À 1, мы
имеем (опять при µe = 2)

M/M¯ = 1.4559− 8.0000 x−2
c при xc À 1, (3.16)

или

M/M¯ = 1.4559− 1.2478 · 105ρ−2/3
c при ρc À 2 · 106 г/см3

. (3.17)

Численные данные о массах белых карликов разной плотности, найденные
по формуле (3.12), приводятся в Табл. X.3.2, с. 442. На рис. X.3.2 показана
зависимость массы белого карлика от логарифма его центральной плотности.
Дополнительные сведения см. в пп. 3.5 и 3.8.
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Рис. X.3.2:
Зависимость массы от центральной плотности для чандрасекаровских белых
карликов с µe = 2 (сплошная кривая). Штриховые кривые — асимптотики:

красная — (3.15), синяя — (3.17).

3.2. Плотность в
центре

Обозначим среднюю плотность белого кар-
лика через ρ, так что

M =
4π

3
r3
1 ζ3

1 ρ. (3.18)

С другой стороны, поскольку согласно (2.5) ρc = µeρ1x
3
c , мы можем переписать

(3.10) в виде
M = µ̃1 4π r3

1z3
c

ρc

x3
c

. (3.19)

Далее, из (2.43) легко получить, что x3
c = (z2

c − 1)3/2. Вводя это в (3.19) и
приравнивая получающееся выражение для массы к M из (3.18), находим,что

ρc

ρ
=

1
3

(
z2
c − 1

)3/2

z3
c

ζ3
1

µ̃1

. (3.20)
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Значения ρc/ρ монотонно возрастают от 5.99 (политропа индекса n = 3/2)
до 54.18 (политропа с n = 3) при росте плотности — формально от 0 до ∞ (см.
Табл. X.3.2).

Укажем без вывода, что при xc ¿ 1

ρc

ρ
= 5.991 + 1.66 x2

c , (3.21)

тогда как при xc À 1
ρc

ρ
= 54.18− 5.55 · 102 x−1

c . (3.22)

3.3. Глубина
потенциальной ямы

Наша цель сейчас — понять, как потенциал
на поверхности конфигурации и в ее центре
зависит от параметра zc, а тем самым от

массы модели.
Пусть, как и ранее, Φ(ζ) — модуль потенциала, отсчитанного от поверхно-

сти. Полагая в (2.51) ζ = 0 и обозначая Φ(0) = Φc, находим

Φc =
mec

2

µemu
(zc − 1). (3.23)

Заметим, что это выражение, дающее глубину потенциальной ямы, создавае-
мой белым карликом, не содержит каких-либо множителей, которые надо было
бы находить численно.

Что касается потенциала на поверхности, от которого отсчитывается Φ, то
тут положение иное. Легко показать, что

GM

R
=

mec
2

µemu

µ̃1

ζ1

zc. (3.24)

Для доказательства достаточно в выражение GM/R подставить R = r1ζ1 и M
из (3.10), введя сюда r2

1 из (2.46).
Согласно двум последним формулам, разность потенциалов между центром

и поверхностью белого карлика Φc связана с модулем потенциала на его по-
верхности GM/R следующим образом:

Φc = φ̃c
GM

R
, (3.25)

где

φ̃c =
ζ1

µ̃1

zc − 1
zc

. (3.26)

Отметим два предельных случая этой формулы. Первый — это белый кар-
лик малой массы, представляющий собой, как мы знаем, политропу индекса
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n = 3/2. Ему соответствует xc ¿ 1, так что zc = (1 + x2
c)

1/2 = 1 + x2
c/2+ . . ..

Согласно (2.56) и (3.13), мы имеем

ζ1 =
ξ1√
2xc

, µ̃1 =
µ1

2
√

2
x3/2

c при xc ¿ 1. (3.27)

Здесь ξ1 и µ1 — политропные аналоги (для n = 3/2) чандрасекаровских без-
размерных радиуса ζ1 и массы µ̃1. Учитывая (3.27), мы имеем

ζ1

µ̃1

→ ξ1√
2xc

2
√

2

µ1x
3/2
c

=
2ξ1

µ1 x2
c

=
2ξ1

µ1

1
z2
c − 1

. (3.28)

Подставляя это в (3.26), получаем при xc → 0

φ̃c → 2ξ1

µ1

1
zc(zc + 1)

→ ξ1

µ1

=
3.6538
2.7141

= 1.346. (3.29)

Значения ξ1 = 3.6538 и µ1 = 2.7141 взяты нами из Табл. IV.2.1, с. 184. Итак,
для белых карликов самых малых масс, которые близки по строению к полит-
ропе с n = 3/2, глубина гравитационной потенциальной ямы, создаваемой ими,
превосходит потенциал на их поверхности всего в 2.35 раза — в точности как
для политропы с n = 3/2, как это и должно быть.

Противоположный предельный случай — белые карлики высокой плотно-
сти, с xc À 1, то есть с ρc À 2 · 106 г/см3. Здесь все совсем просто. Чем больше
xc, тем ближе мы к политропе с n = 3. В пределе имеем zc/(zc− 1) = 1. Далее,
согласно Табл. X.3.1, ζ1 = ξ1 = 6.8968 и µ̃1 = µ1 = 2.0182 при zc = ∞. Приведен-
ные сейчас числа отвечают политропе индекса n = 3 (см. Табл. IV.2.1, с. 184).
Таким образом, согласно (3.26) мы имеем здесь φ̃c = 6.9868/2.0182 = 3.417. Глу-
бина потенциальной ямы заметно больше, чем для ,,легких" белых карликов,
но все же того же порядка, что и потенциал на поверхности. Неприятность,
однако, в том, что поверхности у такого белого карлика нет — его радиус при
zc = ∞ равен нулю, так что сейчас мы обсуждаем внутреннее строение объек-
та нулевого радиуса (но конечной массы). Подробнее о таком (разумеется, не
существующем в природе) объекте речь у нас пойдет в п. 3.7.

3.4. Соотношение
масса — радиус:

теория

Одним из важнейших результатов теории
Чандрасекара явилось установление зависи-
мости масса – радиус для белых карликов.
Ее можно сравнить с наблюдательными дан-
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ными. Об этом сравнении см. п. 3.8. Сейчас же мы рассмотрим саму эту зави-
симость.

Начнем с белых карликов малых масс. При xc → 0 здесь возникает неопре-
деленность вида ∞ · 0. Действительно, согласно (3.2) (с. 434) мы имеем R ∝
ζ1/zc. Но при xc ¿ 1 формула (2.56) (с. 433) дает ζ1 ∝ x

−1/2
c , а zc = 1+x2

c/2, так
что радиус неограниченно растет ∝ x

−1/2
c при xc → 0. Что касается массы, то

(3.13) (с. 438) и (3.12) дают M ∝ µ̃1 ∝ x
3/2
c при xc ¿ 1. Поэтому оказывается,

что в этом предельном случае RM1/3 =const. Подсчет коэффициента пропор-
циональности в зависимости R ∝ M−1/3 в принципе не составляет труда (но
потрудиться приходится!).

Из (3.12) и (3.2) находим, что

R M1/3 = 1.3910 · 1020 1

µ
5/3
e

ζ1µ̃
1/3
1

zc
см·г1/3. (3.30)

Это формула справедлива при любой массе белого карлика. Для белых карли-
ков малых масс (xc → 0 и, соответственно, zc → 1) из (2.56) и (3.13) имеем

ζ1µ̃
1/3
1

zc
→ ξ1µ

1/3
1

2
= 2.5483 при xc → 0. (3.31)

Согласно двум последним формулам при малых M

R =
3.5447 · 1020

µ
5/3
e

M−1/3 см. (3.32)

В частности, при µe = 2 это дает

R =
1.277 · 10−2

M1/3
, (3.33)

где, как всегда, R и M — радиус и масса в солнечных единицах.
Подчеркнем, что согласно (3.30) с ростом массы размер белого карлика

уменьшается. Этот факт, уже отмечавшийся нами ранее (см. с. 158), есть
следствие ,,мягкости" его вещества: под действием веса вышележащих слоев
оно сравнительно легко сжимается.

Упомянем еще, что, как следует из (3.32), средняя плотность белого карлика
малой массы пропорциональна M2:

ρ = 2.120 · 104µ5
e M2 г/см3

. (3.34)
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Поскольку мы имеем здесь дело с политропой n = 3/2, то ρc = 5.991 ρ (см.
п. IV.2.3, с. 188), так что

ρc = 1.270 · 105µ5
e M2 г/см3

. (3.35)

В частности, при µe = 2

ρ = 6.78 · 105 M2, ρc = 4.06 · 106 M2 г/см3
. (3.36)

Заметим, что только что приведенные выражения для плотностей белых кар-
ликов малых масс мы уже получали ранее из иных соображений, рассматривая
сжатие газового шара звездной массы (см. п. III.4.3, в частности с. 157).

Область применимости формулы (3.33) ограничена как сверху, со стороны
больших масс, так и снизу, со стороны малых масс. В первом случае ограни-
чение накладывается наступающей при ρ ∼ 106 г/см3 релятивизацией элек-
тронного газа. При M ∼ 0.2 обусловленная этим погрешность формулы (3.33)
составляет несколько процентов (см. Рис. X.3.3, с. 445). С уменьшением мас-
сы точность, обеспечиваемая формулой (3.33), какое-то время возрастает. Но в
конце концов из-за увеличивающихся кулоновских поправок к используемому
в теории Чандрасекара уравнению состояния точность (3.33) начинает падать.
При M<∼0.05 эта формула фактически перестает работать (для белых карликов
из 12C; подробнее см. п. 4.3, с. 475).

До сих пор речь шла о белых карликах малых масс. Согласно (3.36), с ро-
стом массы их плотность возрастает. Постепенно совершается переход от нере-
лятивистского P ∝ ρ5/3 к ультрарелятивистскому P ∝ ρ4/3. В итоге газ дела-
ется менее "жестким", так что сжать его становится легче. Поэтому скорость
убывания радиуса с увеличением массы возрастает. Кривая R = R(M) все
больше отклоняется от R ∝ M−1/3. В конце концов мы подходим к предельно-
му случаю, для которого dR/dM → −∞. Согласно (3.12), при неограниченном
увеличении плотности (ρc →∞) масса белого карлика M ∝ µ̃1 → µ1 = 2.0182.
Как видим, она остается конечной — знаменитый чандрасекаровский предел,
подробно рассматриваемый в п. 3.7.

Не считая масштабных множителей по обеим осям, зависимость радиуса
белого карлика от его массы — а именно так традиционно графически изоб-
ражают зависимость масса–радиус — это зависимость ζ1/zc от µ̃1. Однако для
удобства читателя массы и радиусы белых карликов (при µe = 2) были зара-
нее заготовлены у нас в Табл. X.3.2 в солнечных единицах. Вот как выглядит
график чандрасекаровской зависимости масса – радиус (Рис. X.4.1).

Большинство белых карликов имеют массы M/M¯ = 0.6± 0.1. Их радиусы
R/R¯ ∼ 0.01, а центральные плотности ∼ (2÷ 5) · 106 г/см3. Это удовлетвори-
тельно согласуется с излагаемой теорией (подробнее см. п. 3.8).
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Рис. X.3.3:
Зависимость масса – радиус для чандрасекаровских белых карликов с µe = 2

(сплошная кривая). Штриховая кривая — полностью вырожденные
конфигурации, построенные без учета релятивистских эффектов в уравнении

состояния (политропы индекса n = 3/2).

3.5. Белые карлики
и мировые
постоянные

До сих пор, следуя Чандрасекару, мы вы-
ражали все рассмотренные выше глобаль-
ные характеристики белых карликов, поми-
мо безразмерных параметров ζ1 и µ̃1, через

масштабный множитель r1 и характерную плотность ρ1, фигурирующую в
уравнении состояния. Теперь мы используем представления r1 и ρ1 через ми-
ровые постоянные. Это позволит обнаружить любопытные факты.

Масштабный множитель r1, введенный выше формулой (2.46), полезно
представить в виде

r1 =
1
µe

1
zc

√
3π

2
R?, (3.37)
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где R? — фундаментальная длина:

R? =
(

~3

Gcm2
e m2

u

)1/2

== 5.0614 · 108 см = 0.7278 · 10−2R¯. (3.38)

Величину R? будем называть чандрасекаровской длиной.
Выражение для радиуса записывается теперь так:

R = r1ζ1 =
ζ1

zc

√
3π

2
R?

µe
. (3.39)

Фигурирующий здесь множитель
√

3π/2 кажется ,,лишним", однако мы сейчас
убедимся, что это не так. Действительно, из (3.38) легко видеть, что

R? = α
−1/2
G λ–

C
, (3.40)

где λ–
C
— комптоновская длина волны электрона

λ–
C =

~
mec

= 3.8616 · 10−11 см (3.41)

и αG — гравитационный аналог постоянной тонкой структуры (см. с. 140)

αG =
Gm2

u

~ c
= 5.8209 · 10−39. (3.42)

Такое представление чандрасекаровской длины R? напрямую связывает ха-
рактерный квантовый микромасштаб — комптоновскую длину волны электро-
на — с характерным макромасштабом, определяющим радиусы вырожденных
звезд. Замечательно в этой формуле то, что коэффициент, связывающий эти
два масштаба, столь просто выражается через хорошо уже нам знакомую без-
размерную комбинацию αG, определяющую силу гравитационного взаимодей-
ствия (правильнее было бы сказать — его крайнюю слабость). Согласно (3.40),
характерный радиус вырожденной звезды, измеренный в комптоновских дли-
нах волн электрона, равен α

−1/2
G .

Обратимся теперь к массе. Вводя в (3.10) выражения для ρ1 и r1 через
мировые постоянные из (2.6) и (2.46), находим, что

M = µ̃1

1
µ2

e

√
3π

2

(
c~

Gm
4/3
u

)3/2

, (3.43)

или

M = µ̃1

√
3π

2
M?

µ2
e

. (3.44)
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Здесь M? — эддингтоновская масса, уже обсуждавшаяся у нас ранее (см. п. 3.6
Гл. III, с. 139):

M? =
(

c~
Gm

4/3
u

)3/2

= mu α
−3/2
G , (3.45)

или численно
M? = 3.7390 · 1033 г = 1.8798 M¯, (3.46)

так что (3.44) дает

M = µ̃1

1.5350
µ2

e

M? = µ̃1

2.885
µ2

e

M¯ = µ̃1

1
µ2

e

5.739 · 1033 г. (3.47)

Заметим еще, что средняя плотность ρ? тела массы M? и радиуса R? равна

ρ? =
M?

(4π/3)R3
?

=
mu

(4π/3)λ–3
C

= 6.8843 · 106 г/см3. (3.48)

Таким образом, при плотности, равной ρ?, на шар радиусом λ–
C

приходится
1 а.е.м. Эта плотность превосходит плотность ρ1, фигурирующую в уравнении
состояния полностью вырожденного электронного газа

(
ρ1 = 9.739 · 105 г/см3,

см. формулы (2.5) — (2.6), с. 419
)
, в 9π/4 = 7.07 раза. В полностью вырожден-

ном электронном газе такая плотность достигается при параметре релятиви-
зации x, равном 7.071/3 = 1.92 ≈ 2 (при µe = 2).

Радиусы и массы белых карликов оказываются порядка R? и M?. Забе-
гая вперед, приводим в Табл. X.3.3 значения M/M?, R/R? и ρc/ρ?

c для трех
,,знаменитых" белых карликов (с их массами и радиусами, найденными из на-
блюдений; см. ниже п. 3.8). Приведенные в этой таблице числа свидетельствуют
о том, что M? и R? — это удачные, можно даже сказать сильнее — физически
естественные единицы для измерения масс и радиусов белых карликов.

Заметим, что между эддингтоновской массой M? и чандрасекаровской дли-
ной R? имеется простая связь, именно,

mu
GM?

R?
= mec

2. (3.49)

Словесная формулировка этого результата такова: гравитационная энергия
связи протона, находящегося на поверхности сферического тела массы M? и
радиуса R?, в точности равна энергии покоя электрона. Это простое и красивое
соотношение между фундаментальными постоянными. Видеть его в литерату-
ре автору не приходилось, однако трудно поверить, что оно не было найдено
кем-нибудь давным-давно. Во всяком случае у Чандрасекара его нет.
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Таблица X.3.3:
Массы и радиусы трех
близких белых карликов

Звезда M/M∗ R/R∗ ρ/ρ∗
Сириус В 0.542 1.113 0.393
Процион В 0.315 1.693 0.0649
40 Eri B 0.305 1.797 0.0525

По-видимому, не будет ошибкой следующее утверждение. Подобно тому,
как в свое время Эддингтон при изучении роли светового давления в звездах
,,не заметил" существования фундаментальной массы M?, теперь носящей его
имя (см. c. 139), так и Чандрасекар при построении теории белых карликов
,,пропустил" существование характерной длины R? и ее простую связь с M?.

У Чандрасекара в основополагающей работе 1935 г., а вслед за этим — и в
его ,,Введении в учение о строении звезд" (см. Список Литературы, #3), как
и у Cox&Giuli (1968 г.; см. Список Литературы, #8) вместо R? используется
величина

l1 =
1
µe

√
3π

2
R?.

Такой выбор единицы длины, как видим, был не самым удачным — он не поз-
волил выявить существование просто связанной с αG фундаментальной длины
R? и поразительно простого соотношения (3.49) между этой длиной (которую
мы назвали чандрасекаровской) и эддингтоновской массой M?.

В заключение отметим, что какого-либо глубокого физического смысла
формула (3.49) не имеет. Это есть просто следствие удачного выбора едини-
цы длины — и не более того.

3.6. Гравитационная
энергия

Одним из важнейших глобальных парамет-
ров любой самогравитирующей конфигура-
ции является ее гравитационная энергия

связи. Обозначим через |E?
G| характерное значение модуля гравитационной

энергии тела массы M? и радиуса R?:

|E?
G| ≡

GM2
?

R?
. (3.50)
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Из (3.49) и (3.45) немедленно следует, что

|E?
G| = mec

2α
−3/2
G , (3.51)

или численно
|E?

G| = 1.8435 · 1051 эрг. (3.52)

Понятно, что комбинация мировых постоянных, даваемая (3.51), должна слу-
жить определяющим параметром гравитационной энергии белых карликов.
Расчет безразмерного коэффициента, фигурирующего множителем при |E?

G|,
который превращает порядковую оценку гравитационной энергии, даваемую
(3.51), в ее точное значение для чандрасекаровского белого карлика опреде-
ленной массы и химического состава, не вполне тривиален. Его получением
мы теперь и займемся.

Для белого карлика массы M и радиуса R, как и для любой сферически–
симметричной самогравитирующей конфигурации, гравитационную энергию
EG можно представить в виде

EG = −ω
GM2

R
. (3.53)

Для белых карликов структурный множитель ω меняется в узких пределах —
от ω = 6/7 = 0.857 (политропа индекса n = 3/2; ,,рыхлые" белые карлики
малых масс, zc → 1) до ω = 3/2 (политропа индекса n = 3; ,,плотные" белые
карлики с массой, близкой к предельной; zc →∞, см. следующий пункт).

Вводя в (3.53) M и R соответственно из (3.44) и (3.39) и пользуясь (3.50),
находим, что

EG = −ω

√
3π

2
µ̃2

1

ζ1

zc

µ3
e

|E?
G|. (3.54)

Тем самым нами найден порядок величины безразмерного структурного мно-
жителя при |E?

G|. Однако, как мы сейчас убедимся, нахождение точного зна-
чения ω требует серьезных вычислений.

Наряду с (3.53) гравитационную энергию можно представить также в виде
(см. п. 2.1 Гл. II, с. 61)

EG =
1
2

∫

V

ρϕ dV, (3.55)

где ϕ — потенциал, отсчитанный от бесконечности. Переходя от него к абсо-
лютной величине потенциала Φ, отсчитываемого от поверхности, так что

ϕ = −GM

R
− Φ,
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из (3.55) получаем

EG = −GM2

2R
− 1

2

∫

V

ρ Φ dV. (3.56)

Что касается первого члена, то его выражение через |E?
G| моментально получа-

ется из (3.53)+(3.54) — достаточно положить ω = 1/2. Со вторым слагаемым
в правой части (3.56) положение сложнее. Подставляем под интегралом ρ из
(3.8) и Φ из (2.51) и учитываем, что dV = 4π r3

1 ζ2 dζ, где r1 дается (2.46). По-
сле простой, но утомительной выкладки, по ходу которой приходится также
использовать выражение для ρ1 из (2.6) со с. 419, находим, что

EG = −
√

3π

4
zc

µ3
e

(
µ̃2

1

ζ1
+ I

)
|E?

G|, (3.57)

где

I =
∫ ζ1

0

(
ψ(ζ)− 1

zc

) (
ψ2(ζ)− 1

z2
c

)3/2

ζ2 dζ. (3.58)

Интеграл I приходится находить численно. Заметим, между прочим, что вы-
ражение для I можно привести к другой форме, именно

I =
∫ ζ1

0

(
ζ
dψ(ζ)

dζ

)2

dζ. (3.59)

Для получения этого представления достаточно множитель
(
ψ2(ζ) − 1/z2

c

)3/2

в подынтегральном выражении в (3.58) заменить на левую часть уравнения
Чандрасекара (2.47) и в появившемся в итоге интеграле произвести интегриро-
вание по частям. Вычисление значений I по двум различным формулам может
быть использовано для контроля точности расчетов.

Заметим, что сопоставление (3.57) и (3.54) показывает, что

I = (2ω − 1)
µ̃2

1

ζ1
. (3.60)

В предельном случае zc → ∞ мы получаем политропу индекса n = 3. Для
нее ω = 3/2, µ̃1 переходит в µ1 = 2.0182, а ζ1 обращается в корень соответству-
ющей функции Эмдена ζ1 = ξ1 = 6.8968. Поэтому значение I согласно (3.58) и
(3.60) оказывается равно (строгий результат!)

I =
∫ ξ1

0

θ4(ξ) ξ2 dξ = 2
µ2

1

ξ1
= 2

(2.0182)2

6.8968
= 1.1812. (3.61)

В противоположном предельном случае ,,легких" белых карликов, нереля-
тивистских по уравнению состояния (с xc ¿ 1), как было показано в п. 2.6
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(с. 432), мы имеем дело с политропой индекса n = 3/2. Пользуясь получен-
ными ранее асимптотиками µ̃1 (формула (3.13), с. 438) и ζ1 (формула (2.56),
с. 433), из (3.57) и (3.60) с ω = 6/7 (политропа индекса n = 3/2) нетрудно
получить, что при µe = 2 мы имеем (проверьте!)

|EG| ∼ 1.08 · 1050 x7/2
c эрг. (3.62)

Отсюда следует, что у белого карлика с xc = 0.3, чему при µe = 2 отвечает
плотность в центре ρc ∼ 5·104 г/см3 и масса ∼0.11 M¯, гравитационная энергия
составляет всего ∼ 1.6 · 1048 эрг — почти вчетверо меньше гравитационной
энергии Солнца.

Результаты расчетов гравитационной энергии белых карликов с µe = 2 при-
ведены в последнем столбце Табл. X.3.2, с. 442

(
в единицах |E?

G| ≡ (GM2
? )/R?

)
.

Предельные выражения для EG ≡ EG/E?
G при малых и при больших xc имеют

вид
EG = 5.8613 · 10−2 x7/2

c , xc → 0, (3.63)

EG = 0.16998 xc , xc →∞. (3.64)

Рис. X.3.4 наглядно иллюстрирует зависимость гравитационной энергии от xc

и переход к только что приведенным двум асимптотическим режимам.
Заметим еще, что по радиусам, массам и гравитационным энергиям, приве-

денным в Табл. X.3.2, можно найти безразмерный множитель ω, определяемый
формулой (3.53). Легко убедиться,что

ω = 4.856 · 102 R

M2

EG

E?
G

. (3.65)

Значения ω убывают от 3/2 (политропа индекса n = 3) для белых карликов
больших масс до 6/7=0.857 (политропа с n = 3/2) для самых легких. Для
белого карлика с массой 1 M¯ мы имеем ω = 0.968, массе в 0.6 M¯ отвечает
ω = 0.899. Значение ω является удобной мерой степени концентрации вещества
к центру самогравитирующего сферически-симметричного объекта.

В качестве курьеза (не более того!) приведем следующий результат, обна-
руженный при рассмотрении численных данных, приведенных в Табл. X.3.2.
Имеет место следующее соотношение:

ω = D

(
ρc

ρ

)1/4

,

где D очень слабо зависит от xc (или, если угодно, от массы). Наименьшее
значение D = 0.526 достигается при xc ≈ 4.5 (и ρc/ρ = 16). Отсюда к концам
диапазона изменения xc, то есть как в сторону xc = ∞, так и в сторону xc = 0,
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Рис. X.3.4:
Зависимость гравитационной энергии EG ≡ EG/E?

G от xc ∝ ρ
1/3
c для

чандрасекаровских белых карликов (сплошная кривая). Штриховые
прямые — асимптоты, описываемые формулами (3.63) и (3.64).

значения D монотонно возрастают, достигая на обоих этих концах примерно
равного значения D = 0.55. Таким образом, D изменяется всего на ∼ 5.5%.
Этот кажущийся красивым результат на самом деле ничего серьезного собой не
представляет. Он получен просто удачным подбором показателя степени ρc/ρ.
Чтобы подчеркнуть, что это просто игрушка, эту формулу мы не удостоили
присвоением ей номера.

Как уже говорилось, большинство одиночных белых карликов имеют мас-
сы M = 0.6± 0.1. При µe = 2 для них, согласно данным Табл. X.3.2, мы имеем
|EG| ≈ 0.052 (GM2

? )/R?, или ∼ 1.2 · 1050 эрг. При M = 1 (как у спутника Си-
риуса) |EG| ∼ 6 · 1050 эрг. Таким образом, у подавляющего большинства белых
карликов гравитационные энергии порядка 1050 ÷ 1051 эрг. Чтобы прийти к
этому заключению проводить детальные расчеты не требовалось: массы белых
карликов порядка массы Солнца, а радиусы на два порядка меньше солнеч-
ного. Отсюда и набегают те два порядка, на которые гравитационные энергии
типичных белых карликов превышают солнечные 6 · 1048 эрг.
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Рис. X.3.5:
Cубраманьян Чандрасекар (Subrahmanyan Chandrasekhar, 1910 – 1995)

Его роль в астрофизике XX века подобна роли Эйлера в математике
XVIII века — формулы Чандрасекара встречаются в астрофизике
столь же часто, как и теоремы Эйлера в математическом анализе.
В 1983 г. Чандрасекар был удостоен Нобелевской премии ,,for his
theoretical studies of physical processes of importance to the structure

and evolution of the stars".

3.7.
Чандрасекаровский

предел

Как было показано выше, масса белого
карлика пропорциональна величине µ̃1

(
см.

формулу (3.12)
)
. Этот параметр монотонно

возрастает с плотностью, однако, как видно
из Табл. X.3.1, остается конечным при xc →∞. При этом достигается предель-
но возможное значение массы чандрасекаровского белого карлика — чандра-
секаровский предел. Как мы уже не раз говорили, он играет в астрофизике
огромную роль. Реально он, разумеется, недостижим, так как при очень высо-
ких плотностях использующееся в теории Чандрасекара уравнение состояния
становится неприменимым. Отложив обсуждение относящихся к этому вопро-
сов до пп. 4.1 и 4.2, рассмотрим классический чандрасекаровский предел более
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подробно.
Важнейший предельный случай уравнения Чандрасекара получается при

zc → ∞. Поскольку z2
c − 1 = x2

c и ρc ∝ x3
c , условие zc → ∞ означает, что

центральная плотность стремится к бесконечности. Уравнение (2.47) с началь-
ными условиями (2.48) вырождается в этом случае в эмденовскую политропу
индекса n = 3. Согласно (2.46), характерный масштаб r1 ∝ z−1

c , так что радиус
конфигурации при zc → ∞ стремится к нулю. Ситуация кажется абсурдной:
конечная масса сосредоточена в нулевом объеме. При этом мы утверждаем,
что это политропа индекса n = 3, так что можно говорить о том, как веще-
ство распределено вдоль (нулевого!) радиуса и чему равно, скажем, отношение
ρc/ρ. Разумеется, это есть неопределенность вида∞/∞, но ее можно раскрыть.
Эддингтон не готов был принимать такое, и вместо того, чтобы искать эффек-
ты, которые могут снять здесь сингулярность, отвергал без серьезных основа-
ний уравнение состояния релятивистского вырожденного электронного газа
(2.13)+(2.18), лежащее в основе всей чандрасекаровской теории белых карли-
ков.

При неограниченном увеличении центральной плотности zc →∞ мы имеем
µ̃1(zc) → µ̃1(∞) = µ1, где µ1 = 2.0182 — параметр µ1 из теории политроп для
политропы индекса n = 3 (см. п. 2.2 Гл. IV и Табл. IV.2.1, с. 184). В итоге
из (3.44)+(3.45) получаем следующее выражение для предельной массы M♦
чандрасекаровского белого карлика:

M♦ =
µ1

µ2
e

√
3π

2

(
c~

Gm
4/3
u

)3/2

=
µ1

µ2
e

√
3π

2
M? =

5.823
µ2

e

M¯, (3.66)

так что

M♦ = 1.456M¯ при µe = 2. (3.67)

Заметим, что при µe = 2
M♦ = γ M?, (3.68)

где

γ = µ1

√
3π

8
= 0.7745, (3.69)

и поэтому

M♦ ≈ 3
4

M?. (3.70)

Как видим, чандрасекаровская предельная масса — это, можно сказать, бли-
жайший родственник фундаментальной массы M?.
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Для белых карликов из 4He и из смеси 12С и 16О в произвольной про-
порции µe = 2, так что их предельная масса равна приведенному выше зна-
чению 1.456M¯. Однако для тех белых карликов, недра которых состоят из
более тяжелых ядер, из-за перегруженности этих ядер нейтронами значение
µe оказывается больше 2. В определенном смысле крайний случай — это бе-
лые карлики, недра которых состоят из железа 56Fe. В этом случае мы имеем
µe = 56/26 = 2.15385, и предельная масса снижается до 1.255M¯. Заметим,
впрочем, что белых карликов, состоящих из железа, в природе, по-видимому,
нет. Когда говорят о железных белых карликах, имеют в виду состоящие из
56Fe вырожденные ядра звезд большой массы, находящихся на финальном эта-
пе ядерной эволюции.

Мелкое замечание. Только что приведенное значение предельной массы железного
белого карлика приводится во всех известных автору серьезных руководствах по фи-
зике звезд. Между тем оно не вполне точно. При расчете электронного молекулярного
веса следует учитывать, что масса ядра 56Fe заметно меньше 56 mu. Она равна 55.9207
а.е.м., и поэтому µe = 55.9207/26 = 2.15080, так что предельная масса оказывается
немного выше приведенного выше значения 1.255M¯, а именно 1.259M¯.

Почему существует предельная масса, как это понять ,,на пальцах"? На са-
мом деле простота той аргументации, которой достаточно, чтобы сделать вы-
вод не только о существовании выделенной массы в теории компактных звезд,
но и получить ее порядковую оценку, поистине поразительна. Действительно,
выражение для гравитационного давления в центре Pc = c1 GM2/3ρ

4/3
c пишет-

ся просто из соображений размерности, с точностью до коэффициента про-
порциональности c1, определяемого структурой конфигурации; он, как можно
думать, должен быть порядка единицы (так это и есть; см. с. 119—120 и 192—
193). Предположим, далее, что в природе существуют настолько компактные
звездные объекты, что в их центре электроны достигают ультрарелятивист-
ского вырождения. Тогда Pc = C2

(
(c })/m

4/3
u

) (
ρc/µe

)4/3
. Как мы убедились

в п. 4.1 Гл. III, эта формула также легко получается из размерностных со-
ображений (разумеется, с точностью до значения численного множителя C2).
Приравниваем два приведенных только что выражения для Pc — и существо-
вание выделенной массы у компактных самогравитирующих объектов тут же
становится очевидным. Более того, если пренебречь отличием численных ко-
эффициентов c1 и C2 от единицы, то мы найдем, что эта выделенная масса по
порядку величины равна

∼ 1
µ2

e

(
c}

Gm
4/3
u

)3/2

=
M?

µ2
e

. (3.71)

Как видим, фундаментальная эддингтоновская масса появилась у нас букваль-
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но из ничего — из элементарных соображений размерности! И лишь для полу-
чения точного значения выделенной массы, то есть величины чандрасекаров-
ского предела, нужны значения c1 и C2. Предоставляем читателю убедиться,
что если не пренебрегать отличием c1 и C2 от единицы, то появляющийся допол-
нительный множитель

(
C2/c1

)3/2 = µ1

√
3π/2 переводит оценку (3.71) в точное

значение чандрасекаровской массы (3.66).
Есть один любопытный, но редко отмечаемый результат, касающийся кон-

фигураций с массами, близкими к предельной M♦. При M = M♦ мы имеем
дело строго с политропой индекса n = 3. Для нее, как видно из полученного
нами в свое время просто из размерностей соотношения (см. с. 172)

KG−1M
1−n

n R
n−3

n = c, (3.72)

зависимость от R выпадает, и поэтому равновесие имеет место при любом зна-
чении радиуса. При этом радиус однозначно определяется центральной плот-
ностью. Согласно (IV.2.22) и (IV.2.21) (c. 192), при n = 3 получаем, воспользо-
вавшись значением ω1 = 0.6390 из Табл. IV.2.4 (с. 193),

R = 2.3474M
1/3
♦ ρ−1/3

c = 5.311 · 1011ρ−1/3
c см. (3.73)

Разумеется, эта формула применима, лишь когда электронный газ является
ультрарелятивистским не только в центре конфигурации, но и практически
по всей массе объекта. Это означает, что должно выполняться условие ρ =
ρc/54 À µe · 106 г/см3, или ρc À µe 5 · 107 г/см3. Чем выше плотность, тем
точнее выполняется формула (3.73). Строгой она становится лишь в пределе
ρc → ∞, так как только в этом случае конфигурация становится в точности
политропой с n = 3. Наконец, учитывая, что согласно (2.5)+(2.6) ρc = µeρ1x

3
c =

µe 9.7393 · 105 x3
c г/см3, при µe = 2 последняя формула дает

R/R¯ = 3.852 · 10−2 x−1
c при xc À 1. (3.74)

Заметим, что этот результат уже был найден у нас ранее —это главный член
разложения (3.5).

Комбинируя (3.74) и (3.16), легко получить, что при M → M♦ (и µe = 2)

R = 9.47 · 103

(
M♦ −M

M¯

)1/2

км. (3.75)

Отсюда, в частности, следует, что dR/dM → −∞ при M → M♦ — факт, бро-
сающийся в глаза при первом же взгляде на Рис. X.3.3.

Получим еще один изящный результат, относящийся к чандрасекаровско-
му пределу. Чандрасекар его, по-видимому, не заметил, и он был найден лишь
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много позже, десятилетия спустя. При приближении массы к предельной ради-
ус стремится к нулю, плотность же, а вместе с ней и энергия Ферми свободных
электронов — к бесконечности. Поэтому как гравитационная энергия EG, так и
внутренняя энергия такой конфигурации EU , равная, очевидно, суммарной ки-
нетической энергии имеющихся в ней электронов, стремятся к бесконечности.
Энергия связи конфигурации E = EU + EG, как уже упоминалось на с. 69,
в пределе дает неопределенность ∞ −∞. Ее, как мы сейчас увидим, можно
раскрыть, что в итоге приводит к следующему красивому результату:

E = EU + EG → −Ne mec
2 при M → M♦, (3.76)

где Ne = M♦/(µemu) — полное число электронов в белом карлике, или лучше
сказать в объекте с массой, равной предельной. При µe = 2 оно составляет, как
легко подсчитать, 8.72 · 1056, тогда как энергия связи этого объекта E равна
−0.714 · 1050 эрг. Словесная формулировка (3.76): энергия связи предельной
конфигурации (нулевого радиуса!) равна суммарной энергии покоя всех содер-
жащихся в ней электронов.

Переходим к выводу (3.76). Мы имеем

EU =
∫

V

E(x)
ρ

µemu
dV, (3.77)

где E(x) — средняя кинетическая энергия электронов в ансамбле с безразмер-
ным граничным импульсом x и ρ/(µemu) — локальная концентрация электро-
нов. Так как мы имеем дело с объектом экстремально большой плотности, то
в качестве E(x) можно взять выражение (2.29), относящееся к случаю ультра-
релятивистского электронного газа. Поэтому

EU → mec
2

µemu

∫

V

(
3
4

x− 1 +
3
4

1
x

+ . . .

)
ρ dV. (3.78)

Разобьем интеграл на три, I1, −I2 и I3, соответственно трем слагаемым в
подынтегральном выражении, и рассмотрим сначала первый из них:

I1 =
mec

2

µemu

3
4

∫

V

x ρ dV. (3.79)

Подставив сюда вместо x его выражение через ρ, следующее из (2.5) и (2.6),
после сокращений и перегруппировки сомножителей получим

I1 =
3
8

(
3
π

)1/3
ch

m
4/3
u

∫

V

(
ρ

µe

)4/3

dV. (3.80)
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Множитель перед интегралом равен 3K2, где K2 — числовой коэффициент в
уравнении состояния ультрарелятивистского полностью вырожденного элек-
тронного газа P = K2(ρ/µe)4/3, см. (4.19), с. 146. Поэтому (3.80) переписыва-
ется так:

I1 = 3
∫

V

P dV, (3.81)

что по привлечении вириального соотношения

EG + 3
∫

V

P dV = 0 (3.82)

окончательно дает
I1 = −EG. (3.83)

Вот здесь, как говорится, и зарыта собака: величина I1 = −EG, расходящаяся
при ρc → ∞, при подстановке в выражение для энергии связи конфигурации
E = EU + EG сокращается с имеющимся там расходящимся членом +EG. В
результате оказывается, что

E = −I2 + I3. (3.84)

Интеграл I2 элементарен:

I2 =
mec

2

µemu

∫

V

ρ dV = mec
2 M

µemu
= mec

2Ne. (3.85)

Осталось справиться с I3. Мы имеем

I3 =
mec

2

µemu

3
4

∫

V

1
x

ρ dV. (3.86)

Нам достаточно установить, что I3 → 0 при ρc →∞. Поступая как и в случае
с интегралом I1, выразим здесь 1/x через ρ. В результате окажется, что

∫

V

1
x

ρ dV ∝
∫

V

ρ2/3 dV. (3.87)

В предельном случае ультрарелятивистского газа, с которым мы сейчас имеем
дело, ρ = ρcθ

3, где θ — функция Эмдена индекса n = 3. Поэтому, переходя в
последнем интеграле к эмденовским переменным, получаем

∫

V

ρ2/3 dV ∝ r3
1ρ2/3

c ∝ ρ−1/3
c , (3.88)

поскольку при n = 3 эмденовская единица длины r1 ∝ ρ
−1/3
c , см. формулу

(1.13), с. 176. Итак, мы убедились, что I3 ∝ ρ
−1/3
c и, следовательно, стремится
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к нулю при ρc → ∞. Осталось подставить найденные I2 и I3 в (3.84), перейдя
затем к пределу ρc → ∞ — и доказываемый результат — формула (3.76) —
получен.

Для тех, кому недостаточно всех этих ∝, приводим точный результат:
∫

V

1
x

ρ dV = 2
(

π

3

)1/3
i22
µ1

mec

h
(µemu)1/3M ρ−1/3

c . (3.89)

Получите его — это хорошее упражнение. Здесь i22 — находимый численно
интеграл

i22 =
∫ ξ1

0

θ2(ξ)ξ2 dξ = 4.3267 (3.90)

и µ1 = 2.0182 — уже многократно встречавшийся у нас параметр.
Несколько слов об истории формулы (3.76). Первым ее получил Т.Эмин-

Заде в 1959 г. Он опубликовал свой результат в чрезвычайно малодоступном
издании — Докладах АН Азербайджанской ССР — и потому он остался неза-
меченным. Через 4 года формулу (3.76) независимо нашел М.Саведов. Затем
она появилась у Я.Б. Зельдовича и И.Д.Новикова, в их ,,Строении и эволюции
звезд" — и прочно вошла в мир. Вывод (3.76) есть и в недавней монографии
I.Iben’а (#10 в нашем Списке Литературы), но нам он кажется неубедитель-
ным (стремление последнего слагаемого к нулю при ρc →∞ не доказано).

3.8. Соотношение
масса – радиус:
наблюдения

Самым известным и в то же время самым
ярким и самым близким к нам белым карли-
ком является спутник Сириуса — Сириус B.
Весной 2017 г. опубликованы результаты бо-

лее чем 20-летних его астрометрических измерений, проводившихся на HST
(Hubble Space Telescope). Они лишь несколько уточнили параметры системы,
полученные ранее (в том числе еще из визуальных микрометрических изме-
рений!). Сириус B — это белый карлик с чисто водородной атмосферой спек-
трального типа DA2. Он совершает оборот вокруг Сириуса A

(
спектральный

тип A1V, масса (2.063 ± 0.023)M¯
)
за 50.13 года. Большая полуось орбиты

a = 7.496′′. Самое для нас сейчас интересное — это масса Сириуса B. Она
оказалась равна (1.018± 0.011)M¯ — наибольшая среди всех белых карликов,
известных в пределах 20 пк от Солнца. Если считать, что Сириус В — это
чандрасекаровский белый карлик, то согласно данным Табл. X.3.2, его радиус
должен был бы составлять ∼ 0.0071R¯. На самом деле оказалось, что он равен
R = (0.008098±0.000046)R¯ ≈ 0.88R⊕ — отличие всего на ∼ 14%. Это лежит в
пределах той точности, которая обеспечивается уравнением состояния идеаль-
ного полностью вырожденного электронного газа. Упомянем еще, что измерен-
ное гравитационное красное смещение vЭ = 80.42± 4.82 км/c. Если же исполь-
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зовать динамически определенную массу и радиус, рассчитанный с найденной
по спектру Teff , болометрическому потоку и надежно измеренному параллаксу,
то для гравитационного красного смещения получается vЭ = 79.8± 1.0 км/с, в
прекрасном согласии с измеренным по спектру.

Резюмируем: спутник Сириуса — это земной шар с массой Солнца.
Погрешность этого легко запоминающегося утверждения составляет по ради-
усу ∼ 10%, а по массе — всего ∼ 2%. Средняя плотность Сириуса В — около 3
тонн в кубическом сантиметре (это прямо по наблюдениям!).

Второй по известности белый карлик — это Процион В. Хотя, как и Си-
риус В, он был открыт еще Бесселем в середине ХIХ века, его исследование
продвигалось менее успешно, чем в случае с Сириусом В. До недавнего времени
его масса и спектр оставались практически неизвестными. В 2015 г. были опуб-
ликованы результаты двадцатилетних наблюдений Проциона на HST, впервые
позволившие надежно определить период обращения в этой двойной систе-
ме (40.84 года), найти массы компонент и получить спектр Проциона В. Его
спектральный класс оказался DQZ. Как уже говорилось, это означает, что его
атмосфера состоит из практически чистого гелия, с малыми примесями угле-
рода (отсюда буква Q) и более тяжелых элементов — магния и железа (отсюда
Z в названии спектрального класса). Сопоставлением наблюдаемого спектра с
рассчитанными по моделям чисто гелиевых атмосфер была определена эффек-
тивная температура Проциона В (7740± 50) K. По Teff , видимому блеску и па-
раллаксу был определен радиус. По измеренной орбите стандартным образом
были найдены массы Проциона А

(
(1.478± 0.012)M¯

)
и его спутника. Масса и

радиус Проциона B оказались равны, соответственно, M = (0.592±0.006)M¯ и
R = (0.01232± 0.00032)R¯. Согласно данным Табл. X.3.2, чандрасекаровскому
белому карлику этой массы отвечает радиус 0.01284R¯, в хорошем согласии с
полученным из наблюдений (различие всего на 4%). Почти полное совпадение
двух значений радиуса — полученного по наблюдениям и рассчитанного по тео-
рии Чандрасекара, является случайным и не свидетельствует о ее высочайшей
точности.

Еще один ,,знаменитый" белый карлик — это 40Eridani B. Он является
компонентом иерархической тройной системы, главный компонент которой,
40Eri A, интереса для нас не представляет. 40Eri B является более массивным
и более ярким компонентом пары, в которой второй компонент — это звез-
да главной последовательности спектрального класса M4V. Поскольку здесь
рядом с белым карликом нет яркой звезды, как у Сириуса В и у Проци-
она В, исследовать этот белый карлик гораздо легче. Он является вторым
по яркости белым карликом, уступая только Сириусу В. В 2017 г. появи-
лась работа, в которой существенно уточнены параметры этого белого кар-
лика. К астрометрическим измерениям, проводившимся с середины XIX ве-
ка, были добавлены результаты измерений за последние более чем 40 лет, что
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Таблица X.3.4:
Основные параметры белых карликов

в близких визуально-двойных

Звезда π (′′) a (′′) P (лет) Sp Teff R/R¯ M/M¯
Сириус В 0.3789 7.496 50.13 DA2 25 369 0.008098 1.018
Процион В 0.2860 4.3075 40.840 DQZ 7740 0.01232 0.592
40 Eri B 0.2006 6.931 230.09 DA2.9 17 200 0.01308 0.573
Stein 2051 B 0.1810 >1000 DC 7122 0.0114 0.675

позволило, в частности, существенно уточнить орбитальный период 40 Eri B
(P = 230.29 ± 0.68 лет). В итоге изменилось значение динамической массы,
оказавшееся равным (0.573 ± 0.018)M¯ (долгое время принималось, что она
равна 0.43M¯). По новым спектральным наблюдениям были найдены эффек-
тивная температура (Teff = 17 200 K) и ускорение силы тяжести (lg g = 7.96) в
его чисто водородной атмосфере (спектральный класс DA2.9). Зная видимый
блеск и имея надежный гиппарховский параллакс, можно было найти ради-
ус. Он оказался равен R = (0.01308 ± 0.00020)R¯. Поскольку g ∝ M/R2, то,
имея радиус, по полученному по спектру lg g можно найти массу, оказавшу-
юся равной (0.565 ± 0.031)M¯, в прекрасном согласии с динамически опреде-
ленным ее значением, приведенным выше. Далее, по радиусу и динамической
массе рассчитывается гравитационное красное смещение. Оно оказывается рав-
но vЭ = 28.2 ± 0.97 км/c. Это хорошо согласуется с измеренным значением
(26.5± 1.5 км/c по одним данным и 25.8± 1.4 км/c — по другим).

Наконец, четвертый белый карлик — это Stein 2051B. Его причисление
в визуально-двойным ошибочно (но этому есть исторические причины). Вто-
рой, более яркий, но менее массивный компонент этой широкой пары, Stein
2051A, — это красный карлик M4.5 V. Он имеет тот же параллакс и соб-
ственное движение, что и белый карлик Stein 2051B, удаленный от нас на 5.52
парсека и являющийся шестым в списке белых карликов – наших ближайших
соседей. Угловое расстояние между компонентами этой широкой пары состав-
ляет ∼ 10.1′′, орбитальный период >∼1000 лет.

Stein 2051B имеет спектр типа DC. Атмосфера у него чисто гелиевая. Эф-
фективная температура, полученная сопоставлением данных его широкополос-
ной фотометрии с результатами, даваемыми расчетами моделей атмосфер (см.
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с. 416), составляет Teff = 7122± 181 K. По блеску, эффективной температуре и
параллаксу находится радиус. Он оказался равен (0.0114±0.0004)R¯. С массой
положение сложнее. До сих пор надежных ее определений не было. В 2017 г. в
Science опубликована работа, содержащая результат уникального определения
массы Stein 2051B — по измерению на HST отклонения лучей далекой слабой
звезды гравитационным полем Stein 2051B при прохождении его вблизи этой
звезды за счет собственного движения.

Если удаленная звезда (источник), гораздо более близкая звезда (линза) и
Земля оказались бы строго на одной прямой, то согласно ОТО вокруг звезды–
линзы мы увидели бы излучение далекой звезды–источника в виде так назы-
ваемого кольца Эйнштейна с угловым радиусом

θЭ =

√
4GM

c2D
рад = 9.0257 · 10−2

√
π M угл. сек., (3.91)

где M — масса звезды–линзы, D — расстояние до нее и, как всегда, M = M/M¯
и π — параллакс в угловых секундах. Если линза слегка смещена относительно
далекого источника, вместо кольца видны два его изображения, одно (более
яркое) лежит вне кольца Эйнштейна, другое (более слабое) — внутри него.
Контраст яркости этих двух изображений быстро возрастает при увеличении
углового расстояния 4θ между источником и линзой. Когда 4θ заметно пре-
восходит радиус кольца Эйнштейна, более слабое изображение видно плохо
или его вовсе не видно. В этом случае смещение δθ положения источника, обу-
словленное отклонением световых лучей гравитационным полем линзы, дается
следующим выражением:

δθ =
1
2

(√
(u2 + 4)− u

)
θЭ, (3.92)

где u = 4θ/θЭ. Из двух последних формул следует, что измерение смещения
положения далекого источника при известном угловом расстоянии его от лин-
зы, или лучше в этом случае сказать от дефлектора, позволяет найти массу
звезды–дефлектора, если расстояние до нее известно. Этот метод в принципе
позволяет измерять массы одиночных звезд.

Оговорка ,,в принципе" очень существенна. Прохождение близкой звезды
из-за ее собственного движения в непосредственной близости от слабой далекой
звезды — событие чрезвычайно редкое. Специальное исследование перемеще-
ний 5000 звезд с большими собственными движениями относительно далеких
звезд ,,фона" показало, что в марте 2014 г. все же должно произойти одно
такое тесное сближение — белый карлик Stein 2051B (его видимый блеск в
полосе V=12.4) пройдет на угловом расстоянии ∼ 0.1′′ от гораздо более слабой
далекой звезды с V=18.3.
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Собственное движение Stein 2051B равно

(µα, µδ) = (1336.3± 2.5, −1962.6± 2.5) mas/год,

где mas — это угловые миллисекунды (MilliArcSeconds). Собственное движение
складывается с обусловленным движением Земли по орбите параллактическим
смещением с амплитудой ±181.5 mas. Поэтому годичная траектория перемe-
щения Stein 2051B по небу выглядит как слегка волнистая линия. Как только
что говорилось, наибольшее сближение дефлектора, то есть Stein 2051B, с уда-
ленной звездой–источником произошло в марте 2014 г. и составило ∼ 100 mas.
Если принять, что масса Stein 2051B, как и у большинства белых карликов,
∼ 0.6M¯, то наибольшее отклонение, обусловленное влиянием гравитацион-
ного поля дефлектора, должно составлять ∼ 10 mas. Однако наибольшее из-
меренное гравитационное смещение источника оказалось значительно меньше,
всего δθ ≈ 2.1 mas. Расстояние до дефлектора составляло 4θ = 462 mas. При
меньших расстояниях излучение Stein 2051B, гораздо более яркое (примерно
в 400 раз в полосе V), полностью заливало излучение источника. Поскольку
u = δθ/θЭ À 1, из (3.92), заменив

√
u2 + 4 его разложением u + 2/u, находим,

что
θЭ =

√
4θ · δθ . (3.93)

При 4θ = 462 mas и δθ ≈ 2.1 mas находим отсюда, что θЭ ≈ 31.1 mas. В дей-
ствительности измерения на HST продолжались более года, было выполнено
несколько серий измерений положения звезды–источника. В результате было
найдено, что радиус кольца Эйнштейна θЭ = 31.53 ± 1.20 mas, а масса Stein
2051B равна (0.675± 0.051)M¯.

В Табл. X.3.4 для удобства мы собрали вместе данные об обсуждавших-
ся только что четырех белых карликах — единственных, для которых можно
считать, что для них и масса, и радиус известны действительно надежно. Их
положение на плоскости (M, R) полностью согласуется с современными расче-
тами зависимости масса–радиус для белых карликов.

Имеется еще с десяток белых карликов, являющихся компонентами тесных
двойных, для которых массы и радиусы также хорошо определены. Во всех
случаях это гелиевые белые карлики небольшой массы

(
M ∼ (0.2 ÷ 0.3)M¯

)
.

Надежно рассчитать эволюционный статус этих белых карликов невозможно,
так как в ходе эволюции здесь происходил значительный обмен массой между
компонентами.

За более чем 80 лет, прошедших с момента появления классической работы
Чандрасекара, в которой впервые была опубликована зависимость масса – ра-
диус, не иссякает поток статей, посвященных уточнению этой зависимости и
сравнению теории с данными наблюдений. Буквально только что, 4 июня, сра-
зу после появления в Интернете второго релиза данных проекта Гея (Gaia Data
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Ralease II, 25 апреля 2018 г.) в Monthly Notices была направлена очередная по-
священная этому большая статья. Констатировано — в который уже раз —
полное согласие теории и наблюдений.

3.9. Немного
истории

История создания изложенной выше теории
Чандрасекара весьма поучительна и о ней
стоит сказать несколько слов. Один из кори-

феев теоретической физики 1920-х годов А. Зоммерфельд во время своего посе-
щения Индии прочитал в Мадрасском университете небольшой курс лекций. В
числе его слушателей был только что окончивший этот университет 18-летний
Субраманьян Чандрасекар. По-видимому, именно эти лекции и личное обще-
ние с Зоммерфельдом пробудили интерес Чандрасекара к вырожденному газу
и белым карликам. Вскоре он отплыл на пароходе в Англию, чтобы продол-
жить образование в Кембридже. Его ментором должен был стать (и ненадолго
стал) Р.Фаулер, который в 1926 г., всего несколькими месяцами спустя после
создания статистики Ферми–Дирака, говоря словами Чандрасекара, ,,сделал
основное открытие, что электронный ансамбль в белых карликах должен быть
вырожденным". На пароходе по пути в Англию в 1930 г. Чандрасекар открыл
существование верхнего предела массы белых карликов и нашел его численное
значение (последнее стало возможно потому, что у него с собой была книга
Эддингтона ,,The Internal Constitution of the Stars", где имелись необходимые
для этого численные данные для политропы с n=3). Однако неоднократные
попытки Чандрасекара опубликовать этот свой замечательный результат неиз-
менно оканчивались провалом. Рецензенты — сначала из Monthly Notices of the
Royal Astronomical Society (MN), а потом и из Astrophysical Journal (ApJ) —
отклоняли статью, так как считали абсурдом, что радиус конфигурации пре-
дельной массы равен нулю. В конце концов Чандрасекар написал в редакцию
ApJ письмо, настаивая, чтобы ему или указали на конкретную ошибку в его
статье, или опубликовали ее. Это возымело действие, и наконец в 1931 г. ста-
тья увидела свет. (Один из учеников Чандрасекара рассказал мне, что когда
в 1950-е годы он стал главным редактором ApJ, то поднял архив редакции,
чтобы узнать, кто же был рецензентом, блокировавшим публикацию. Это не
легенда – много лет спустя я решился спросить Чандрасекара, правда ли это,
и получил от него положительный ответ. Кто был рецензентом он не сказал,
а я, естественно, спрашивать не стал). В борьбе за право опубликовать свой
результат, значение которого Чандрасекар ясно понимал, хотя и не мог, конеч-
но, в полной мере представлять того огромного влияния, которое это открытие
оказало и продолжает оказывать на астрофизику, он отправился в Копенгаген
к Бору. И Бор, и Паули устно подтвердили ему, что результат верен, но от
публичной полемики с Эддингтоном уклонились — ранний пример того, что
теперь называется политкорректностью.
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Это еще далеко не конец истории. В 1934 г. Чандрасекар приехал в Со-
ветский Союз и во время этого визита как-то посетовал В.А.Амбарцумяну,
что его результат боги английской астрофизики, и первый из них — Эддинг-
тон — не хотят принимать. "Ambartsumian suggested investigating the problem
in greater detail ... and working out the exact theory. As Chandra recalls, it was
this remark of Ambartsumian ... that make him take up the subject again after his
return to Cambridge and follow it to its conclusion". (Эта цитата взята из подроб-
ной биографии Чандрасекара: K.C.Wali, Chandra, University of Chicago Press,
1991, p. 117). Фактически Амбарцумян посоветовал ему рассчитать сетку ос-
нованных на его теории моделей белых карликов разных масс и убедиться, что
радиус стремится к нулю при приближении массы к максимально возможной.
Вернувшись в Англию, Чандрасекар с головой погрузился в соответствующие
расчеты, требовавшие огромного труда. Сильно сокращавший время расчетов
какой-то специальный калькулятор ему достал — кто бы вы думали? — Эд-
дингтон! В следующем, 1935 г. детальная теория и результаты расчетов были
опубликованы в MN. (Трудно избавиться от впечатления, что этот ранний со-
вет Амбарцумяна, оказавшийся столь важным для Чандрасекара, повлиял на
то, сколь внимательно Чандрасекар следил потом за работами Амбарцумяна,
пока тот продолжал заниматься теоретической астрофизикой).

Но и это еще не всë. Через несколько месяцев после того, как в 1931 г. в
ApJ вышла, наконец, статья Чандрасекара про предельную массу белых кар-
ликов — не только ее существование, но и численное значение — в точности
тот же результат опубликовал Л.Д.Ландау (Phys. Zs. Soviet. 1, 285, 1932).

Дальнейшие сведения, имеющие отношение к созданию теории белых кар-
ликов, в частности, историю открытия использовавшегося Чандрасекаром (но
отвергавшегося Эддингтоном!) уравнения состояния полностью вырожденного
электронного газа, см. в статье Д.Г.Яковлева, УФН, 164, #6, 653, 1994.



4. ЗА ПРЕДЕЛАМИ ТЕОРИИ ЧАНДРАСЕКАРА

В обоих предельных случаях — при малых массах (формально при M → 0)
и при M → M♦ — теория Чандрасекара фактически неприменима. Действи-
тельно, в первом случае, как мы видели ранее, R →∞ при M → 0 (см. формулу
(??), с. ??), что на самом деле явно не так. Во втором случае, как подробно
обсуждалось в п. 3.7, по теории Чандрасекара ρ → ∞ при M → M♦, что так-
же невозможно. С того, как в действительности обстоит дело в этом последнем
случае, мы и начнем.

4.1.
Чандрасекаровский
предел: уточнения

При приближении массы чандрасекаровского бе-
лого карлика к предельно возможной его ради-
ус стремится к нулю, а гравитационный потен-
циал на его поверхности неограниченно возрас-

тает. Казалось бы, это однозначно свидетельствует о том, что ньютоновская
теория тяготения здесь не годится, и нужно пользоваться эйнштейновской
теорией гравитации (ОТО). В действительности это и так, и не так. Чтобы
,,побороть" сингулярность, на самом деле требуется сделать лишь небольшое
уточнение модели Чандрасекара — учесть вклад энергии электронов в массу.
Хотя еще в 1971 г. это мимоходом отмечали Я.Б. Зельдович и И.Д.Новиков
в своей книге ,,Теория тяготения и эволюция звезд", тем не менее этот факт
мало кому известен. До 2018 г. соответствующие количественные данные в ли-
тературе, по-видимому, отсутствовали. Поэтому приведем их здесь, а потом
поясним, как производился расчет (выполненный А.В.Дементьевым, СПбГУ).

Будем называть белый карлик квазичандрасекаровским, если считается, что
электронный газ идеальный, как и в теории Чандрасекара, но учтен вклад
энергии электронов в массу, так что ρ = ρi + ρe, где ρi — плотность, создава-
емая ионами и ρe — плотность, порождаемая энергией электронов (согласно
знаменитой формуле E = mc2, так что E/c2 = m). Гравитация трактуется
классически, по Ньютону. При µe = 2 предельно возможная, или критическая
масса M ′

♦ такого белого карлика, его радиус R′ и центральная плотность ρ′c
равны

Ньютон, ρ = ρi + ρe

M ′
♦ = 1.4358 M¯,

R′ = 1.0528 · 10−3R¯ = 732.2 км,

ρ′c = 7.232 · 1010 г/см3
.

Убедимся, что для квазичандрасекаровского белого карлика критической
массы еще вполне применима ньютоновская гравитация. Для него скорость

466
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убегания ve = (2GM ′
♦/R′)1/2 составляет всего около 8% скорости света, а ра-

диус в ∼170 раз больше шварцшильдовского радиуса, отвечающего его массе
и равного 2GM ′

♦/c2 = 4.24 км.
Приведенные только что значения критических параметров белого карлика

получены путем численного решения ньютоновского уравнения гидростатиче-
ского равновесия (2.42) (с. 430), в котором плотность, обусловленная массой
покоя ионов ρi и даваемая известным нам выражением

(
см. (2.5) — (2.6), с. 419

)

ρi =
8π

3

(mec

h

)3

µemu x3 ≡ µe ρ1 x3, (4.1)

заменена на ρ = ρi + ρe, где ρe — вклад энергии электронов в массу. Согласно
(2.27) и (2.30) (с. 423), средняя энергия электрона (кинетическая + энергия
покоя) в ансамбле с безразмерным граничным импульсом Ферми x равна

Ee + mec
2 = mec

2 3f(x), (4.2)

где

f(x) =
1
x3

∫ x

0

√
1 + y2 y2 dy =

1
8x3

(
x(1 + 2x2)

√
1 + x2 − ln

(
x +

√
1 + x2

))
.

(4.3)
Умножив ее на концентрацию электронов, равную ρi/(µemu), и поделив ре-
зультат на c2, получим

ρe = 8π
(mec

h

)3

me x3f(x) ≡ ρi
3 me

µemu
f(x). (4.4)

Поэтому значение ρ в правой части уравнения гидростатического равновесия
белого карлика (2.42) составляет

ρ = ρi + ρe =
8π

3

(mec

h

)3

µemu x3

(
1 +

3me

µemu
f(x)

)
≡ ρi

(
1 + R f(x)

)
, (4.5)

где

R =
3me

µemu
=

1
µe

1.646 · 10−3. (4.6)

Подробности численного решения получающегося в результате уравнения гид-
ростатического равновесия квазичандрасекаровского белого карлика мы опус-
каем, ограничившись формулировкой приведенных выше конечных результа-
тов. Стоит, пожалуй, добавить, что при плотностях порядка 106 ÷ 107 г/см3 и
µe = 2 отношение ρe к ρi, равное

ρe

ρi
= R f(x), (4.7)
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при µe = 2 составляет всего ∼ 5 · 10−4. И даже при приведенной выше кри-
тической плотности ρ′c ∼ 7.2 · 1010 г/см3 оно все еще мало́, ρe/ρi ∼ 7 · 10−3

(проверьте!). Но и этой небольшой добавки достаточно, чтобы сингулярность
исчезла. (Забегая далеко вперед, заметим, что для вещества нейтронных звезд,
в отличие от белых карликов, вклад в массу, даваемый кинетической энергией
свободных нейтронов, может оказываться не только того же порядка, что и
вклад, даваемый их массой покоя, но даже превосходить его. Последнее имеет
место, когда нейтронный газ релятивистский).

Причина того, почему вблизи чандрасекаровского предела у белых кар-
ликов возникает неустойчивость, которой обусловлено существование крити-
ческой массы, состоит в следующем. В этом случае электронный газ сильно
релятивистский, и поэтому показатель адиабаты γ, усредненный по всей массе
конфигурации, близок к критическому значению γ = 4/3. Даже малые поправ-
ки могут сделать γ < 4/3, когда устойчивое равновесие невозможно.

Приведем расчет показателя адиабаты идеального вырожденного электрон-
ного газа при учете вклада в массу, даваемого энергией электронов. Мы имеем

γ =
d ln P

d ln ρ
=

ρ

P

(
dP

dx

/
dρ

dx

)
. (4.8)

Введя сюда P из (2.13) – (2.15) и ρ из (4.5) – (4.6), получим

γ =
x3 + R

∫ x

0

√
1 + y2 y2 dy

F (x)
x4

√
1 + x2

1
3x2 + Rx2

√
1 + x2

. (4.9)

Здесь члены, пропорциональные R, учитывают вклад энергии электронов в
массу. Поэтому при R = 0 эта формула переходит в (2.32), как это и должно
быть.

Нас интересуют значения показателя адиабаты при высоких плотностях,
когда x À 1. Выполнив в (4.9) очевидные разложения при больших x и удержав
по два члена, а также учтя (2.22) (с. 422), после простой, но довольно длинной
выкладки получим

γ =
4
3

(
1 +

1
2x2

− 1
12

Rx + . . .

)
. (4.10)

Появляющимися в ходе расчета членами, пропорциональными R2x2 и R/x,
можно пренебречь, так как из-за малости коэффициента R при интересующих
нас значениях x они существенно меньше 1/(2x2). Тем более пренебрежим и
член, пропорциональный R2.

Первые два члена в скобке в (4.10) — это уже знакомое нам выражение
(2.34) для γ в плотном (x À 1) вырожденном электронном газе, третий же член
отражает влияние энергии электронов на термодинамические параметры газа.
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Из последней формулы видно, что существует такое значение x — обозначим
его x0 — при котором показатель адиабаты становится равен 4/3. Согласно
(4.10), значение x0 определяется так:

1
2x2

0

=
1
12

Rx0, (4.11)

откуда при µe = 2 имеем

x0 =
(
6R−1

)1/3 = 19.4. (4.12)

Этому значению x0 отвечает плотность

ρ0 = 2ρ1 x3
0 ∼ 1.5 · 1010 г/см3

. (4.13)

При бо́льших плотностях γ оказывается меньше 4/3. В частности, как было
сообщено выше, плотность в центре квазичандрасекаровского белого карлика
предельной массы c µe = 2 составляет ρ′c ∼ 7.2 · 1010 г/см3, что в 5 раз больше
критического значения ρ0. Поэтому неудивительно, что усредненное (с над-
лежащим весом) по всей конфигурации значение показателя адиабаты γ для
объекта с M ′

♦ оказывается равным критическим 4/3, и он находится на грани-
це устойчивости. При бо́льших массах устойчивых равновесных конфигураций
нет.

После только что сказанного вряд ли будет неожиданным, что несмотря на
то, что гравитационное поле для критического квазичандрасекаровского бело-
го карлика слабое (ve¿c), поправки, появляющиеся при переходе от ньютонов-
ской гравитации к ОТО, оказываются существенными — мы находимся близ
порога устойчивости. В ОТО в сферически–симметричном случае гидростати-
ческое равновесие определяется уравнением Толмена–Оппенгеймера–Волкова(
ТОВ, уравнение (II.1.33), с. 58

)
:

dP

dr
= − G

(
ρ +

P

c2

)
(
Mr + 4π r3 P

c2

)

r2

(
1− 2 GMr

c2r

) .

Если, как и в теории Чандрасекара, считать, что давление создается полностью
вырожденным идеальным электронным газом, то наибольшая возможная мас-
са белого карлика — его критическая масса — оказывается ниже не только
классического предела Чандрасекара M♦ = 1.465 M¯, но и его подправленно-
го значения M ′

♦ = 1.436 M¯. Соответствующий расчет на основе уравнения
ТОВ (с использованием некоторых приближений, упростивших вычисления)
был произведен С.А.Капланом еще в 1949 г. Так впервые было показано, что
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сингулярность исчезает. Оказалось, что максимальная масса, при которой еще
возможно равновесие, при µe = 2 составляет ∼1.40 M¯, соответствующая кри-
тическая плотность в центре конфигурации ρ ∼ 2.5 · 1010 г/см3, а минимально
возможный радиус близок к 1000 км. Лишь 15 лет спустя Чандрасекар также
сумел ,,избавиться" от сингулярности (см. ниже).

Сегодня самым простым и надежным способом получения параметров бе-
лого карлика, находящегося на границе устойчивости, является прямое чис-
ленное решение уравнения ТОВ, без введения каких-либо приближений. При
использовании уравнения состояния идеального электронного газа и с учетом
вклада энергии электронов в массу результаты таковы:

ОТО, ρ = ρi + ρe

при µe = 2, то есть в частности для белых карликов из 4He и 12C,
M ′′
♦ = 1.4154 M¯,

R′′ = 1.4794 · 10−3 R¯ = 1028.9 км,

ρ′′c = 2.311 · 1010 г/см3;

при µe = 2.154, то есть для белых карликов из 56Fe,
M ′′
♦ = 1.2219 M¯,

R′′ = 1.3423 · 10−3 R¯ = 933.6 км,

ρ′′c = 2.692 · 1010 г/см3
.

Отметим, что для этого критического белого карлика с µe = 2 отношение цен-
тральной плотности к средней ρc/ρ = 37.5, что существенно меньше значения
ρc/ρ для политропы n = 3, равного 54.2. Средняя плотность такого белого кар-
лика ∼ 600 тонн/см3, что гораздо больше значений, обычных для наблюдаемых
белых карликов (ρ ≤ 10 тонн/см3).

Результаты, хотя и несколько отличающиеся в числах от только что приве-
денных, но качественно такие же, получаются и в том случае, когда гравитация
трактуется согласно ОТО, но вклад энергии электронов в массу не учитыва-
ется (предпоследняя строка в Табл. X.4.1).

Критические значения параметров белых карликов, очень близкие к только
что приведенным, нашли в 1964 г. Чандрасекар и Тупер. В рамках ОТО они
рассматривали радиальные колебания квазичандрасекаровских белых карли-
ков. Пользуясь вариационным методом и взяв пробную функцию всего с дву-
мя свободными параметрами, они получили следующие характеристики белого
карлика, находящегося на границе устойчивости:

ОТО, ρ = ρi + ρe; Чандрасекар&Тупер

M ′′′
♦ = 1.4176 M¯,
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Таблица X.4.1:
Физические параметры белых карликов,

находящихся на границе устойчивости (при µe = 2)

Модель M R ρc, г/см3
ρc/ρ̄ vЭ, км/с

Ньютон, ρ = ρi 1.4559 0.0000 ∞ 54.2 ∞
Ньютон, ρ = ρi + ρe 1.4358 1.0528 · 10−3 7.232 · 1010 41.6 868
ОТО, ρ = ρi 1.4249 1.3011 · 10−3 3.555 · 1010 39.0 697
ОТО, ρ = ρi + ρe 1.4154 1.4794 · 10−3 2.311 · 1010 37.5 609

M/M�

1
0
0
×

R
/R

�

1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Рис. X.4.1:
Зависимость масса – радиус для белых карликов больших масс.

Кривые (справа налево): Ньютон+масса только от ионов (классический
Чандрасекар); Ньютон+масса от ионов и электронов; ОТО+масса

только от ионов; ОТО + масса от ионов и электронов.
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.
ρ′′′c = 2.328 · 1010 г/см3

,

R′′′ = 1026.7 км;

Получение значений критической массы, радиуса и центральной плотности
аналитическими средствами — весьма непростая задача, которой теоретики
полвека назад уделили много внимания. Обойтись совсем без вычислений, ра-
зумеется, невозможно, но их удается свести к вычислению ряда интегралов от
функций Эмдена индекса n = 3. Это достигается так называемым энергети-
ческим методом, в основе которого лежит приближение, состоящее в том, что
при использовании ОТО белый карлик критической массы близок к политро-
пе индекса n = 3. Параметры такого белого карлика (идеальный электронный
газ, µe = 2):

Энергетический метод

Mcr = 1.415 M¯,

ρcr
c = 2.738 · 1010 г/см3

.

В Табл. X.4.1 приводятся основные параметры белых карликов, находящих-
ся на границе устойчивости при двух трактовках гравитации — по Ньютону
и по Эйнштейну – и либо без учета вклада энергии электронов в массу, либо
с его учетом. В двух последних столбцах Таблицы даны значения ρc/ρ и эйн-
штейновского красного смещения vЭ. При вычислениях использовались
значения физических и астрономических постоянных, приводимые в
Приложении 2, с. 520. Все расчеты были выполнены А.В.Дементьевым.

Заметим, что в литературе имеется ряд работ, в которых приводятся ре-
зультаты сходных расчетов параметров белых карликов, находящихся на гра-
нице устойчивости. Их результаты часто слегка отличаются от приведенных
здесь — как правило, в последнем знаке. Что служит причиной этого — неточ-
ности вычислений или отличие в используемых значениях постоянных, понять
невозможно, так как ничего не говорится о том, какие значения, скажем, гра-
витационной постоянной G или массы Солнца M¯, были использованы.

На Рис. X.4.1 приведены кривые зависимости масса – радиус для белых
карликов больших масс (M/M¯ ≥ 1.3). Четыре кривые относятся к тем же че-
тырем случаям, что и данные, приведенные в Табл. X.4.1 (справа налево: Нью-
тон+масса только от ионов; Ньютон+масса от ионов и электронов; ОТО+масса
только от ионов; ОТО+масса от ионов и электронов). Самая правая точка на
каждой из кривых соответствует модели с критическими параметрами. Ча-
сти кривых, расположенные левее и ниже этих экстремальных по массе точек,
относятся к неустойчивым моделям, которые в природе не реализуются.
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Рассмотренными четырьмя случаями проблема нахождения
,,реалистичного" значения чандрасекаровского предела, или точнее пре-
дельно возможной массы белых карликов далеко не исчерпывается. Следует
еще учесть, во-первых, роль процесса нейтронизации, то есть захватов сво-
бодных электронов ядрами в сверхплотном газе и, во-вторых, неидеальность
электронного газа, обусловленную кулоновскими взаимодействиями частиц.
Начнем с нейтронизации, отложив рассмотрение кулоновских поправок к
уравнению состояния до следующего пункта.

Как уже говорилось в Гл. IX (п. 2.3), по достижении некоторой пороговой
плотности ρ

β
в вырожденном газе появляются электроны с энергией, которой

достаточно, чтобы вызвать реакцию обратного β-распада

(Z, A) + e− → (Z − 1, A) + ν.

В результате происходит нейтронизация — один из протонов ядра (Z,A) пре-
вращается в нейтрон. Соответствующие пороговые энергии Eβ для различных
ядер были приведены в Табл. IX.2.2 (с. 410). Процесс нейтронизации опреде-
ляет предельно возможную плотность в центре белого карлика, а тем самым
и его предельную массу Mβ . Пороги нейтронизции для гелия и углерода вы-
ше приведенного ранее значения критической плотности 2.31 · 1010 г/см3, при
которой происходит нарушение устойчивости (см. Табл. X.4.1, с. 471). В проти-
воположность этому, для кислорода 16O плотность ρ

β
= 1.90 · 1010 г/см3 ниже

этой критической плотности, и поэтому в принципе могли бы существовать
белые карлики, в которых потеря устойчивости была бы обусловлена нача-
лом нейтронизации. Здесь употреблено сослагательное наклонение, так как на
самом деле учет неидеальности электронного газа снижает критическую плот-
ность, так что процесс нейтронизации едва ли когда-либо определяет потерю
устойчивости белых карликов.

4.2. Кулоновские
поправки

В теории Чандрасекара предполагается, что
положительные заряды распределены в газе
однородно. В действительности они сосредо-

точены в ионах с зарядом eZ. Электростатические силы приводят к тому, что
средние расстояния между отталкивающимися друг от друга электронами ока-
зываются больше, чем среднее расстояние между электронами и притягиваю-
щими их ионами. В итоге отталкивание оказывается слабее, чем притяжение.

Найдем поправку к уравнению состояния холодного электронного газа за
счет электростатических взаимодействий. При T → 0 ионы образуют решетку,
и в результате расстояния между ними максимизируются. Разобьем объем на
электронейтральные сферические ячейки, в центрах которых находятся ядра
с зарядом eZ. Будем считать, что в пределах такой ячейки — сферы Вигнера –
Зейтца — электроны распределены равномерно. Найдем энергию электроста-
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тического взаимодействия частиц в этой сфере. Радиус ячейки r0 определяется
условием ее электронейтральности

4π

3
r3
0 Ne = Z, (4.14)

где Ne — концентрация электронов. Обозначим через qe плотность заряда элек-
тронов в шаре, так что qe (4π/3)r3

0 = −eZ. Полная энергия электростатического
взаимодействия слагается из отрицательной энергии притяжения электронов
к ядру

E− = −
∫ r0

0

eZ

r
qe 4πr2 dr = −3

2
(eZ)2

r0
(4.15)

и положительной энергии взаимного отталкивания электронов

E+ =
3
5

(eZ)2

r0
. (4.16)

Последняя формула — это кулоновский аналог выражения для гравитацион-
ной энергии политропы индекса n = 0, имеющей равномерное распределение
вещества (формула (IV.2.1) с n = 0, с. 181). В отличие от политроп, в рас-
сматриваемом сейчас случае мы имеем дело с равномерным распределением
не массы, а заряда, и вместо притяжения — с отталкиванием.

Суммарная энергия взаимодействия в расчете на ячейку равна, таким об-
разом,

E ≡ E−+ E+ = − 9
10

(eZ)2

r0
. (4.17)

Она отрицательна, так что притяжение сильнее, чем отталкивание (отсюда —
скрытая теплота плавления). Выразив r0 в (4.17) через концентрацию электро-
нов Ne из (4.14) и учтя, что в силу их электронейтральности ячейки между
собой не взаимодействуют, для объемной плотности энергии кулоновского вза-
имодействия eкул получим

eкул =
E

(4π/3)r3
0

= − 9
10

(
4π

3

)1/3

e2Z2/3N4/3
e . (4.18)

Поправка к давлению составляет

∆Pкул =
1
3

eкул . (4.19)

Само давление ультрарелятивистского электронного газа P дается формулами
(2.23)+(2.24), где, как всегда, ρ/µe = muNe. Поэтому учет электростатического
взаимодействия снижает давление в таком газе на множитель

Cкул ≡ P + ∆Pкул

P
= 1− 25/3

5

( 3
π

)1/3 e2

~c
Z2/3 = 1− 4.56 · 10−3 Z2/3. (4.20)
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На самом деле это выражение дает лишь главный член кулоновской поправки.
Старшие члены учитывают неоднородность распределения электронов в преде-
лах сферы Вигнера – Зейтца и другие, менее существенные эффекты. Оказыва-
ется, что для ультрарелятивистского полностью вырожденного электронного
газа поправка на кулоновское взаимодействие, даваемая (4.20) (с учетом стар-
ших членов, которые мы опустили) не зависит от плотности. Окончательный
результат сводится к тому, что неидеальность электронного газа, вызванная
кулоновскими взаимодействиям, приводит к снижению предельной массы с
M♦ до M∗

♦, где

M∗
♦ = C3/2

кулM♦. (4.21)

Отношение M∗
♦/M♦ для белых карликов из 4He равно 0.991, белые карлики

из 12C — а их большинство — имеют M∗
♦/M♦ = 0.979. Наконец, наименьшего

значения, равного 0.940, это отношение достигало бы, если бы белый карлик
состоял из 56Fe.

************************?????????????***************************

Эти числа полезно сравнить с тем, что дает учет поправок, обусловленных
трактовкой гравитации не по Ньютону, а согласно ОТО.

???? Как говорилось ранее (см. с. 471) ??????
ОТО+Кулон
гелий 1.4081 углерод 1.3916 железо 1.1565 1.4154

4.3. От белых
карликов к

планетам–гигантам

Плотность холодных сферических тел доста-
точно малых масс, находящихся в гидроста-
тическом равновесии под действием само-
гравитации и имеющих одинаковый химиче-

ский состав, должна быть одной и той же. Пока силы гравитации малы по
сравнению с электростатическими силами, действующими в обычных твердых
телах, мы имеем ρ = const. Эта плотность отвечает нулевому давлению. В этом
случае с ростом массы радиус растет: R∝M1/3.

С другой стороны, как мы знаем, для холодных белых карликов малой
массы R∝M−1/3, так что у них радиус растет с уменьшением массы. Понят-
но, что должно существовать критическое значение массы M~, отделяющее
первую область от второй. Этой массе отвечает наибольший возможный для
холодных тел заданного химического состава радиус R~.

По одну сторону от M~ мы имеем тела малой массы, у которых гравитация
является второстепенным фактором. Это планеты. По другую сторону лежат
тела, в которых электростатические кулоновские силы малы по сравнению с
гравитацией. Это звезды, конкретно — холодные белые карлики.
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Грубую оценку R~ можно получить, приравнивая массы однородного сфе-
рического тела с ρ = const и белого карлика малой массы с R ∝ M1/3. Формулу
(3.32) при µe = 2 можно переписать в виде M = A/R3, где A = 1.392·1060 (здесь
масса — в граммах). Сказанное только что дает следующее соотношение для
получения оценки R~:

4π

3
R3

~ρ =
A

R3
~

.

Если считать, что мы имеем дело с телами из углерода, то можно принять ρ ≈
2.5 г/см3 (графит). Тогда из последней формулы находим, что R~ ≈ 71 000 км.
Понятно, что это лишь верхняя оценка максимального размера холодного шара
из чистого углерода. Насколько она точна, можно будет сказать лишь после
детальных расчетов. Забегая вперед, сообщим, что она завышает R~ почти
втрое.

Согласно (II.2.35) (с. 78), мы имеем

P =
2
3

eкин +
1
3

eкул . (4.22)

Здесь первое слагаемое — это давление идеального полностью вырожденного
(то есть холодного, T = 0) нерелятивистского электронного газа

2
3
eкин = Pид =

1
20

(
3
π

)2/3
h2

me
N5/3

e , (4.23)

а второе — кулоновская поправка к давлению

1
3
eкул = ∆Pкул = − 3

10

(
4π

3

)1/3

e2Z2/3N4/3
e . (4.24)

В чандрасекаровских моделях принимается, что P = Pид. Поэтому они приме-
нимы, только пока

|∆Pкул| ¿ Pид. (4.25)

Пользуясь (4.23) и (4.24) и учитывая, что Ne = ρ/(µemu), последнее нера-
венство дает следующий критерий применимости чандрасекаровской теории к
самогравитирующим телам малой плотности:

ρ À µe

2π3

mu

r3
1

Z2 = 0.18 µe Z2 г/см3
, (4.26)

где r1 = ~/2(mee
2) = 0.529 · 10−8 см — радиус первой боровской орбиты. Ра-

нее было показано (формула(3.32), с. 443), что при µe = 2 средняя плотность
белого карлика малой массы (политропа индекса n = 3/2) дается следующим
выражением:

ρ = 2.120 · 104µ5
e M2 г/см3

. (4.27)
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Таблица X.4.2:
Наибольший радиус и соответствующие ему масса
и средняя плотность холодных сферических тел

разного химического состава

Элемент 102 ×R~ 103 ×M~ ρ~, г/см3

H 11.71 3.16 2.8
He 5.13 1.12 12
C 3.94 2.24 52
Fe 2.44 5.89 572

Поскольку нас интересуют сейчас лишь порядки величин, в (4.26) в качестве
плотности можно взять ρ. Комбинируя тогда (4.27) и (4.26), получим оконча-
тельно следующий критерий применимости теории Чандрасекара со стороны
малых масс:

M À 0.728 · 10−3 Z. (4.28)

Для белого карлика из 12C имеем поэтому M À 4.37 · 10−3M¯. Пока это нера-
венство выполняется, с уменьшением массы радиус растет ∝ M−1/3. По дости-
жении массы порядка 4 · 10−3M¯ рост радиуса замедляется.



5. ЭНЕРГЕТИКА БЕЛЫХ КАРЛИКОВ

5.1. Пролог
Хотя белые карлики неизменно называют
конечным продуктом звездной эволюции, на

самом деле это совсем не так. Раз белые карлики светят, расходуя на это энер-
гию, значит, они должны из-за этого эволюционировать. Их эволюция по сути
дела сводится к простому остыванию недр и наружных слоев белого карлика.
Однако, как мы вскоре убедимся, эта эволюция может занимать даже больше
времени, чем ядерная эволюция породивших их звезд.

Белые карлики являются продуктом эволюции звезд асимптотической вет-
ви гигантов. После сброса наружных слоев при тепловых вспышках в двойном
водородно–гелиевом слоевом источнике и отделения планетарной туманности
обнажившееся ядро звезды становится белым карликом. При рождении его
эффективная температура очень высока, более ∼ 150 000 K, и он остывает
очень быстро. По мере падения температуры темп остывания уменьшается.
Когда эффективная температура снизится до ∼ 4000 K, вещество недр бело-
го карлика начинает кристаллизоваться, и в конце концов весь белый карлик
превращается в гигантский кристалл. Он продолжает остывать примерно так
же, как остывает булыжник. Окончательно охладившись, этот макробулыж-
ник превращается в несветящееся тело — черный карлик. Впрочем, вряд ли
черные карлики сегодня существуют в природе — Вселенная еще слишком мо-
лода, чтобы белые карлики успели в них превратиться.

5.2. Строение
невырожденной

оболочки

Прежде всего рассмотрим строение наружных
слоев звезды (не обязательно белого карлика),
состоящих из невырожденного газа. Считаем,
что масса такой оболочки мала по сравнению

с массой звезды M . Поэтому уравнение механического равновесия принимает
вид

dP

dr
= − ρ

GM

r2
. (5.1)

Примем, далее, что перенос энергии в этой оболочке осуществляется излучени-
ем. Поток энергии в ней H = L/(4πr2), где L — светимость. Уравнение переноса
тепла имеет тогда вид (см. с. 218)

dT

dr
= − 3κρ

4ac T 3

L

4π r2
, (5.2)

где κ — непрозрачность (в см2/г). Для нее мы примем крамерсовское прибли-
жение

κ = κ0
ρ

T 7/2
, (5.3)

478
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в котором
κ0 = 4.34 · 1024Z(1 + X) см2/г. (5.4)

Здесь Х и Z – весовые доли водорода и тяжелых элементов соответственно.
Такое представление непрозрачности предполагает, что она вызывается фото-
ионизацией тяжелых элементов.

Воспользовавшись тем, что P = (R∗/µ) ρT , можем представить κ в виде

κ = κ0
µ

R∗ PT−9/2. (5.5)

Поделив почленно (5.1) на (5.2) и подставив в получающееся уравнение κ из
(5.5), получим

P dP =
16π acR∗G

3κ0µ

M

L
T 15/2 dT. (5.6)

Интегрируя это вглубь от поверхности, где T и P считаем равными нулю,
извлекая корень из получающегося результата, заменяя образующееся таким
образом слева P на P = (R∗/µ) ρT и сокращая на T , окончательно находим,
что

ρ =
(

64π ac Gµ

51κ0R∗
)1/2(

M

L

)1/2

T 13/4 = 16.4
√

µ

Z(1 + X)

(
M

L

)1/2

T
13/4
7 . (5.7)

Как видим из этой формулы, строение наружных слоев звезд с лучистым (не
конвективным) переносом тепла аппроксимируется политропой.

В тех слоях, где выполняется (5.7), зависимость температуры от r дается
следующей простой формулой:

T (r) =
4
17

µ

R∗
GM

R

(
R

r
− 1

)
. (5.8)

Она получается, если подставить (5.3) в (5.2), затем в правую часть ввести ρ2,
следующее из (5.7), и результат проинтегрировать.

5.3. Остывание
белых карликов

В основе рассмотрения энергетики белых кар-
ликов лежит их простейшая модель, ныне
ставшая классической. Ее основные предполо-

жения состоят в следующем.
Бо́льшая часть массы белого карлика — это изотермический газовый шар,

поддерживаемый давлением полностью вырожденного электронного газа. Изо-
термический он потому, что теплопроводность сильно вырожденного электрон-
ного газа велика, и любые неоднородности температуры ионной компоненты
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газа очень быстро выравниваются. Снаружи имеется тонкая газовая оболоч-
ка из невырожденного газа. Градиент температуры в ней определяется лучи-
стой теплопроводностью. Эта газовая оболочка играет роль теплоизолятора,
регулирующего скорость оттока тепла от горячих внутренних слоев наружу, к
гораздо более холодной атмосфере, откуда оно и излучается.

Основное приближение классической теории остывания белых карликов со-
стоит в следующем. Принимается, что существует резкая граница между внут-
ренними слоями, давление в которых у этой границы создается полностью вы-
рожденными нерелятивистскими электронами с P = K1(ρ/µe)5/3, и оболочкой,
состоящей из невырожденного газа, в которой давление электронного газа рав-
но P = (R∗/µe) ρT . Граница определяется условием равенства этих давлений,
так что, обозначив плотность и температуру на ней соответственно через ρ∗ и
Ti, мы имеем

K1

(
ρ∗
µe

)5/3

=
R∗
µe

ρ∗Ti. (5.9)

Введя сюда выражение для K1 через мировые постоянные (формула (2.21),
с. 422)

K1 =
1
20

(
3
π

)2/3
h2

mem
5/3
u

(5.10)

и R∗ = k/mu, легко получить, что

ρ∗ =
π

3
(20mek)3/2

h3
mu µe T

3/2
i , (5.11)

или в числах
ρ∗ = 2.38 · 10−8µeT

3/2
i г/см3. (5.12)

По определению Ti, это есть температура ионов не только на (искусственно
вводимой!) границе, отделяющей вырожденные недра от невырожденной на-
ружной оболочки, но и во всех вырожденных слоях белого карлика, то есть в
основной его массе.

Далее, применим соотношение (5.7) к границе раздела невырожденной обо-
лочки и ядра, где ρ = ρ∗ и T = Ti, и скомбинируем его с (5.11). Учитывая, что
a = (8π5k4)/(15c3h3) (см. с. 130), после элементарной выкладки находим

L

M
=

8 π4

17 · 625
h3

m3
emuc2

G

κ0

µ

µ2
e

T
7/2
i , (5.13)

так что
L

M
= B D T

7/2
i , (5.14)
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где
B = 1.504 · 10−28, D =

µ

µ2
e Z(1 + X)

. (5.15)

Отсюда

Ti = (BD)−2/7

(
L

M

)2/7

= 0.890 · 108 D−2/7

(
L

M

)2/7

К. (5.16)

Согласно (5.16), светимость белого карлика — это термометр, измеряющий
температуру ионов его изотермического вырожденного ядра. Этой температу-
рой одновременно определяется и плотность на внутренней границе невырож-
денной наружной оболочки белого карлика, даваемая формулой (5.12).

При Z = 0.1 и X = 0 мы имеем µ = 1.379 и D = 3.448, так что (5.16) дает

Ti = 6.25 · 107

(
L

M

)2/7

К. (5.17)

Значения температуры ионов Ti в недрах углеродных белых карликов раз-
личной светимости с M = 0.6, а также плотности ρ∗ у основания их наружных
невырожденных оболочек, даваемые формулой (5.12), приведены в Табл. X.5.1.
Строка с L = 102 в этой таблице относится к объекту с Teff ∼ 150 000 K, кото-
рый является промежуточным между ядром планетарной туманности и рож-
дающимся из него белым карликом. Последние две строки таблицы, как мы
вскоре узнаем, являются ,,лишними", так как белых карликов с L = 10−4.5,
а тем более с L = 10−5 в окрестностях Солнца не обнаружено, и вряд ли они
вообще существуют, во всяком случае в галактическом диске. Тем не менее при-
водимые в этих строках данные оказываются полезны при обсуждении границ
применимости излагаемой ниже теории остывания белых карликов.

Прежде чем переходить непосредственно к обсуждению остывания белых
карликов, убедимся, что толщина их невырожденных наружных слоев мала по
сравнению с радиусом. Пусть r∗ — значение радиуса, при котором температура
в оболочке достигает Ti. Согласно (5.8), мы имеем

Ti =
4
17

µ

R∗
GM

R

(
R

r∗
− 1

)
≈ 5.4 · 106 µ

M

R

R− r∗
R

. (5.18)

Отсюда следует, что при Ti ∼ (106 ÷ 107) К, то есть, согласно данным
Табл. X.5.1, при L <∼ 10−2, толщина невырожденной ,,кожуры" белого карлика
составляет не более нескольких процентов его радиуса, или ∼10−4R¯ ∼107 см.
Градиент температуры в этой ,,кожуре", обволакивающей изотермическое те-
ло белого карлика с температурой ∼ 107 K, поистине колоссален, ∼ 1 K/см.
Это на четыре порядка больше, чем в недрах Солнца: 1.5 · 107 K/7 · 1010 см
∼ 2 · 10−4 K/см.
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Таблица X.5.1:

Остывание углеродного
белого карлика с M = 0.6

L Ti, K ρ∗, г/см3 τ , лет
102 2.70 · 108 2.11 · 105 —

1 7.23 · 107 2.93 · 104 2.96 · 106

10−2 1.94 · 107 4.07 · 103 7.95 · 107

10−3 1.00 · 107 1.52 · 103 4.06 · 108

10−4 5.20 · 106 5.66 · 102 2.11 · 109

10−4.5 3.75 · 106 3.46 · 102 4.85 · 109

10−5 2.70 · 106 2.11 · 102 1.10 · 1010

Из формулы (5.16) видно, что уменьшение светимости свидетельствует об
охлаждении недр белого карлика. Сейчас мы рассмотрим этот процесс более
подробно. Это позволит сделать важные выводы об эволюции белых карликов
и получить оценки не только их возрастов, но даже возраста диска Галактики.

Время остывания недр белого карлика до достижения температуры Ti,
которое мы сейчас будем находить, не следует путать со временем высвечива-
ния тепловой энергии ионов при постоянной светимости (кельвиновское время
для белых карликов, см. ниже).

Так как ионный газ не вырожден, мы имеем, очевидно,

L = −3
2

M R∗
A

dTi

dt
, (5.19)

где A — атомный вес ионов (A = 12 для 12C и т. д.). Из (5.16) находим

dTi

dt
= (B D)−2/7 2

7
L−5/7

M2/7

dL

dt
. (5.20)

Подставляя это в (5.19), получаем

L = −3
7

M¯
L¯

R∗A−1 (BD)−2/7 M5/7 L−5/7 dL

dt
. (5.21)

Поскольку L−5/7−1 dL = −7/5 dL−5/7, из (5.21), интегрируя и полагая, что в
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начальный момент, при t = 0, светимость была L0, получаем

t =
3
5

M¯
L¯

R∗A−1 (BD)−2/7

[(
M

L

)5/7

−
(

M

L0

)5/7]
. (5.22)

Из (5.21) и (5.17) следует, что скорость уменьшения светимости быстро убы-
вает с L и Ti, именно,

−dL

dt
∝ L12/7 ∝ T 6

i . (5.23)

Поэтому спустя короткое время после начала остывания (>∼106 лет) вторым
членом в квадратных скобках в (5.22) можно пренебречь по сравнению с пер-
вым, и мы приходим к следующему выражению для времени τ , которое тре-
буется белому карлику массы M для достижения им светимости L из-за осты-
вания его недр:

τ =
3
5

M¯
L¯

R∗A−1 (BD)−2/7

(
M

L

)5/7

. (5.24)

Подставив сюда численные значения постоянных и перейдя в измерении вре-
мени от секунд к годам (1 год =3.156 · 107 с), окончательно получаем

τ = 6.06 ·106

(
A

12

)−1

D−2/7

(
M

L

)5/7

лет. (5.25)

Это основная формула классической теории остывания белых карликов. Она
дает возраст белого карлика с известными массой, светимостью и химическим
составом его недр (множители A и D).

Рассмотрим подробнее, каков возраст белых карликов из 12C, имеющих мас-
су M = 0.6, определяемый по их светимостям. При принимаемом нами значе-
нии D = 3.45 мы имеем

τ = 4.26 · 106

(
M

L

)5/7

лет. (5.26)

У белого карлика с M = 0.6 время достижения им светимости L = 10−2 со-
ставляет ∼ 8 ·107 лет. Светимость в L = 10−3 требует для своего достижения в
105/7 = 5.18 раз больше времени: ∼ 4 ·108 лет. Чтобы светимость нашего белого
карлика опустилась до L = 10−4, требуется ∼ 2 · 109 лет. Наконец, чтобы све-
тимость упала до L = 10−4.5, белый карлик должен прожить около 5 · 109 лет.
Углеродных белых карликов со светимостью L = 10−5 в окрестностях Солнца,
то есть в диске Галактики, определенно нет.
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В последнем столбце Табл. X.5.1 данные о возрасте чисто углеродных бе-
лых карликов разной светимости даны с большей точностью, чем только что
приводившиеся оценки. В действительности большинство одиночных белых
карликов состоит из смеси 12C и 16O. В какой пропорции они находятся, на-
дежно сказать трудно, поскольку сечение реакции 12C(α, γ)16O известно плохо
(см. п. 2.1 Гл. VIII). Обычно принимают, что их концентрации равны, так что
A = 14. Для учета этого чи́сла, приведенные в последнем столбце Табл. X.5.1,
следует умножить на 12/14=0.857.

Откладывая пока обсуждение подробностей, укажем уже сейчас, что при
светимостях L <∼ 10−4 изложенная только что теория остывания белых кар-
ликов нуждается в серьезных корректировках. Оказывается, что оценки их
возрастов, даваемые формулой (5.25), для белых карликов низкой светимости
существенно занижены. Так, в окрестностях Солнца белые карлики наимень-
шей светимости имеют L ≈ 10−4.3. Согласно аккуратной теории охлаждения
отсюда следует оценка возраста диска Галактики ∼ 8 · 109 лет.

Формула (5.25) — это стандартное представление основного результата тео-
рии остывания белых карликов. Более естественным кажется, однако, иметь
выражение, дающее светимость белого карлика в функции его возраста t (в
годах). Оно легко получается ,,обращением" формулы (5.25):

L = 3.13 · 109

(
A

12

)−7/5

D−2/5 M

t7/5
. (5.27)

Согласно этой формуле, светимость белого карлика убывает на одну звезд-
ную величину, то есть в 5

√
100 = 2.512 . . . раз, когда время его высвечивания

возрастает в 7
√

100 = 1.93 раза, или примерно вдвое.
Сделаем еще замечание, касающееся изменения кельвиновского времени

при остывании белого карлика. Запас тепловой энергии его ионов составля-
ет

Ei =
3
2

M

Amu
kTi эрг. (5.28)

Если бы светимость белого карлика оставалась постоянной, то согласно (5.28)
тепловая энергия ионов могла бы обеспечить его светимость в течение кельви-
новского времени τK , равного

τK =
Ei

L
=

3
2

M¯
L¯

kTi

Amu

M

L
. (5.29)

Подставляя сюда Ti из (5.16) и сравнивая результат с (5.24), убеждаемся, что

τK =
5
2
τ . (5.30)
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Это замечательное своей простотой соотношение показывает, что постепенное
остывание недр белого карлика и обусловленное этим уменьшение его свети-
мости вызывает увеличение кельвиновского времени. Причина этого очевид-
на: уменьшение запаса кинетической энергии ионов сопровождается еще более
быстрым уменьшением темпа ее расходования.

В заключение этого пункта заметим, что численные коэффициенты в фор-
мулах, приведенных здесь, не следует рассматривать как точные. Они могут
содержать ,,ошибки" в десятки процентов. Во-первых, коэффициент κ0 в фор-
муле Крамерса (5.3) разные авторы принимают разным (возможность чего
подчеркивается у нас наличием в ряде формул множителя D в различных
степенях). Во-вторых, граница между вырожденным ядром и невырожденной
оболочкой также может вводиться по-разному. Например, можно принимать,
что она проходит там, где обсуждавшийся в п. 4.1 Гл. III (с. 141) параметр
вырождения D равен единице, так что

ρ∗
µe mu

=
2(2πme kTi)3/2

h3
. (5.31)

В-третьих, перенос энергии в оболочке может осуществляться не только излу-
чением, но и конвекцией. Самое же главное — сделанное в самом начале этого
пункта и по сути дела никак не обоснованное предположение, что единствен-
ным источником энергии свечения белых карликов является остывание ион-
ного газа их недр, представляющего собой идеальный газ. Обоснование этого
предположения, выяснение его точности и границ применимости см. в следу-
ющем пункте.

Историческое замечание. Изложенная выше теория остывания белых
карликов известна на Западе как теория Л.Местела, который опубликовал ее
в Monthly Notices в 1952 г. Однако за два года до этого в Астрономическом
журнале вышла статья С.А.Каплана, в которой впервые было рассмотрено
остывание белых карликов и получен основной результат теории их остыва-
ния — формула τ ∝ (M/L)5/7. Поэтому изложенное выше по справедливости
следует называть теорией Каплана – Местела.

5.4. Кристаллизация
Средняя энергия взаимодействия двух ионов
с зарядом Z равна, очевидно, (Ze)2/ri, где

ri — среднее расстояние между ионами, определяемое условием (4π/3)r3
i Ni = 1,

где Ni = ρ/(µimu) — концентрация ионов. Очевидно, что мерой отклонения
ионного газа от идеальности служит отношение кулоновской энергии к тепло-
вой энергии иона kT :

ΓC =
(Ze)2

rikT
= 2.7 · 10−3 Z2N

1/3
i

T
.
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При ΓC ¿ 1 роль кулоновских поправок мала, и газ близок к идеальному. В
противоположном предельном случае ΓC À 1 мы имеем дело с жидкостью или
с кристаллом. Детальные расчеты показали, что кристаллизация происходит
при ΓC ≈ 170, так что для температуры плавления Tm последняя формула дает

Tm ≈ (Ze)2

ΓCk

(
4π

3
ρ

2Zmu

)1/3

= 1.1 · 103 Z5/3ρ1/3 K.
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1. ТЕРМОДИНАМИКА ЗВЕЗДНОГО ВЕЩЕСТВА

1.1. Идеальный
невырожденный газ

Все студенты-астрономы в свое время, без-
условно, ,,проходили" вопросы, излагаемые
в первых двух пунктах этого раздела. Одна-
ко опыт показывает, что у многих от этого

мало что осталось. Мы не хотим строить все дальнейшее изложение на песке
туманных воспоминаний читателя или на зыбкой надежде, что он честно по-
лезет за справками в курсы физики. Поэтому было решено дать сводку самого
необходимого, благо на это нужно не так уж много места.

В этом пункте напоминаются основные факты, относящиеся к термодина-
мике невырожденного газа. Рассмотрим единичную массу такого газа. Пусть
ρ — его плотность, V ≡ 1/ρ — удельный объем, то есть объем, приходящийся
на единицу массы, T — температура, P — давление. Будем для определен-
ности считать, что газ находится в цилиндре с площадью основания 1 см2 и
высотой, численно равной V . Считаем, что этот цилиндр теплоизолирован, то
есть обмена энергией со стенками не происходит. Подведем к нему тепло dQ. В
результате газ в объеме нагреется на dT . Коэффициент пропорциональности
между dQ и dT в этом случае есть удельная теплоемкость при постоянном
объеме cv:

dQ = cv dT, V = const. (1.1)

Будем теперь считать, что одно из оснований нашего цилиндрического объ-
ема — это поршень в длинном цилиндре. Тогда, подведя то же тепло dQ и мед-
ленно отодвинув поршень, можно добиться того, что давление в газе останется
неизменным. Обозначим коэффициент пропорциональности между dQ и при-
ращением температуры в этом случае через cp, так что dQ = cp dT . Величина
cp есть удельная теплоемкость при постоянном давлении. Тепло dQ частично
расходуется здесь на нагрев газа (на это уходит энергия cv dT ), а частично —
на работу P dV , совершаемую при перемещении поршня на dV под действием
силы давления P . Поэтому

dQ = cp dT = cv dT + P dV, P = const. (1.2)

Теперь нам понадобится уравнение состояния идеального газа, которое счи-
тается известным читателю. Его можно записать в разных формах. Мы в на-
шем курсе чаще всего берем его в виде

P =
R∗
µ

ρT. (1.3)

489
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Здесь µ — средний молекулярный вес и R∗ — универсальная газовая постоян-
ная:

R∗ ≡ k/mu = 8.314 · 107 эрг/(К· моль),
где k = 1.381 · 10−16 эрг/К — постоянная Больцмана и mu = 1.661 · 10−24 г —
атомная единица массы (1/12 массы атома 12C). Она очень близка к массе
протона mp и к массе атома водорода mH :

mp = 1.00727 mu; mH = 1.008 mu.

В подавляющем большинстве случаев различия между mu, mp и mH можно
не делать.

Так как ρ = 1/V , то уравнение состояния (1.3) можно переписать в виде

PV =
R∗
µ

T. (1.4)

В термодинамике обычно используется именно эта его форма. Далее, посколь-
ку ρ = µmuN , где N — концентрация частиц, то (1.3) эквивалентно следующе-
му:

P = NkT. (1.5)

Вводя, наконец, число Авогадро

NA ≡ 1/mu = 6.02214 · 1023 (моль)−1
,

можем представить (1.4) также в форме

PV = (NA/µ) kT. (1.6)

Согласно уравнению состояния (1.4),

P dV + V dP =
R∗
µ

dT.

Для изобарического процесса (P = const), очевидно, dP = 0, и поэтому

P dV =
R∗
µ

dT, P = const, (1.7)

так что (1.2) можно представить также в виде

dQ = cv dT +
R∗
µ

dT, P = const. (1.8)
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Сопоставление (1.1) и (1.8) дает

cp − cv =
R∗
µ

. (1.9)

Обозначим через U внутреннюю энергию единицы массы газа (размер-
ность — эрг/г). В одноатомном идеальном газе каждая частица имеет три
степени свободы. Если газ не вырожден, то на одну степень свободы в расчете
на частицу приходится энергия kT/2. Поэтому U = (3/2)NkT/ρ, или, так как
ρ = µmuN и R∗ = k/mu, то

U =
3
2
R∗
µ

T =
3
2

PV. (1.10)

Помимо трех степеней свободы поступательного движения, всегда имею-
щихся у частиц идеального газа, в различных температурных областях может
оказаться ,,размороженным" также то или иное число внутренних степеней сво-
боды, связанных с вращательной и колебательной энергией молекул. Пусть в
некоторой (достаточно широкой) области температур частицы газа обладают f
степенями свободы. Ясно, что формула (1.10) заменится тогда на следующую:

U =
f

2
R∗
µ

T . (1.11)

Так как давление в идеальном газе целиком обусловлено скоростью перено-
са импульса пересекающими единичную площадку частицами, то оно не долж-
но зависеть от внутренней (колебательной и вращательной) энергии частиц.
Поэтому уравнение состояния и все формулы по (1.9) включительно сохраня-
ют свой вид при любом f > 3.

Если при подводе тепла объем, занимаемый газом, сохраняется, то это тепло
целиком идет на увеличение внутренней энергии газа, то есть dQ = dU при
V = const. Из (1.1), (1.11) и (1.9) находим тогда

cv =
f

2
R∗
µ

, cp =
(

f

2
+ 1

) R∗
µ

. (1.12)

Отношение
γ ≡ cp

cv
= 1 +

2
f

(1.13)

называется показателем адиабаты газа. При f = 3 имеем γ = 5/3.
Удельная энтропия S (на единицу массы) вводится следующим общим со-

отношением:
dS =

dQ

T
=

dU

T
+

P dV

T
. (1.14)
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Если состояние системы изменяется медленно (квазистатически), то энтропия
является функцией состояния. Это означает, что разность энтропий S1 − S2 в
состояниях 1 и 2 не зависит от того, каким образом совершался (квазистати-
ческий) переход 1 → 2. Внутренняя энергия U также есть функция состояния,
так что, вообще говоря, U = U(T, V ) (для идеального газа U = U(T ), зависи-
мости от V нет). Поэтому

dU =
(

∂U

∂T

)

V

dT +
(

∂U

∂V

)

T

dV,

и выражение (1.14) для dS можно записать в виде

dS =
1
T

(
∂U

∂T

)

V

dT +
[

1
T

(
∂U

∂V

)

T

+
P

T

]
dV. (1.15)

Поскольку S — это функция состояния, то dS — полный дифференциал. Зна-
чит, должно выполняться соотношение

∂

∂V

[
1
T

(
∂U

∂T

)

V

]

T

=
∂

∂T

[
1
T

(
∂U

∂V

)

T

+
P

T

]

V

,

откуда

P = T

(
∂P

∂T

)

V

−
(

∂U

∂V

)

T

. (1.16)

Напомним, что выражение

M(x, y) dx + N(x, y) dy

представляет собой полный дифференциал некоторой функции только то-
гда, когда

∂M(x, y)

∂y
=

∂N(x, y)

∂x
.

Применим общую формулу (1.15) к идеальному невырожденному газу. Учи-
тывая (1.11) и (1.13), а также то, что V = 1/ρ и согласно (1.13) f/2 = (γ−1)−1,
находим

dS = (γ − 1)−1 R∗
µ

dT

T
− R∗

µ

dρ

ρ
. (1.17)

Отсюда для удельной энтропии идеального газа получаем

S =
R∗
µ

ln
(

T 1/(γ−1)

ρ

)
+ const, (1.18)
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что с помощью уравнения состояния (1.3) можно переписать также в форме

S = (γ − 1)−1 R∗
µ

ln(P/ργ) + const′. (1.19)

Значения постоянных интегрирования в (1.18) и (1.19) найти из одних только
термодинамических соображений нельзя. Впрочем, для нас это неважно, так
как обычно приходится иметь дело лишь с изменениями S, и эти аддитивные
постоянные сокращаются.

Процесс, происходящий без обмена энергией с окружающей средой (dQ =
0), называется адиабатическим. Если он происходит медленно (квазистати-
чески), то энтропия остается постоянной (изэнтропический процесс). В силу
(1.18) и (1.19) температура и давление связаны в этом случае с плотностью
следующим образом (уравнения адиабаты):

P/P0 = (ρ/ρ0)γ , T/T0 = (ρ/ρ0)γ−1, (1.20)

откуда следует также, что

P/P0 = (T/T0)γ/(γ−1) . (1.21)

Последние формулы часто записывают в форме

dP

P
+ γ

dV

V
= 0;

dP

P
− γ

γ − 1
dT

T
= 0;

dT

T
+ (γ − 1)

dV

V
= 0. (1.22)

Здесь подразумевается, что изменения состояния происходят адиабатически, с
сохранением энтропии: S = const. Поэтому в (1.22) в соответствии с принятыми
в термодинамике обозначениями следовало бы писать (dT/T )S и т. д., а не
просто dT/T и т. д., однако для сокращения записи мы этого не делаем. Другая
распространенная форма записи (1.22):

(
d ln P

d ln ρ

)

S

= γ;
(

d ln P

d ln T

)

S

=
γ

γ − 1
;

(
d ln T

d ln ρ

)

S

= γ − 1. (1.23)

1.2. Равновесное
излучение

Рассмотрим теперь термодинамические
свойства равновесного излучения. У фо-
тонного газа имеются два принципиальных
отличия от обычного нерелятивистского

невырожденного идеального газа. Во-первых, он является ультрарелятивист-
ским. Во-вторых, это есть система с переменным числом частиц: с ростом
температуры концентрация фотонов в равновесном поле излучения растет
как T 3. Эти обстоятельства существенно сказываются на термодинамике
равновесного излучения.
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Обозначим через eизл объемную плотность энергии (эрг · см−3) равновесного
фотонного газа, через Pr — соответствующее давление излучения. Для всяко-
го ультрарелятивистского газа давление составляет одну треть от объемной
плотности энергии, и поэтому Pr = eизл/3.

Дайте кинетический вывод этой формулы, воспользовавшись следующим:
1) давление в идеальном газе — это скорость передачи импульса единич-
ной площадке (,,стенке") частицами, ударяющими о нее с одной стороны;
2) в ультрарелятивистском (в частности, фотонном) газе скорости частиц
можно считать равными скорости света c.

Соотношение Pr = eизл/3 в комбинации с простыми термодинамическими
соображениями позволяет установить, что eизл ∝ T 4. Действительно, обозна-
чим через Ur энергию фотонного газа в расчете на единицу массы вещества
(размерность — эрг · г−1). Тогда Ur = eизл(T ) V , где V = 1/ρ — удельный объ-
ем. Итак, Ur = Ur(T, V ). Соотношение (1.16), являющееся, напомним, прямым
следствием определения энтропии, в рассматриваемом случае принимает вид

eизл
3

=
1
3

T
deизл
dT

− eизл,

откуда

4
dT

T
=

deизл
eизл

.

Интегрируя, находим
eизл(T ) = aT 4, (1.24)

где a — постоянная интегрирования. Это есть закон Стефана – Больцмана.
Значение постоянной a из одних только термодинамических соображений по-
лучить нельзя.

С учетом (1.24) имеем Ur = aT 4 V , и поэтому (1.15) записывается в этом
случае в форме

dS = 4aT 2V dT +
4
3

a T 3 dV, (1.25)

откуда непосредственно следует выражение для энтропии равновесного фотон-
ного газа, содержащегося в объеме V :

S =
4
3

aT 3 V. (1.26)

Итак, если давление в газе создается в основном излучением, то при мед-
ленных адиабатических изменениях T 3/ρ = const. Отсюда, в частности, видно,
что в этом предельном случае отношение числа фотонов к числу частиц газа
при изэнтропических изменениях остается постоянным.
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Равновесное излучение может рассматриваться как идеальный газ с пока-
зателем адиабаты 4/3. В самом деле, при квазистатическом адиабатическом
изменении состояния энтропия остается постоянной. Поэтому dS = 0, и со-
гласно (1.25)

T 2V dT +
1
3

T 3 dV = 0,

откуда
dT

T
+

1
3

dV

V
= 0.

Сопоставление с третьей формулой (1.22) дает показатель адиабаты, равный
4/3.

1.3. Идеальный газ
в поле излучения

Внутри звезд из-за высокой температуры
плотность лучистой энергии может оказать-
ся не пренебрежимо малой по сравнению с
плотностью энергии теплового движения ча-

стиц. В этом случае нельзя пренебрегать и давлением излучения по сравнению
с газовым. Как ясно из пп. 1.1 и 1.2, термодинамические свойства равновес-
ного фотонного газа и обычного одноатомного идеального газа существенно
различны. Так, показатели адиабаты для них равны соответственно 4/3 и 5/3
и т.д. Теперь нам предстоит изучить термодинамику смеси одноатомного иде-
ального газа с равновесным фотонным газом. Основной вопрос, который нас
будет интересовать, — как в этом случае происходят медленные адиабатиче-
ские изменения. Ясно, что показатель адиабаты будет ,,где-то" между 4/3 и
5/3 — но как его найти? Ответ оказывается неожиданным: единого показате-
ля адиабаты γ, которым описывались бы сразу все три соотношения (1.22), не
существует.

Будем исходить из выражения для внутренней энергии на единицу мас-
сы U (эрг/г). Она слагается из энергии поступательного движения частиц
(3/2) (R∗/µ)T и энергии фотонного газа aT 4 V , где V — удельный объем
(V = 1/ρ):

U =
3
2
R∗
µ

T + aT 4 V. (1.27)

Газ мы считаем невырожденным, а поле излучения равновесным, поскольку
условия внутри звезд очень близки к термодинамическому равновесию. (Едва
ли где-либо в природе отыщется место, где поле излучения было бы ближе к
равновесному, чем в недрах звезд. Впрочем, полного равновесия нет и здесь,
иначе не существовало бы потока излучения из недр звезды наружу). Что ка-
сается предположения об отсутствии вырождения, то оно оправдано тем, что,
как оказывается, в вырожденных слоях звезд вклад излучения в энергетику
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пренебрежимо мал. Подчеркнем, что в рассматриваемом случае согласно (1.27)
U = U(T, V ), тогда как для идеального газа из одних только частиц U = U(T ).

При квазистационарном изменении состояния согласно закону сохранения
энергии должно быть

dQ = dU + P dV.

Но так как U = U(T, V ), то

dU =
(

∂U

∂T

)

V

dT +
(

∂U

∂V

)

T

dV,

и поэтому в силу (1.27)

dU =
(

3
2
R∗
µ

+ 4 aT 3 V

)
dT + aT 4 dV.

Подставляя это в правую часть выражения для dQ и переходя от V к ρ = 1/V ,
находим, что при адиабатических изменениях состояния (dQ = 0) должно
выполняться соотношение

(
3
2
R∗
µ

+ 4a
T 3

ρ

)
dT

T
=

( R∗
µ

+
4
3

a
T 3

ρ

)
dρ

ρ
. (1.28)

Привлечем теперь уравнение состояния, имеющее в данном случае вид

P =
R∗
µ

ρT +
a

3
T 4 (1.29)

и утверждающее, что полное давление слагается из газового Pg и лучистого
Pr:

Pg =
R∗
µ

ρ T, Pr =
a

3
T 4. (1.30)

Логарифмируя (1.29), получаем

ln P = ln
( R∗

µ

)
+ ln ρ + ln T + ln

(
1 +

µ

R∗
a

3
T 3

ρ

)
,

откуда легко найти (проверьте!)
(

1 +
µ

R∗
a

3
T 3

ρ

)
dP

P
=

(
1 + 4

µ

R∗
a

3
T 3

ρ

)
dT

T
+

dρ

ρ
. (1.31)

Адиабатические изменения состояния смеси из идеального газа частиц и
равновесного фотонного газа по существу полностью описываются совокупно-
стью двух дифференциальных соотношений (1.28) и (1.31). Однако по давней
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традиции, восходящей к Эддингтону, эти соотношения принято записывать в
другой, эквивалентной, но более наглядной форме. Обозначим через β долю,
которую газовое давление составляет в полном давлении, так что

Pg = β P, Pr = (1− β)P, (1.32)

и введем эту естественную для обсуждаемой задачи безразмерную переменную
в (1.31) и (1.28). Согласно (1.30) и (1.32),

1− β

β
=

µ

R∗
a

3
T 3

ρ
. (1.33)

С помощью (1.33) соотношения (1.31) и (1.28) можно представить в форме

dP

P
= β

dρ

ρ
+ (4− 3β)

dT

T
, (1.34)

3(8− 7β)
dT

T
= 2(4− 3β)

dρ

ρ
. (1.35)

Первое из них есть прямое следствие уравнения состояния (1.29) и поэтому
должно выполняться при любом (не обязательно адиабатическом) изменении
состояния системы, второе же справедливо лишь для изэнтропических процес-
сов.

Теперь нам осталось сделать совсем немного. Введем для разбираемой зада-
чи обобщенный показатель адиабаты Γ1 , определив его равенством (S = const)

dP

P
= Γ1

dρ

ρ
, (1.36)

или
Γ1 =

(
∂ ln P

∂ ln ρ

)

S

, (1.36a)

так что P ∝ ρΓ1 . Определение (1.36) обобщает обычное уравнение адиабаты
идеального газа (см. первые формулы в (1.20), (1.22) и (1.23)). Исключая из
(1.34) и (1.35) dT/T , приходим к явному выражению для Γ1 через β:

Γ1 =
32− 24β − 3β2

24− 21β
. (1.37)

Его можно переписать также в двух других формах, которые иногда оказыва-
ются удобнее:

Γ1 =
5
3
− 1

3
(1− β)

5 + 3(1− β)
1− 7(1− β)

=
4
3

+
1
3

β
4− 3β

8− 7β
. (1.37a)
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Таблица XI.1.1:
Адиабатические показатели Γi одноатомного газа,

находящегося в поле равновесного излучения

1− β Γ1 Γ2/Γ1 Γ3/Γ1

0.00 1.667 1.000 1.000
0.05 1.603 0.966 0.978
0.1 1.563 0.949 0.966
0.2 1.511 0.938 0.956
0.3 1.476 0.937 0.954
0.4 1.449 0.941 0.957
0.5 1.426 0.947 0.961
0.6 1.405 0.956 0.967
0.7 1.386 0.965 0.974
0.8 1.368 0.976 0.982
0.9 1.350 0.991 0.991
1.0 1.333 1.000 1.000

Формула (1.37) принадлежит Эддингтону (1918 г.). При малых 1−β, когда роль
излучения несущественна, Γ1 близко к 5/3, то есть к показателю адиабаты газа,
как это и должно быть. В противоположном предельном случае малых β, когда
доминирует излучение, Γ1 близко к 4/3. Изменение Γ1 между этими крайними
значениями происходит монотонно (Табл. XI.1.1).

Можно ввести два других адиабатических показателя, Γ2 и Γ3 , по аналогии
со второй и третьей формулами в (1.22) определив их следующим образом
(С.Чандрасекар, 30-е годы):

dP

P
=

Γ2

Γ2 − 1
dT

T
,

dT

T
= (Γ3 − 1)

dρ

ρ
, (1.38)

или
Γ2

Γ2 − 1
=

(
∂ ln P

∂ ln T

)

S

, Γ3 − 1 =
(

∂ ln T

∂ ln ρ

)

S

. (1.38a)

В случае обычного идеального газа все три показателя Γi совпадают между
собой, постоянны и равны γ (то есть 5/3 для одноатомного газа). Уравнения,
описывающие адиабатические изменения, в этом случае легко интегрируются,
см. формулы (1.20) — (1.22). Когда мы имеем дело со смесью частиц и фотонов
равновесного поля излучения, положение оказывается сложнее. Здесь уже Γ1 6=
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Γ2 6= Γ3 , более того, значения Γi при адиабатических изменениях не остаются
постоянными, так как β меняется вдоль адиабаты.

Выражение для Γ2 через β получается исключением dρ/ρ из (1.34) — (1.35)
и последующим сопоставлением результата с первой из формул (1.38):

Γ2 =
32− 24β − 3β2

24− 18β − 3β2
, (1.39)

или
Γ2 =

5
3
− 1

3
(1− β)

10− 2(1− β)
1 + 8(1− b)− (1− β)2

=

=
4
3

+
1
3
β

1
8− 6β − β2

. (1.39a)

Сравнение (1.31) со второй формулой (1.38) дает Γ3 :

Γ3 =
32− 27β

24− 21β
, (1.40)

или
Γ3 =

5
3
− 1

3
(1− β)

8
1 + 7(1− β)

=
4
3

+
1
3

β
1

8− 7β
. (1.40a)

Хотя Γ1 6= Γ2 6= Γ3 (при β, не равных 0 и 1), отличия адиабатических показа-
телей друг от друга невелики — менее 10% (Табл. XI.1.1). И все же между Γ1 , Γ2

и Γ3 следует делать четкое различие, беря тот из адиабатических показателей,
который отвечает рассматриваемой задаче. Так, в критерии наступления кон-
векции фигурирует Γ2 , тогда как Γ3 встречается при изучении пульсационной
неустойчивости. Показатель же Γ1 играет важнейшую роль в вопросах, свя-
занных с вековой устойчивостью и колебаниями звезд. О последнем скажем
несколько слов уже сейчас. Введем среднее по звезде значение Γ1 , взвешенное
по давлению:

Γ1 =
∫

V

Γ1 P dV

/∫

V

P dV. (1.41)

Оказывается, что значение Γ1 = 4/3 является критическим: при Γ1 6 4/3 гид-
ростатическое равновесие неустойчиво. Как было показано выше, в полностью
ионизованном газе, находящемся в поле излучения, Γ1 > 4/3. Это значит, что
учет одного только давления излучения не может вызвать нарушения механи-
ческого равновесия. Однако если роль давления излучения велика, то показа-
тель Γ1 оказывается близок к критическим 4/3, и ,,запас прочности" у звезды
мал. Учет других факторов, помимо давления излучения, например начинаю-
щегося при высоких температурах рождения электрон-позитронных пар, мо-
жет приводить к тому, что Γ1 опускается ниже критического значения 4/3, и
звезда теряет устойчивость.
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Найдем еще энтропию одноатомного идеального газа, находящегося в рав-
новесном поле излучения. Будем исходить из основного термодинамического
соотношения

TdS = dU + P dV.

Подставив в него U и P из (1.27) и (1.29), легко получить

dS = 4
a T 2

ρ
dT − 4

3
aT 3 dρ

ρ2
+

3
2
R∗
µ

dT

T
− R∗

µ

dρ

ρ
,

откуда

S =
4
3

aT 3

ρ
+

R∗
µ

ln
(

T 3/2

ρ

)
+ const. (1.42)

Таким образом, энтропия смеси газа и излучения равна сумме энтропий двух ее
составляющих — одноатомного газа (формула (1.18) с γ = 5/3) и равновесного
излучения

(
формула (1.26)

)
.



2. КУЛОНОВСКИЕ ПОПРАВКИ

2.1. Минимум для
астронома-
прагматика

Подавляющее большинство астрофизиков
буквально с пеленок настолько привыкает
к тому, что любую космическую плазму —
от межгалактической до внутризвездной —
можно рассматривать как обычный идеаль-

ный газ, что совершенно не задумывается над тем, почему, собственно, это так.
А ведь это вовсе не очевидный, хотя и поистине замечательный факт. Он во
многом определяет картину астрономического мира. Поэтому не пожалеем ме-
ста для подробного обсуждения этого важного вопроса. Без этого вся теория
строения звезд была бы построена на песке.

Дело сводится к выяснению роли кулоновского взаимодействия составляю-
щих плазму заряженных частиц. В сильно ионизованном газе сколько-нибудь
значительные макроскопические пространственные заряды существовать не
могут. Взаимное кулоновское отталкивание частиц ведет к очень быстрому
рассасыванию пространственного заряда. По любым звездным временны́м мас-
штабам это происходит мгновенно. Поэтому внутризвездную, да и вообще кос-
мическую плазму всегда можно считать макроскопически электронейтраль-
ной. Следствие этого — практически полное отсутствие кулоновского взаимо-
действия удаленных макроскопических объемов между собой. Однако в микро-
масштабах электронейтральности нет, и здесь пренебрегать кулоновским взаи-
модействием нельзя. При оценке его роли определяющим параметром является
отношение энергии кулоновского взаимодействия в расчете на частицу к теп-
ловой энергии kT . Если это отношение мало́, вещество близко по своим свой-
ствам к идеальному газу, а кулоновское взаимодействие — это малая поправка,
вызывающая небольшие отклонения от идеальности. В этом случае говорят о
горячей разреженной плазме. Она и рассматривается в настоящем разделе.
По существу, центральный вопрос здесь — в каких областях плоскости (ρ, T )
плазму (без магнитного поля) с заданной точностью можно считать обычным
идеальным газом.

Сразу же укажем, что у звезд ГП с массами M >∼M¯ плотности и температу-
ры таковы, что приближение идеального газа применимо с достаточно высокой
точностью. Иное дело — звезды малых масс, ядра красных гигантов и особен-
но белые карлики, где энергия кулоновского взаимодействия не всегда мала по
сравнению с кинетической энергией частиц. В этих случаях вещество по своим
свойствам иногда оказывается подобно жидкости или даже твердому телу.

Итак, рассмотрим горячую разреженную плазму. Любой имеющийся в ней
или помещаемый в нее заряд вызывает ее поляризацию — притягивает к себе
разноименные с ним заряды, создавая некоторый их избыток, и отталкива-
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ет одноименные, отчего они оказываются в недостатке. С этой тенденцией к
разделению зарядов конкурирует хаотическое тепловое движение частиц, стре-
мящееся сгладить, замыть все неоднородности. В результате устанавливается
некоторое равновесное распределение. В первом приближении его можно счи-
тать сферически-симметричным. Качественная картина, таким образом, тако-
ва: любая заряженная частица создает вокруг себя в плазме облако нейтрали-
зующего ее пространственного заряда противоположного знака, а тем самым —
электростатическую потенциальную яму, на дне которой она и находится. По-
этому для удаления из плазмы каждой из составляющих ее заряженных ча-
стиц требуется затратить некоторую энергию. Значит, кулоновская поправка
к внутренней энергии плазмы должна быть отрицательна. Соответственно
отрицательна и кулоновская добавка к давлению, так что давление в плазме
должно быть ниже, чем в идеальном газе той же температуры и плотности.

Согласно нарисованной только что картине, для горячей разреженной плаз-
мы должна существовать некая фундаментальная длина, порождаемая проис-
ходящими в ней электростатическими взаимодействиями. Ее называют дебаев-
ской длиной, или длиной экранирования. Она характеризует размеры облаков
пространственного заряда, нейтрализующих, или, точнее, экранирующих то-
чечные заряды. Можно сказать также, что дебаевская длина — это характер-
ный масштаб разделения зарядов в плазме.

С дебаевской длиной r
D

непосредственно связан другой характерный па-
раметр плазмы — число частиц ND в сфере радиуса r = r

D
— так называемой

сфере Дебая: ND = (4π/3)r3
D

N , где N — средняя концентрация частиц в плазме.
Для разреженной плазмы ND велико: ND À 1.

Такова качественная картина. Перейдем к количественным результатам.
Для читателей, больше интересующихся практическими рецептами, чем фи-
зикой дела, сформулируем в готовом виде и кратко обсудим два важнейших
результата. Первый из них — это уравнение состояния горячей разреженной
плазмы. В описанном выше дебаевском приближении оно имеет вид

P = NkT

(
1− 1

18ND

)
, (2.1)

где

ND = 1.38 · 103 N

(
T

Z2N

)3/2

= 1.77 · 10−9

√√√√ µ(
Z2

)
3

T 3

ρ
. (2.2)

Второй результат — выражение для дебаевского радиуса

r
D

= 6.90
√

T

Z2N
= 8.89 · 10−12

√
µ

Z2

T

ρ
. (2.3)
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В этих формулах µ — средний молекулярный вес и Z2 — средневзвешенное по
всем частицам значение Z2

i , где Zi — зарядовое число частиц i-го сорта (вес —
относительная концентрация частиц Ni/N с зарядами eZi):

Z2 =
1
N

∑
Z2

i Ni. (2.4)

Для полностью ионизованной водородно-гелиевой смеси Z2 заключено меж-
ду 1 (чистый H) и 2 (дважды ионизованный He). Для плазмы, состоящей из
свободных электронов и ионов только одного сорта с зарядом eZ и массой muA,
имеем Z2 = Z и, при пренебрежении массой электронов по сравнению с массой
ионов, µ = A/(Z + 1).

Проиллюстрируем эти формулы несколькими астрофизическими примера-
ми. Близ основания солнечной короны N ∼ 108, T ∼ 106, и дебаевский ра-
диус оказывается порядка 1 см (при среднем расстоянии между частицами
∼ 10−3 см), а число частиц в сфере Дебая ∼ 108 ÷ 109. В типичной газо-
вой туманности, скажем, планетарной, N ∼ 103 ÷ 104, T ∼ 104, так что
r
D
∼ (10 ÷ 20) см, а ND ∼ 107. В обоих случаях число частиц в сфере Де-

бая очень велико, а значит, вещество с высочайшей точностью можно считать
идеальным газом. То, что в этих двух случаях мы имеем дело с горячей раз-
реженной плазмой, не кажется удивительным. Ведь повседневный смысл слов
,,горячий" и ,,разреженный" формировался по земным стандартам, а по ним
и корона, и туманности в самом деле и очень горячие, и очень разреженные.
Иное дело — центр Солнца, где плотность составляет ∼ 150 г/см3, а темпе-
ратура ∼ 15 млн кельвинов. Всякий, безусловно, согласится с тем, что там
горячо, но мало кто отважится назвать столь плотное вещество разреженным.
Но. . . число частиц в сфере Дебая составляет здесь ND ∼ 5, а значит, и в этом
случае плазма должна считаться разреженной, хотя и не очень сильно. Фи-
зическая терминология расходится в этом случае с обывательским здравым
смыслом.

Поскольку ND ∼ 5, согласно (2.1) для центра Солнца уравнение состояния
идеального газа дает давление с погрешностью ∼ 1% (вклад давления излуче-
ния, как оказывается, меньше кулоновской поправки). Далее, как показывают
расчеты моделей Солнца, в бо́льшей части его недр отношение T 3/ρ остается
почти постоянным, мало меняясь вдоль радиуса, а тогда согласно (2.2) для
бо́льшей части вещества в недрах Солнца число частиц в сфере Дебая ND то
же, что и в центре Солнца. Поэтому применять уравнение состояния идеаль-
ного газа к внутренним слоям Солнца вполне правомерно. Разумеется, это не
относится к тем сравнительно близким к поверхности слоям, где ионизацию
основных составляющих солнечного вещества — водорода и гелия — нельзя
считать полной. Здесь уравнение состояния весьма сложно.

Отметим, что к оценке точности (∼ 1%), обеспечиваемой для недр Солнца
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Рис. X.2.1:
Число частиц ND в сфере Дебая в центрах

химически однородных звезд.

простейшим уравнением состояния P = NkT , следует относиться лишь как к
порядковой: так как ND ∼ 5, то условие применимости дебаевского приближе-
ния ND À 1 выполняется здесь на самом пределе.

Кривая, приведенная на рис. X.2.1, дает число частиц в сфере Дебая для
центров химически однородных звезд в функции массы звезды (химический
состав: X = 0.70, Y = 0.27, Z = 0.03; соответствующее Z2 = 1.18).

Перейдем теперь к выводу приведенных формул.

2.2. Дебаевское
экранирование

Найдем электростатический потенциал то-
чечного заряда в почти идеальной плазме с
учетом ее поляризации. Пусть, как и ранее,
Ni — средняя концентрация частиц с заряда-

ми eZi (для электронов Z = −1), N — суммарная средняя концентрация всех
заряженных частиц: N =

∑
Ni. В среднем плазма электрически нейтральна:

∑
eZiNi = 0. (2.5)

Выделим некоторый точечный заряд eZ. Обозначим потенциал электроста-
тического поля, создаваемого им в плазме, через ϕ. Считаем, что это поле в
среднем сферически-симметрично, так что ϕ = ϕ(r), где r — расстояние от
заряда. Как всегда в электростатике, потенциал ϕ удовлетворяет уравнению
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Пуассона (r 6= 0)
∆ϕ = −4π ρE. (2.6)

Здесь ρE — плотность пространственного заряда в нейтрализующем облаке:

ρE =
∑

eZi ni, (2.7)

где ni = ni(r) — концентрация частиц i-го сорта в облаке. Она, в свою очередь,
определяется ходом потенциала ϕ. Поскольку потенциальная энергия частицы
с зарядом eZi в поле с потенциалом ϕ есть, очевидно, eZi ϕ, то по формуле
Больцмана

ni = Ni exp

(
− eZiϕ

kT

)
. (2.8)

Множитель перед экспонентой определяется очевидным условием, что вдали
от заряда, где ϕ → 0, концентрация должна стремиться к средней. Мы имеем,
таким образом, дело с нелинейной задачей о расчете самосогласованного элек-
трического поля: потенциал определяется распределением объемного заряда в
нейтрализующем облаке, а само это распределение, в свою очередь, управля-
ется ходом потенциала коллективного поля.

Предположение о малости энергии кулоновского взаимодействия по сравне-
нию с тепловой энергией позволяет линеаризовать уравнения, так как вариа-
ции концентраций, обусловленные кулоновскими силами, в этом случае долж-
ны быть малы. Разлагая экспоненту в формуле Больцмана (2.8), получаем
тогда приближенно

ni = Ni −Ni
eZi

kT
ϕ.

Подставляем это в (2.7). Воспользовавшись условием квазинейтральности (2.5)
и обозначив через Z2 усредненное по всем частицам значение Z2

i (формула
(2.4), с. 503), получаем из уравнения Пуассона (2.6) следующее линейное урав-
нение для сферически-симметричного потенциала самосогласованного поля:

1
r2

d

dr

(
r2 dϕ

dr

)
=

4π e2 Z2N

kT
ϕ. (2.9)

Это основное уравнение разбираемой задачи. Нас интересует его решение,
обращающееся в 0 на бесконечности, а при r → 0 переходящее в кулоново поле
голого заряда eZ:

ϕ → 0 при r →∞; ϕ → eZ

r
при r → 0. (2.10)
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Прежде всего заметим, что из структуры левой части уравнения (2.9) очевид-
но, что множитель при ϕ справа имеет размерность (длина)−2. Таким образом,
в задаче имеется характерная длина

r
D

=

√
kT

4π e2 Z2N
. (2.11)

Ее называют радиусом Дебая, или длиной экранирования. Далее, заметив, что

1
r2

d

dr

(
r2 dϕ

dr

)
=

1
r

d2 (rϕ)
dr2

,

можем переписать уравнение (2.9) в форме

d2(rϕ)
dr2

=
rϕ

r2
D

,

откуда
rϕ = A er/r

D + B e−r/r
D .

Первое из условий (2.10) дает A = 0, согласно второму B = eZ. Поэтому
электростатический потенциал точечного заряда eZ в плазме — дебаевский
потенциал — имеет вид

ϕ =
eZ

r
e−r/r

D . (2.12)

При r ¿ rD влияние пространственного заряда несущественно, и дебаев-
ский потенциал близок к кулоновскому. Напротив, при r À r

D
из-за сильной

экранировки центрального заряда окружающим его противоположно заряжен-
ным облаком частиц потенциал быстро (экспоненциально) стремится к нулю.
Можно сказать, что rD — это характерный линейный размер области, в кото-
рой точечный заряд создает в плазме ощутимое поле. Грубо говоря, при r < rD

поле есть и близко к кулоновскому, а при r > rD поля вообще нет.
Добавка ϕ̃ к кулоновскому потенциалу центрального точечного заряда

eZ/r, обусловленная поляризацией плазмы, составляет, как видим,

ϕ̃ ≡ ϕ− eZ

r
= − eZ

r
D

1− e−ρ

ρ
, (2.13)
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где обозначено ρ = r/r
D
. Этим выражением описывается потенциальная яма,

создаваемая дебаевским облаком. Ее глубина равна eZ/rD. Таким образом, вза-
имодействие точечного заряда eZ с порождаемым им в плазме вокруг себя за-
ряженным облаком энергетически эквивалентно чисто кулоновскому взаимо-
действию зарядов +eZ и −eZ, разнесенных на расстояние, равное дебаевскому
радиусу. Далее, видно, что характерный линейный размер поляризационной
потенциальной ямы от величины поляризующего заряда не зависит и состав-
ляет r

D
. Итак, по сути дела, дебаевская длина определяет все — и глубину

потенциальной ямы, и ее размеры. Подчеркнем еще, что поляризационное об-
лако — это неравномерность в пространственном распределении именно заря-
да, а не общей концентрации частиц (см. задачу 6◦, с. 512).

Критерий применимости полученных результатов очевиден: чтобы имело
смысл говорить о сферически-симметричном непрерывно распределенном за-
ряде, в облаке должно быть много частиц. Поскольку его характерный размер
равен r

D
, это значит, что число частиц ND в сфере Дебая должно быть велико:

ND = (4π/3)r3
D

N À 1. С учетом определения дебаевского радиуса (2.11) этот
критерий можно переписать в форме

N ¿ 1
36π

(
kT

e2Z2

)3

= 1.90 · 106

(
T

Z2

)3

, (2.14)

или
ρ

T 3
¿ 3.15 · 10−18 µ(

Z2
)

3
. (2.15)

Итак, для применимости дебаевского описания плазма должна быть раз-
реженной (малые N) и горячей (большие T ). Точнее говоря, отношение N/T 3

должно быть по порядку меньше 106, или ρ/T 3
6 ¿ 1.

Проверьте правильность порядков численных коэффициентов в формулах
(2.1), (2.2), (2.3), (2.14) и (2.15).

2.3. Термодинамика
разреженной

плазмы

Получим теперь выражения для основных
термодинамических параметров разрежен-
ной плазмы — внутренней энергии, давления
и энтропии в функции температуры T и кон-
центрации частиц N .

Начнем с внутренней энергии полностью ионизованного газа, точнее, полу-
чим кулоновскую добавку eкул к объемной плотности энергии поступательного
движения частиц такого газа eкин = (3/2)NkT . Объемная плотность электро-
статической энергии системы частиц, взаимодействие которых между собой
описывается дебаевским потенциалом, равна, очевидно (ср. с энергией грави-
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тационного взаимодействия системы материальных точек, п. II.2.1)

eкул =
1
2

∑
eZjNjϕ̃j ,

где ϕ̃j — потенциал в месте расположения произвольной частицы с зарядом
eZj , то есть на дне той потенциальной ямы, которую создает частица за счет
поляризации окружающей ее плазмы. Он дается, очевидно, пределом при r → 0
выражения (2.13) с Z = Zj . Поэтому

eкул = −1
2

∑
e2Z2

j Nj/r
D

= −1
2

e2 Z2N

r
D

. (2.16)

Заметим, что любой заряд, независимо от его знака, дает отрицательный вклад
в кулоновскую энергию плазмы, так как окружает себя экранирующим обла-
ком с зарядом противоположного знака. Подстановка в последнюю формулу
явного выражения для r

D
из (2.11) дает окончательно

eкул = −√π
(
e2 Z2

)3/2
(

N3

kT

)1/2

, (2.17)

что, очевидно, можно записать также в форме

eкул = −A

√
ρ3

T
, (2.18)

где

A =
√

π

k

(
e2 Z2

µmu

)3/2

. (2.19)

Гораздо нагляднее, однако, другое представление для eкул, получающееся из
(2.16), если наряду с (2.11) учесть также, что ND = (4π/3)r3

DN :

eкул =−NkT

6ND = − 1
9ND eкин . (2.20)

Из него, в частности, видно, что условие применимости теории Дебая ND À 1
есть одновременно условие того, что кулоновская энергия плазмы мала по срав-
нению с ее тепловой энергией.

Для получения давления плазмы можно поступить по-разному. Один
путь — воспользоваться следующим соотношением, заблаговременно
,,заготовленным" в п. II.2.4 в качестве одного из следствий теоремы
вириала:

P =
2
3

eкин +
1
3

eкул . (2.21)
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В комбинации с (2.20) оно сразу дает уравнение состояния плазмы, деклари-
рованное в п. 2.1:

P = NkT

(
1− 1

18ND

)
. (2.22)

Заметим, что при получении соотношения (2.21) мы считали взаимодействие
между частицами кулоновским, тогда как (2.20) найдено с использованием
дебаевского потенциала. Однако противоречия или какой-либо непоследова-
тельности здесь нет — формула (2.21) точная, выражение же (2.20) — лишь
приближенное (приближение Дебая).

Другой путь получения давления плазмы — чисто термодинамический (он
дает одновременно и энтропию). Внутренняя энергия дебаевской плазмы в рас-
чете на 1 г есть сумма энергии идеального газа Uид и кулоновской поправки
eкулV , где eкул дается (2.18) и V ≡ 1/ρ — удельный объем. Итак,

U = Uид − A

T 1/2V 1/2
. (2.23)

Давление и энтропию дебаевской плазмы естественно искать в аналогичной
форме

P = Pид − Ap

T p1V p2 , S = Sид − As

T s1V s2 ,

где Ap, As и pi, si — подлежащие определению постоянные, Pид и Sид — обыч-
ные давление и энтропия идеального газа с теми же T и ρ, что и у плазмы.
(Возможность такого представления P и S можно строго доказать).

Привлекаем основное термодинамическое тождество

TdS = dU + PdV.

Приравнивая члены при dT и dV слева и справа, имеем

T

(
∂S

∂T

)

V

=
(

∂U

∂T

)

V

,

T

(
∂S

∂V

)

T

=
(

∂U

∂V

)

T

+ P.

Вводя в эти соотношения наши предполагаемые выражения для S, U и P , по
обычной схеме метода неопределенных коэффициентов находим

P = Pид − A

3

(
ρ3

T

)3/2

, S = Sид − A

3

( ρ

T 3

)1/2

. (2.24)

Почему у плазмы внутренняя энергия меньше, чем у идеального газа той
же температуры и плотности?
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Заключительное замечание: всюду в этом параграфе молчаливо предпола-
галось, что вырождения нет и релятивистские эффекты несущественны. Пер-
вое из этих условий ограничивает применимость дебаевской теории по темпе-
ратуре снизу, а второе — сверху.



3. УПРАЖНЕНИЯ

1◦ Показать, что удельные теплоемкости идеального одноатомного газа,
находящегося в равновесном поле излучения, равны

cv =
3
2
R∗
µ

8− 7β

β
, cp = cv +

R∗
µ

(4− 3β)2

β2
.

Рассмотреть предельные случаи β → 1 и β → 0 и дать физическую интерпре-
тацию результатов.

2◦ Показать, исходя из определяющих их уравнений, что адиабатиче-
ские показатели Γ

i
для одноатомного газа, находящегося в поле равновесного

излучения, удовлетворяют соотношению

Γ1Γ2 − Γ2Γ3 = Γ1 − Γ2 .

3◦ Показать, что адиабатические изменения P, ρ и T в одноатомном иде-
альном газе, находящемся в поле равновесного излучения, описываются пара-
метрическими уравнениями (С.Чандрасекар, 1951 г.)

T = const ·D2/3 e8D/3,

ρ = const ·D e8D, (3.1)
P = const · (1 + D)D5/3 e32D/3,

причем параметр D ≡ (1 − β)/β, где β — доля газового давления в полном
давлении.
Указание: исходить из выражения (1.42) для энтропии, скомбинировав его с
(1.34) и (1.35).

4◦ Рассчитать суммарный заряд экранирующего облака, окружающего
точечный заряд eZ.

5◦ Показать, что доля полного заряда экранирующего облака, обуслов-
ленная электронами, составляет

Ne

Z2N
,

где Ne — невозмущенная электронная концентрация. Убедиться, далее, что
для плазмы, состоящей из ионов с зарядом eZ и свободных электронов, эта
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доля равна (1 + Z)−1, так что не менее половины всего экранирующего заряда
создают ионы.

6◦ Рассчитать число ∆Ni избыточных (по сравнению со средним) частиц
типа i в экранирующем облаке и убедиться, что 1) оно не зависит от темпе-
ратуры и 2)

∑
i ∆Ni = 0, так что средняя по облаку суммарная концентрация

частиц всех типов в точности равна N .
В частности, найти число избыточных электронов и протонов в поляризаци-
онном облаке, окружающем протон в чисто водородной плазме.

7◦ Показать, что для чисто водородной плазмы с различающимися
электронной и ионной температурами Te и Ti радиус Дебая дается обычным
выражением (2.11), если под T понимать среднее гармоническое Te и Ti:

1
T

=
1
2

(
1
Te

+
1
Ti

)
.

При Ti À Te вклад в экранирование дают только электроны. В чем физический
смысл этого?

8◦ Пусть Xi — весовая доля ионов с зарядом eZi, Ai — их массовое чис-

ло. Показать, что параметр ζ ≡ Z2/µ, фигурирующий в формулах (2.2) и (2.3),
можно представить в следующей форме, часто используемой в астрофизиче-
ской литературе:

ζ =
∑
+

Zi(1 + Zi)
Xi

Ai
,

где
∑

+ означает, что суммирование идет только по ионам.

9◦ Показать, что в дебаевском приближении теплоемкость cv полностью
ионизованного газа равна

cv =
3
2
R∗
µ

+
A

2

( ρ

T 3

)1/2

,

где A определено согласно (2.19). Она больше, чем у идеального газа. Почему?
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1. ЛИТЕРАТУРА

1. А.В. Засов, К.А.Постнов — Общая астрофизика, 2-е изд. (Век-2, Фрязи-
но, 2011).

Этот учебник можно рекомендовать тем читателям, кто далек от астрономии. Здесь
они найдут необходимую им общую астрофизическую информацию.

2. A.S. Eddington — The Internal Constitution of the Stars (Cambridge Univer-
sity Press, Cambridge, 1926).

Эта книга по существу положила начало теории строения звезд. Безнадежно устарев-
шая, тем не менее она и сегодня, почти век спустя после ее появления, читается с
большим интересом. Эддингтон был не только замечательным теоретиком, но и под-
линным мастером слова.Читая эту книгу, вы не будете терять времени зря.

3. S. Chandrasekhar — Introduction to the Study of Stelllar Structure (University
of Chicago Press, 1939) (Русский перевод: С.Чандрасекар — Введение в
учение о строении звезд, Изд. иностранной литературы, Москва, 1948).

Классическая монография, часто цитируемая до сих пор. Она написана буквально на-
кануне создания количественной теории водородных термоядерных реакций в звездах
и потому сегодня кажется архаичной. Теория политроп изложена в ней в ряде вопро-
сов гораздо подробнее, чем у нас. Теория механического равновесия ,,холодных" белых
карликов — теория Чандрасекара — также, естественно, рассмотрена подробно.

4. A.C. Philips — The Physics of Stars, 2nd ed. (John Wiley and Sons, Chich-
ester, 1999).

Это подлинный педагогический шедевр. Можно рекомендовать для первоначального
изучения физики звезд. Написана физиком для студентов–физиков. При небольшом
объеме она содержит обсуждение очень широкого круга вопросов — от звездных ат-
мосфер до нейронных звезд и вспышек сверхновых, причем c соблюдением разумного
баланса физики и астрономии.

5. O.R.Pols — Stellar Structure and Evolution (Utrecht, 2011) (см.
http://www.astro.ru.nl/∼onnop/education/stev_utrecht_notes/).

Лекционные разработки к учебному курсу для студентов–астрономов. Без глубокого
анализа физики процессов, делающих звезды такими, какие они есть. Очень астроно-
мично. Всячески рекомендую.

6. C.J.Hansen, S.D.Kawaler, V.Trimble — Stellar Interiors. Physical Princi-
ples, Structure and Evolution, 2nd ed. (Springer-Verlag, Berlin, 2004).

Очень популярный у специалистов и студентов вполне современный серьезный учеб-
ник. Читается легко. Дается подробное качественное описание эволюции как одиноч-
ных, так и двойных звезд. Наряду с материалом, так сказать, ,,обязательным" для
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учебного руководства по физике и эволюции звезд, обсуждается также гелио- и звезд-
ная сейсмология. Физика нейтронных звезд и вспышек сверхновых не рассматрива-
ется. Учебник снабжен большим числом интересных задач. При каждой из глав при-
водится (уже, к сожалению, несколько устаревший) детально прокомментированный
перечень рекомендуемой литературы.

7. R.Kippenhahn, A.Weigert, AWeiss — Stellar Structure and Evolution, 2nd
ed. (Springer, Berlin, 2012).

Подробный учебник промежуточного уровня между студенческим и аспирантским,
написанный с немецкой педантичностью. Все основные вопросы физики недр звезд
рассматриваются достаточно подробно. Затем детально излагаются методы и результа-
ты расчетов эволюционных моделей одиночных звезд. Обсуждаются также конечные
продукты звездной эволюции, теория радиальных и нерадиальных пульсаций звезд,
вращающиеся звезды.

8. P.G.Cox, R.T.Guili — Principles of Stellar Structure, vol. 1& 2 (Gordon and
Breach Science Publishers, 1968).

По этому двухтомнику целое поколение изучало физику звезд. Все основные вопросы
физики звездных недр — уравнение состояния, выработка и перенос энергии излуче-
нием и конвекцией и т. п., рассматриваются весьма подробно. Изучаются лишь оди-
ночные невращающиеся звезды. Обсуждение звездной эволюции к сегодняшнему дню
устарело, и в переиздании этого компендиума [A.Weiss, W.Willebrandt. H.-C.Thomas,
HRitter — Cox &Giuli’s Principles of Stellar Structure, Extended 2nd ed. (Cambridge
Scientific Publishers, Cambridge, 2004)] оно опущено, как, к сожалению, опущен и ряд
классических результатов.

9. A.Maeder — Physics, Formation and Evolution of Rotating Stars (Springer-
Verlag, Berlin, 2009).

Наряду с вращающимися в книге подробно рассматриваются и невращающиеся звез-
ды. Ряд глав автор книги рекомендует использовать как материал для студенческих
лекционных курсов по физике и эволюции звезд. Охвачен очень широкий круг вопро-
сов. Широко представлены результаты многочисленных расчетов звездной эволюции.

10. I. Iben, Jr. — Stellar Evolution Physics. Vol. I. Physical Processes in Stellar
Interiors (Cambridge University Press, Cambridge, 2013).

Первый том замечательной двухтомной монографии (общим объемом почти в полторы
тысячи страниц!). Начальые главы вполне подходят в качестве мастерски представ-
ленного введения в физику звезд. Детальность и глубина анализа рассматриваемых
далее вопросов — как физических основ теории звезд, так и результатов расчетов их
моделей — не имеют аналогов в мировой литературе. О степени детальности рассмот-
рения можно судить по тому, что обсуждению результатов расчетов эволюции звезды
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с массой в 1 M¯ на фазе горения водорода отведено более 50 страниц. Столь же де-
тально обсуждается и выполненные автором (специально для зтой книги) расчеты
эволюции звезд с массами 5 M¯ и 25 M¯. Однако по широте охвата материала эта мо-
нография (оба ее тома) существенно уступает учебникам Hansen et al. и Kippenhahn et
al. (нет, в частности, гелиосейсмологии, физики вспышек сверхновых, звездных пуль-
саций, эволюции двойных звезд).

11. I. Iben, Jr. — Stellar Evolution Physics. Vol. II. Advanced Evolution of Single
Stars (Cambridge University Press, Cambridge, 2013).

Детально изучаются физические процессы, играющие важную роль на продвинутых
стадиях эволюции звезд. Приводятся и подробно обсуждаются также результаты рас-
четов эволюции звезд малых, промежуточных и больших масс, начиная с фазы горе-
ния гелия и далее.

12. G.S. Bisnovatyi–Kogan — Stellar Physics. Vol. 1: Fudamental Concepts and
Stellar Equilibrium. 2000. Vol. 2: Stellar Evolution and Stability, 2nd ed.
(Springer, Heidelberg, 2010). [Существенно переработанная и расширенная
версия первоначального русского издания книги Г.С.Бисноватый–Коган
—Физические вопросы теории звездной эволюции (Наука, Москва, 1989).]

Название русского издания точно передает содержание этой монографии, предназна-
ченной специалистам. У читателя предполагается хорошее знание теоретической фи-
зики. Поражают широта и глубина знаний автора. К сожалению, некоторые разделы
книги настолько перегружены плотно упакованной информацией, что напоминают те-
лефонный справочник.

13. D.D.Clayton — Principles of Stellar Evolution and Nucleosynthesis, 2nd ed.
(University of Chicago Press, Chicago, 1983).

Монография высокого уровня, которая, впрочем, вполне может служить и для пер-
воначального изучения процессов нуклеосинтеза в звездах. Успех первого издания,
увидевшего свет в 1968 г., потребовал стереотипного переиздания книги, с добавленем
лишь нового обширного предисловия автора с многочисленными кратко прокоммен-
тированными ссылками на появившиеся за 15 лет публикации. Обсуждение вопросов
звездной эволюции в этой книге к настоящему времени устарело. Что же касается
нуклеосинтеза в звездах, особенно на не слишком продвинутых стадиях их эволюции,
то здесь книга Clayton′а остается классикой.

14. Ch. Iliadis — Nuclear Physics of Stars (WILEY–VCH Verlag GmbH & Co.
KGaA, Weinheim, 2007).

Подробное обсуждение практически всех ядерных реакций, происходящих в звездах.
Изложение ведется с позиций специалиста по ядерной физике. Рассматриваются все
фазы термоядерного горения в звездах, включая самые поздние, а также взрывной
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нуклеоситез и нейтронные реакции. Большой раздел посвящен описанию методики
ядерно-физических экспериментов.

15. P.P. Eggleton — Evolutionary Processes in Binary and Multiple Stars (Cam-
bridge University Press, Cambridge, 2006).

Значительная часть книги (∼1/3 ее объема) отведена обсуждению строения и эволю-
ции одиночных звезд. Изложение материала нетрадиционно. Очень полезное допол-
нительное чтение.



2. ФИЗИЧЕСКИЕ И АСТРОНОМИЧЕСКИЕ ПОСТОЯННЫЕ

Гравитационная постоянная G = 6.67408 · 10−8 дина · см2 · г−2

Скорость света c = 2.99792458 · 1010 см/c
Постоянная Планка h = 6.626070 · 10−27 эрг · с

~ = h/(2π)= 1.054572 · 10−27 эрг · с
Постоянная тонкой структуры α = e2/(~c)= 1/137.036
Комптоновская длина волны λ–C = ~/(mec) = 3.861593 · 10−11 см
Томсоновское сечение

электронного рассеяния σ0 = 0.665246 · 10−24 см2

Заряд электрона e = 4.8032068 · 10−10 CGSE
Масса электрона me = 9.109384 · 10−28 г

mec
2 = 0.510999 МэВ

Атомная единица массы mu= 1.660539 · 10−24 г
muc2 = 931.494 МэВ

Масса нейтрона mn= 1.674927 · 10−24 г
Масса протона mp= 1.672622 · 10−24 г
Масса атома водорода mH= 1.6735344 · 10−24 г
Радиус первой боровской орбиты r1= 0.529177 · 10−8 см
Постоянная Больцмана k = 1.380649 · 10−16 эрг ·K−1

Постоянная плотности излучения a = 7.56577 · 10−15 эрг/(см3 K4)
Постоянная Стефана σ = ac/4= 5.670567 · 10−5 эрг/(см2 К4 с)
Газовая постоянная R∗= k/mu = 8.314460 · 107 эрг/(K· г)
Число Авогадро NA = 6.022141 · 1023 моль−1

Температура, отвечающая 1 эВ 1 эВ/k = 11.6045 · 103 К
1 эВ=1.602177 · 10−12 эрг

Масса Солнца M¯ = (1.9891± 0.0004) · 1033 г
Радиус Солнца R¯ = (6.95508± 0.00026) · 1010 см
Светимость Солнца L¯ = (3.847± 0.003) · 1033 эрг/с
Эффективная температура

Солнца Teff = (5779± 2) К
Ускорение силы тяжести

на поверхности Солнца g¯ = 2.738 · 104 см/c2
Химический состав

атмосферы Солнца X = 0.7393, Y = 0.2485, Z = 0.0122
Возраст Солнца (4.57± 0.02) · 109 лет

Эддингтоновская масса M? =
(
c~/

(
Gm

4/3
u

))3/2

= 1.8798 M¯
Чандрасекаровсий предел

массы (при µe = 2) M♦ = 1.456 M¯

См. следующую страницу!
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Источники данных:

Физические постоянные

См. сайт

https://www.nist.gov/pml/fundamental-physical-constants

Здесь nist — это аббревиатура от National Institute of Standards and Technol-
ogy. Все приводимые на этом сайте стандартные значения физических констант
нами округлены (кроме гравитационной постоянной).

Есть более простой способ доступа к тем же данным. Достаточно набрать
в Google одно слово —

CODATA
Потом кликнуть на Fundamental Physical Constants from NIST — и все готово.
Аббревиатура CODATA означает Committee on Data for Science and Technology.

Астрономические постоянные

Используемые нами значения астрономических постоянных заимствованы
из различных надежных источников. Параметры Солнца, приведенные в на-
шей сводке, чрезвычайно близки к рекомендованным МАС в Resolution B3 on
recommended nominal conversion constants for selected solar and planetary proper-
ties, принятой в 2015 г. Предлагаемые МАС обозначения и численные значения
основных параметров Солнца в системе СИ таковы:

Величина Обозначение Численное значение
Радиус Солнца RN

¯ 6.957× 108 m
Светимость Солнца LN

¯ 3.828× 1026 W
Эффективная т-ра Солнца T N

eff¯ 5772 K
Грав. пост. G×масса Солнца (GM)N¯ 1.3271244× 1020 m3s−2

Для получения массы Солнца величину (GM)N¯ следует разделить на значе-
ние гравитационной постоянной G, приведенное в нашем списке Физических
постоянных (и взятое из сводки CODATA). Это дает MN

¯ = 1.9885 · 1033 г.
Мы всюду пользуемся традиционными обозначениями M¯, R¯, L¯ и Teff

и используем значения этих величин, приведенные в нашем списке Астро-
номических постоянных. Пересчет на новый международный стандарт не со-
ставляет труда (в каждом конкретном месте, но не во всем объеме книги!). По
существу необходимости в нем нет.



3. НОБЕЛЕВСКИЕ ПРЕМИИ ПО АСТРОФИЗИКЕ

В списке приводятся формулировки того, за что Нобелевский комитет
присудил премии.

Чтобы получить подробные сведения о каждом из лауреатов,
включая их биографии, нобелевские лекции и др.,

достаточно в GOOGLE набрать
Nobel Prizes in Physics
и потом кликнуть на

All Nobel Prizes in Physics
*******

1967

Hans Albrecht BETHE (1906 – 2005)

for his contributions to the theory of nuclear reactions, especially his discov-
eries concerning the energy production in stars.

1974

Martin RYLE (1918 – 1984)
Antony HEWISH (1924 – )

for pioneering research in radio astrophysics: Ryle for his observations and
inventions, in particular of the aperture synthesis technique, and Hewish for his
decisive role in the discovery of pulsars.

1978
Arno Allan PENZIAS (1933 – )
Robert Woodrow WILSON (1936 – )

for their discovery of cosmic microwave background radiation.

1983
Subramanyan CHANDRASEKHAR (1910 – 1995)

for his theoretical studies of physical processes of importance to the struc-
ture and evolution of the stars.
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William Alfred FOWLER (1911 – 1995)

for his theoretical and experimental studies of nuclear reactions of impor-
tance in the formation of the chemical elements in the universe.

1993
Russel Alan HULSE (1950 – )
Joseph Norton TAYLOR, Jr. (1941 – )

for the discovery of a new type of pulsar, a discovery that has opened up
new possibilities for the study of gravitation.

2002
Raymond DAVIS, Jr. (1914 – 2006)
Masatoshi KOSHIBA (1926 – )

for pioneering contributions to astrophysics, in particular for detection of
cosmic neutrinos.

Riccardo GIACCONI (1931 – )

for pioneering contributions to astrophysics, which have led to the discovery
of cosmic X–ray sources.

2006
George F. Smoot (1945 – )
John C. Mather (1946 – )

for the discovery of the black body form and anisotropy of the cosmic mi-
crowave background radiation.
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2011

Saul PERLMUTTER (1959 – )
Adam Guy REISS (1969 – )
Brian Paul SCHMIDT (1967 – )

for the discovery of the accelerating expansion of the universe through observations
of distant supernovae.

2017
Rainer WEISS (1932 – )
Barry Clark BARISH (1936 – )
Kip Stephen THORNE (1940 – )

for decisive contributions to the LIGO detector and the observation of gravitational
waves.



4. СПИСОК ОБОЗНАЧЕНИЙ

В список включены главным образом обозначения,
встречающиеся более чем в одном месте

a постоянная плотности планковского излучения, эрг/(см3 K4); 130
A массовое число ядра атома; 260
A приведенное массовое число; 281
bc структурный множитель (давление излучения); 129
c скорость света, см/с
c постоянная в соотношении масса – радиус (политропы); 172, 187
cp удельная теплоемкость при постоянном давлении, эрг/(г ·K); 489
cv удельная теплоемкость при постоянном объеме, эрг/(см3 ·K); 489
c1 безразмерный структурный множитель; 119, 192
d дейтрон
D параметр вырождения электронного газа; 141
D концентрация дейтронов, см−3; 311
e заряд электрона; 525
el заряд частицы типа l (l = i, k); 78
e+ позитрон
e− электрон
eизл объемная плотность энергии излучения, эрг· см−3; 76
eкин объемная плотность энергии движения частиц, эрг· см−3; 67
eкул объемная плотность энергии кулоновского взаимодействия, эрг· см−3; 78
eтепл объемная плотность тепловой энергии газа, эрг· см−3; 66
E энергия
E полная энергия звезды, эрг; 67, 68
Eмакр энергия макроскопических движений вещества звезды, эрг; 75
Ee средняя энергия электронов в вырожденном газе, эрг; 423
Er энергия возбужденного уровня ядра (резонанса), кэВ; 298
ED дебаевская энергия, эрг; 291
EG гамовская энергия, кэВ; 269
EG гравитационная энергия связи звезды, эрг; 62, 181, 192
E?

G характерная гравитационная энергия (белые карлики), эрг; 448
EK кинетическая энергия вещества звезды, эрг; 77
EM полная энергия магнитного поля звезды, эрг; 80
EN полная запасенная в звезде ядерная энергия, эрг; 92
EN высота кулоновского барьера, кэВ; 274
ER полная энергия излучения в звезде, эрг; 76

525
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ET тепловая энергия звезды, эрг; 66
EU внутренняя энергия газа звезды, эрг; 195, 196, 214, 457
ERot кинетическая энергия вращения звезды, эрг; 94
Enucl энергия связи атомного ядра, МэВ; 262
E0 энергия гамовского максимума, кэВ; 277
Eν энергия нейтрино, МэВ; 330
Eν средняя энергия испускаемых нейтрино, МэВ; 355
f(v) максвелловская функция распределения скоростей; 267
F (x) вспомогательная функция (вырожденный электронный газ); 420
g ускорение силы тяжести, см/с2; 175
G гравитационная постоянная, дина · см2 · г−2; 525
h постоянная Планка, эрг · с; 525
~ постоянная Планка, деленная на 2π, эрг · с; 525
H энтальпия, эрг/г; 426
H поток энергии, эрг/(см2·с); 31, 217
H концентрация протонов, см−3; 311
H напряженность магнитного поля, гаусс; 79
H вектор напряженности магнитного поля; 80
Hν поток излучения частоты ν, эрг/(см2 · c ·Гц); 135
3He концентрация ядер 3He, см−3; 313
4He концентрация альфа–частиц, см−3; 313
I момент инерции; 191
k постоянная Больцмана, эрг ·K−1; 525
K политропная постоянная; 168
K1 численный коэффициент (давление НР вырожденного газа); 144, 422
K2 численный коэффициент (давление УР вырожденного газа; 146, 422
lν длина свободного пробега нейтрино в веществе, см; 330
L светимость звезды, эрг/с; 217
LE эддингтоновская светимость, эрг/с; 137
L¯ светимость Солнца, эрг/с; 525
m масса частицы, г; 273
me масса электрона, г; 525
ml масса частицы типа l (l = i, k), г; 61, 267
mn масса нейтрона, г; 525
mnuc масса атомного ядра, г; 262
mp масса протона, г; 525
mu атомная единица массы, г; 525
mα масса альфа–частицы, г; 257
M масса звезды, г; 20
M приведенная масса, г; 267
M? фундаментальная звездная масса M? = 1.8798 M¯; 130, 139, 446
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M приведенная масса в атомных единицах массы; 267
Mi масса частицы типа i в атомных единицах массы; 267
Mr масса шара радиуса r, г; 40
M¯ масса Солнца, г; 525
M♦ чандрасекаровский предел массы белого карлика, г; 69, 454
n индекс политропы; 168
N концентрация частиц, см−3; 66
NA число Авогадро, моль−1; 525
ND число частиц в сфере Дебая, см−3; 502
Ne концентрация свободных электронов, см−3; 141
Nl концентрация частиц типа l (l = i, k), см−3; 266
N? число нуклонов в объекте с M = M?; 139
p протон
p импульс частицы; 273
p безразмерное давление; 173
pc безразмерное давление в центре звезды; 109, 190
pF импульс Ферми (вырожденный электронный газ); 419
P давление, дина/см2; 9
P период осевого вращения, с; 48, 49
Pc давление в центре звезды, дина/см2; 108
Pe давление электронного газа, дина/см2; 150
Pg давление газа, дина/см2; 76, 129
Pi давление ионной компоненты газа, дина/см2; 150
Pr давление излучения, дина/см2; 76, 129
P1 характерное давление (вырожденный газ), дина/см2; 420
q доля массы звезды; 173
Q,Qik энерговыделение в расчете на одну реакцию, МэВ; 257, 285
r расстояние от центра звезды, см; 40
r расстояние между сталкивающимися ядрами, см; 273
r0 точка остановки налетающей частицы с энергией E0, см; 291
r1 эмденовская единица длины, см; 176
r1 единица длины (теория белых карликов), см; 431
rC точка остановки налетающей частицы, см; 268
r
D

дебаевский радиус, см; 290, 506
rN сумма радиусов сталкивающихся ядер, см; 274
rp радиус протона, см; 259, 274
R радиус звезды, см; 217
R∗ универсальная газовая постоянная, эрг/(K· г); 525
RG шварцшильдовский радиус, см; 27, 57
Rik скорость реакции между ядрами типов i и k, см−3 с−1; 266
R¯ радиус Солнца, см; 525
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R? фундаментальная длина (теория белых карликов), см; 446
S удельная энтропия газа; 491
S, S(E) S–фактор сечения ядерной реакции, кэВ · барн; 269, 271
S0 S-фактор при энергии гамовского максимума, кэВ · барн; 280
t время, возраст звезды, с, год; 32
t безразмерная температура; 199
tc безразмерная центральная температура; 125
tG время гравитационного самосжатия шара, с; 43, 45
tN ядерное эволюционное время звезды, год; 258
tT тепловое время звезды, год; 66
t1/2 период полураспада, с, год; 307
T температура, K; 9
T вероятность туннельного преодоления кулоновского барьера; 275
Tc температура в центре звезды, K; 125
Tn температура в единицах 10n кельвинов (n=6; 7; 8; 9); 283
T средняя по массе температура звезды, K; 123
Teff эффективная температура, K; 31, 525
U потенциальная энергия частицы, эрг; 273
U внутренняя энергия газа, эрг/г; 491, 495
U гомологический инвариант (переменная Милна); 227
Ur энергия равновесного излучения в единице массы, эрг/г; 494
v скорость, см/с
ve скорость убегания с поверхности звезды, см/с; 56
V гомологический инвариант (переменная Милна); 227
V удельный объем, см3/г; 489
x доля радиуса звезды; 173
x параметр релятивизации (вырожденный электронный газ); 419
X, XH весовая доля водорода в веществе;
Xl весовая доля ядер типа l (l = i, k) в веществе; 285
Y весовая доля гелия в веществе;
Z весовая доля тяжелых элементов в веществе;
Z зарядовое число атомного ядра; 260
Zl зарядовое число атомного ядра типа l (l = i, k); 268

α постоянная тонкой структуры; 525
α вспомогательный параметр (энерговыделение в pp–цепочках); 324
αG гравитационный аналог постоянной тонкой структуры; 140
αν коэффициент поглощения излучения частоты ν, см−1; 135
β доля газового давления в полном давлении; 129
βc доля газового давления в полном давлении в центре звезды; 129
γ показатель адиабаты; 491
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γ′ показатель политропы; 168
Γ ширина резонанса, эВ, кэВ; 294, 298
Γi обобщенные показатели адиабаты (i = 1, 2, 3); 497, 498, 499
δik символ Кронекера; 266
∆ ширина гамовского максимума, кэВ; 279
ε, εik темп энерговыделения, эрг/(г·с); 285
ε структурный множитель (полная энергия политропы); 194
ε отношение скоростей реакций (p, γ) и (p, α) на ядре 15N; 366
εCN энерговыделение в CN–цикле, эрг/(г · с); 376
εF энергия электрона с импульсом Ферми, эрг; 427
ε(p) энергия электрона с импульсом p, эрг; 427
ε средний темп энерговыделения на единицу массы, эрг/(г·с); 128
ε энергия связи ядра в расчете на нуклон, МэВ; 262
ε3α

энергетический выход 3α–процесса, эрг/(г · с); 387
ε темп энерговыделения в pp–цепочках на единицу массы, эрг/(г · с); 323
ζ безразмерное расстояние (белые карлики); 430
ζ вспомогательный параметр (электронное экранирование); 290
ζ1 поправочный множитель (политропы); 186
ζ1 безразмерный радиус белого карлика; 434
θ(ξ) функция Эмдена; 176, 178
λ де-бройлевская длина волны, см; 147
λ– де-бройлевская длина волны, деленная на 2π, см; 268
λ–C комптоновская длина волны электрона, деленная на 2π, см; 525
λC комптоновская длина волны электрона, см; 525
λik скорость реакции между ядрами типов i и k при Ni = Nk = 1; 281
µ молекулярный вес; 105, 123
µe электронный молекулярный вес; 142
µ1 безразмерная масса политропы; 185
µ̃1 безразмерная масса белого карлика; 437
ν нейтрино
ν̃ антинейтрино
ν температурный показатель скорости ядерной реакции; 283
ν1 поправочный множитель (политропы); 186
ξ скорость счета нейтрино в детекторе; единица SNU; 331, 336
ξ расстояние в эмденовских единицах длины; 176
ξ1 радиус политропы в эмденовских единицах длины; 183
ρ плотность, г/см3; 40, 9
ρc центральная плотность, г/см3; 110
ρ средняя плотность, г/см3; 45
ρE объемная плотность заряда; 505
ρr средняя плотность шара радиуса r, г/см3; 47, 109
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ρ0 плотность при параметре вырождения D = 1, г/см3; 144
ρ1 плотность, отделяющая НР электронный газ от УР, г/см3; 147
ρ2 критическая плотность начала процесса нейтронизации, г/см3; 146
σ постоянная Стефана,эрг/(см2 К4 с); 525, 217
σ безразмерная плотность; 173
σc безразмерная плотность в центре политропы; 188
σ(v), σ(E) поперечное сечение столкновения, см2; 266, 267
σ0 томсоновское сечение электронного рассеяния, см2; 525
σν сечение взаимодействия нейтрино с веществом, см2; 330
τ время жизни возбужденного ядра, с; 294
τ безразмерный параметр, определяющий скорость ТЯР; 279, 281
τ отношение центральной темературы звезды к средней по массе; 201, 189
τi(k) время выгорания ядер типа k на ядрах типа i, с, час, год; 286
τCN период CN–цикла, годы; 361
ρE объемная плотность заряда; 505
ρr средняя плотность шара радиуса r, г/см3; 47, 109
ρ0 плотность при параметре вырождения D = 1, г/см3; 144
ρ1 плотность, отделяющая НР электронный газ от УР, г/см3; 147
ρ2 критическая плотность начала процесса нейтронизации, г/см3; 146
τ безразмерный параметр, определяющий скорость ТЯР; 279, 281
τ отношение центральной темературы звезды к средней по массе; 201, 189
τ время остывания белого карлика, годы; 483
τi(k) время выгорания ядер типа k на ядрах типа i, с, час, год; 286
φc безразмерный гравитационный потенциал в центре звезды; 191
ϕ гравитационный потенциал, эрг/г≡ см2/с2; 51
ϕ дебаевский потенциал; 290, 506
ϕR потенциал центробежной силы, см2/с2; 54
Φ потенциал, отсчитанный от поверхности (политропы, белые карлики); 175, 426
ψ(ζ) изотермическая функция Эмдена; 236
ψ(ζ) безразмерный потенциал (белые карлики); 431
Ψ(E) максвелловское распределение по энергиям; 276
ω угловая скорость, обороты/с; 48
ω безразмерная гравитационная энергия связи звезды; 63
ω статистический множитель в формуле Брейта – Вигнера; 298
ω1 безразмерный структурный множитель; 192

M масса в массах Солнца: M = M/M¯
R радиус в радиусах Солнца: R = R/R¯
L светимость в светимостях Солнца: L = L/L¯
LE эддингтоновская светимость в светимостях Солнца: LE = LE/L¯


